Skip to main content
Log in

Magnetic field driven magnetic domains and ferromagnetic resonances in multilayer thin films Ta/FeGaB/Ta for microwave application

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The multilayer of FeGaB thin films is characterized for microwave, magnonics, spin caloritronics, and spintronics applications. The sputtered FeGaB thin films demonstrate that the coercive field increase with the thickness of the FeGaB thin film. The magnetic domain widths decrease as the FeGaB thin film thickness increases. The detraction of the domains width attributes to spin–orbit coupling (SOC) and magnetic dipolar fields. The manipulation of the critical domain is a key parameter for estimating the domain wall energy; in multilayers, the critical domain width is 48 nm. The dynamic characteristics (Ferromagnetic resonances) of a thin film stack Ta/FeGaB/Ta multilayer provide the inhomogeneous linewidth (H0) and damping factor (α). Based on the thickness dependent damping factor calculate the spin-mixing conductance. Magnetic domain wall mobility is investigated with help of damping factor and domain wall width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are included in this published article. The raw data can be provided if requested.

References

  1. MacDonald A, Schiffer P, Samarth N (2005) Ferromagnetic semiconductors: moving beyond (Ga, Mn)As. Nature Mater 4:195–202. https://doi.org/10.1038/nmat1325)

    Article  CAS  Google Scholar 

  2. Žutić I, Fabian J, Sarma SD (2004) Spintronics: fundamentals and applications. Rev Modern Phys 76(2):323. https://doi.org/10.1103/RevModPhys.76.323

    Article  CAS  Google Scholar 

  3. Dietl T, Ohno H, Matsukura F (2001) Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B 63:195205. https://doi.org/10.1103/PhysRevB.63.195205

    Article  CAS  Google Scholar 

  4. Mangin S, Ravelosona D, Katine JA, Carey MJ, Terris BD, Fullerton EE (2006) Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat Mater 5(3):210–215. https://doi.org/10.1038/nmat1595

    Article  CAS  Google Scholar 

  5. Rippard WH, Deac AM, Pufall MR, Shaw JM, Keller MW, Russek SE, Bauer GEW, Serpico C (2010) Spin-transfer dynamics in spin valves with out-of-plane magnetized CoNi free layers. Phys Rev B 81(1):014426. https://doi.org/10.1103/PhysRevB.81.014426

    Article  CAS  Google Scholar 

  6. Terris BD, Thomson T (2005) Nanofabricated and self-assembled magnetic structures as data storage media. J Phys D Appl Phys 38(12):R199. https://doi.org/10.1088/0022-3727/38/12/R01

    Article  CAS  Google Scholar 

  7. Daalderop GHO, Kelly PJ, Den Broeder FJA (1992) Prediction and confirmation of perpendicular magnetic anisotropy in Co/Ni multilayers. Phys Rev Lett 68(5):682. https://doi.org/10.1103/PhysRevLett.68.682

    Article  CAS  Google Scholar 

  8. Justin M, Nembach HT, Silva TJ (2011) Damping phenomena in Co90Fe10/Ni multilayers and alloys. Appl Phys Lett 99(1):012503. https://doi.org/10.1063/1.3607278

    Article  CAS  Google Scholar 

  9. Law R, Tan E-L, Sbiaa R, Liew T, Chong TC (2009) Reduction in critical current for spin transfer switching in perpendicular anisotropy spin valves using an in-plane spin polarizer. Appl Phys Lett 94(6):062516. https://doi.org/10.1063/1.3083546

    Article  CAS  Google Scholar 

  10. Sindhu S, Haast MAM, Ramstöck K, Abelmann L, Lodder JC (2002) Micromagnetic simulations of the domain structure and the magnetization reversal of Co50Ni50/Pt multilayer dots. J Mag Mag Mater 238(2–3):246–251. https://doi.org/10.1016/S0304-8853(01)00919-2

    Article  CAS  Google Scholar 

  11. Mangin S, Henry Y, Ravelosona D, Katine JA, Fullerton EE (2009) Reducing the critical current for spin-transfer switching of perpendicularly magnetized nanomagnets. Appl Phys Lett 94(1):012502. https://doi.org/10.1063/1.3058680

    Article  CAS  Google Scholar 

  12. Chen K, Zhang S (2015) Spin pumping in the presence of spin–orbit coupling. Phys Rev Lett 114(12):126602. https://doi.org/10.1103/PhysRevLett.114.126602

    Article  CAS  Google Scholar 

  13. Tserkovnyak Y, Brataas A, Bauer GEW, Halperin BI (2005) Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev Modern Phys 77:1375–1421. https://doi.org/10.1103/RevModPhys.77.1375

    Article  CAS  Google Scholar 

  14. Liu Y, Yuan Z, Wesselink RJH, Starikov AA, Kelly PJ (2014) Interface enhancement of Gilbert damping from first principles. Phys Rev Lett 113(20):207202. https://doi.org/10.1103/PhysRevLett.113.207202

    Article  CAS  Google Scholar 

  15. Feng Z, Hu J, Sun L, You B, Wu D, Du J, Zhang W et al (2012) Spin Hall angle quantification from spin pumping and microwave photoresistance. Phys Rev B 85(21):214423. https://doi.org/10.1103/PhysRevB.85.214423

    Article  CAS  Google Scholar 

  16. Vlaminck V, Pearson JE, Bader SD, Hoffmann A (2013) Dependence of spin-pumping spin Hall effect measurements on layer thicknesses and stacking order. Phys Rev B 88(6):064414. https://doi.org/10.1103/PhysRevB.88.064414.10.1063/1.4848102

    Article  Google Scholar 

  17. Zhang W, Vlaminck V, Pearson JE, Divan R, Bader SD, Hoffmann A (2013) Determination of the Pt spin diffusion length by spin-pumping and spin Hall effect. Appl Phys Lett 103(24):242414. https://doi.org/10.1063/1.4848102

    Article  CAS  Google Scholar 

  18. Obstbaum M, Härtinger M, Bauer HG, Meier T, Swientek F, Back CH, Woltersdorf G (2014) Inverse spin Hall effect in Ni81Fe19/normal-metal bilayers. Phys Rev B 89(6):060407. https://doi.org/10.1103/PhysRevB.89.060407

    Article  CAS  Google Scholar 

  19. Ando K, Takahashi S, Leda J, Kurebayashi H, Trypiniotis T, Barnes CHW, Maekawa S, Saitoh E et al (2011) Electrically tunable spin injector free from the impedance mismatch problem. Nature Mater 10:655–659. https://doi.org/10.1038/nmat3052

    Article  CAS  Google Scholar 

  20. Žutić I, Dery H (2011) Nat Mater 10:647

    Article  Google Scholar 

  21. Rafique S, Cullen JR, Wuttig M, Cui J (2004) Magnetic anisotropy of FeGa alloys. J Appl Phys 95(11):6939–6941. https://doi.org/10.1063/1.1676054

    Article  CAS  Google Scholar 

  22. Yu Y, Zhan Q, Wei J, Wang J, Dai G, Zuo Z, Zhang X et al (2015) Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates. Appl Phys Lett 106(16):162405. https://doi.org/10.1063/1.4918964

    Article  CAS  Google Scholar 

  23. Butera A, Weston JL, Barnard JA (2004) Ferromagnetic resonance of epitaxial Fe81Ga19(110) thin films. J Magn Magn Mater 284:17–25. https://doi.org/10.1016/j.jmmm.2004.06.015

    Article  CAS  Google Scholar 

  24. Mahadevan A, Evans PG, Dapino MJ (2010) Dependence of magnetic susceptibility on stress in textured polycrystalline Fe81.6Ga18.4 and Fe79.1Ga20.9 Galfenol alloys. Appl Phys Lett 96(1):012502. https://doi.org/10.1063/1.3280374

    Article  CAS  Google Scholar 

  25. Fin S, Tomasello R, Bisero D, Marangolo M, Sacchi M, Popescu H, Eddrief M et al (2015) In-plane rotation of magnetic stripe domains in Fe1–xGax thin films. Phys Rev B 92(22):224411. https://doi.org/10.1103/PhysRevB.92.224411

    Article  CAS  Google Scholar 

  26. Guo X, Wang F, Ma X, Li Q, Liu M, Chen X, Yu J et al (2022) Annealing enhanced ferromagnetic resonance of thickness-dependent FeGa films. Appl Phys Lett 120(20):202402. https://doi.org/10.1063/5.0090880

    Article  CAS  Google Scholar 

  27. Gopman DB, Sampath V, Ahmad H, Bandyopadhyay S, Atulasimha J (2017) Static and dynamic magnetic properties of sputtered Fe–Ga thin films. IEEE Trans Magn 53(11):1–4. https://doi.org/10.1109/TMAG.2017.2700404

    Article  Google Scholar 

  28. Dai G, Zhan Q, Liu Y, Yang H, Zhang X, Chen B, Li R-W (2012) Mechanically tunable magnetic properties of Fe81Ga19 films grown on flexible substrates. Appl Phys Lett 100(12):122407. https://doi.org/10.1063/1.3696887

    Article  CAS  Google Scholar 

  29. Dai G, Zhan Q, Yang H, Liu Y, Zhang X, Zuo Z, Chen B, Li R-W (2013) Controllable strain-induced uniaxial anisotropy of Fe81Ga19 films deposited on flexible bowed-substrates. J Appl Phys 114(17):173913. https://doi.org/10.1063/1.4829670

    Article  CAS  Google Scholar 

  30. Cao D, Cheng X, Pan L, Feng H, Zhao C, Zhu Z, Li Q et al (2017) Tuning high frequency magnetic properties and damping of FeGa, FeGaN and FeGaB thin films. AIP Adv 7(11):115009. https://doi.org/10.1063/1.5001716

    Article  CAS  Google Scholar 

  31. Lou J, Insignares RE, Cai Z, Ziemer KS, Liu M, Sun NX (2007) Soft magnetism, magnetostriction, and microwave properties of FeGaB thin films. Appl Phys Lett 91(18):182504. https://doi.org/10.1063/1.2804123

    Article  CAS  Google Scholar 

  32. Bajracharya P, Sharma V, Johnson A, Budhani RC (2021) Resonant precession of magnetization and precession—induced DC voltages in FeGaB thin films. J Phys D Appl Phys 55(7):075303. https://doi.org/10.1088/1361-6463/ac34ab

    Article  Google Scholar 

  33. Xia K, Kelly PJ, Bauer GEW, Brataas A, Turek I (2002) Spin torques in ferromagnetic/normal-metal structures. Phys Rev B 65(22):220401. https://doi.org/10.1103/PhysRevB.65.220401

    Article  CAS  Google Scholar 

  34. Wang Y, Liu K, Shao S, Kim J, Wu T (2021) Multiferroic magnetic sensor based on AlN and Al0.7Sc0.3 N thin film S. In: 2021 IEEE international Ultrasonics symposium (IUS), pp 1–4. IEEE. https://doi.org/10.1109/IUS52206.2021.9593330

  35. Wu T, Chang C-M, Chung T-K, Carman G (2009) Comparison of effective direct and converse magnetoelectric effects in laminate composites. IEEE Trans Magn 45(10):4333–4336. https://doi.org/10.1109/TMAG.2009.2024546

    Article  Google Scholar 

  36. Wu T, Bur A, Zhao P, Mohanchandra KP, Wong K, Wang KL, Lynch CS, Carman GP (2011) Giant electric-field-induced reversible and permanent magnetization reorientation on magnetoelectric Ni/(011)[Pb(Mg1/3Nb2/3)O3](1–x)–[PbTiO3]x heterostructure. Appl Phys Lett 98(1):012504. https://doi.org/10.1063/1.3534788

    Article  CAS  Google Scholar 

  37. Wu T, Bur A, Wong K, Hockel JL, Hsu C-J, Kim HKD, Wang KL, Carman GP (2011) Electric-poling-induced magnetic anisotropy and electric-field-induced magnetization reorientation in magnetoelectric Ni/(011)[Pb(Mg1/3Nb2/3)O3](1–x)-[PbTiO3]x heterostructure. J Appl Phys 109(7):07D732. https://doi.org/10.1063/1.3563040

    Article  CAS  Google Scholar 

  38. Liang C-Y, Keller SM, Sepulveda AE, Sun W-Y, Cui J, Lynch CS, Carman GP (2014) Electrical control of a single magnetoelastic domain structure on a clamped piezoelectric thin film—analysis. J Appl Phys 116(12):123909. https://doi.org/10.1063/1.4896549

    Article  CAS  Google Scholar 

  39. Sukstanskii AL, Primak KI (1997) Domain structure in an ultrathin ferromagnetic film. J Magn Magn Mater 169(1–2):31–38. https://doi.org/10.1016/S0304-8853(96)00729-9

    Article  CAS  Google Scholar 

  40. Kaplan B, Kaplan B, Gehring GA (1993) The domain structure in ultrathin magnetic films. J Magn Magn Mater 128(1–2):111–116. https://doi.org/10.1016/0304-8853(93)90863-W

    Article  CAS  Google Scholar 

  41. Mansilla MV, Gómez J, Sallica Leva E, Castillo Gamarra F, Asenjo Barahona A, Butera A (2009) Thickness and temperature dependence of the dynamic magnetic behavior in disordered FePt films. J Magn Magn Mater 321(18):2941–2945. https://doi.org/10.1016/j.jmmm.2009.04.045

    Article  CAS  Google Scholar 

  42. Platow W, Anisimov AN, Dunifer GL, Farle M, Baberschke K (1998) Correlations between ferromagnetic-resonance linewidths and sample quality in the study of metallic ultrathin films. Phys Rev B 58(9):5611. https://doi.org/10.1103/PhysRevB.58.5611

    Article  CAS  Google Scholar 

  43. Herring C, Kittel C (1951) On the theory of spin waves in ferromagnetic media. Phys Rev 81:869–880. https://doi.org/10.1103/PhysRev.81.869

    Article  Google Scholar 

  44. Kittel C (1947) Interpretation of anomalous Larmor frequencies in ferromagnetic resonance experiment. Phys Rev 71:270–271. https://doi.org/10.1103/PhysRev.71.270.2

    Article  Google Scholar 

  45. Yoshino T, Ando K, Harii K, Nakayama H, Kajiwara Y, Saitoh E (2011) Universality of the spin pumping in metallic bilayer films. Appl Phys Lett 98(13):132503. https://doi.org/10.1063/1.3571556

    Article  CAS  Google Scholar 

  46. Haidar M, Ranjbar M, Balinsky M, Dumas RK, Khartsev S, Åkerman J (2015) Thickness-and temperature-dependent magnetodynamic properties of yttrium iron garnet thin films. J Appl Phys 117(17):17D119. https://doi.org/10.1063/1.4914363

    Article  CAS  Google Scholar 

  47. Tshitoyan V, Ciccarelli C, Mihai AP, Ali M, Irvine AC, Moore TA, Jungwirth T, Ferguson AJ (2015) Electrical manipulation of ferromagnetic NiFe by antiferromagnetic IrMn. Phys Rev B 92(21):214406. https://doi.org/10.1103/PhysRevB.92.214406

    Article  CAS  Google Scholar 

  48. Schreier M, Chiba T, Niedermayr A, Lotze J, Huebl H, Geprägs S, Takahashi S, Bauer GEW, Gross R, Goennenwein STB (2015) Current-induced spin torque resonance of a magnetic insulator. Phys Rev B 92(14):144411. https://doi.org/10.1103/PhysRevB.92.144411

    Article  CAS  Google Scholar 

  49. Sklenar J, Zhang W, Jungfleisch MB, Jiang W, Chang H, Pearson JE, Wu M, Ketterson JB, Hoffmann A (2015) Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect. Phys Rev B 92(17):174406. https://doi.org/10.1103/PhysRevB.92.174406

    Article  CAS  Google Scholar 

  50. Beaujour JML, Lee JH, Kent AD, Krycka K, Kao CC (2006) Magnetization damping in ultrathin polycrystalline Co films: evidence for nonlocal effects. Phys Rev B 74(21):214405. https://doi.org/10.1103/PhysRevB.74.214405

    Article  CAS  Google Scholar 

  51. Tokaç M, Bunyaev SA, Kakazei GN, Schmool DS, Atkinson D, Hindmarch AT (2015) Interfacial structure dependent spin mixing conductance in cobalt thin films. Phys Rev Lett 115(5):056601. https://doi.org/10.1103/PhysRevLett.115.056601

    Article  CAS  Google Scholar 

  52. You Y, Sakimura H, Harumoto T, Nakamura Y, Shi J, Song C, Pan F, Ando K (2021) Study of spin mixing conductance of single oriented Pt in Pt/Ni81Fe19 heterostructure by spin pumping. AIP Adv 11(3):035211. https://doi.org/10.1063/5.0035912

    Article  CAS  Google Scholar 

  53. Martinez E, Lopez-Diaz L, Torres L, Tristan C, Alejos O (2007) Thermal effects in domain wall motion: micromagnetic simulations and analytical model. Phys Rev B 75(17):174409. https://doi.org/10.1103/PhysRevB.75.174409

    Article  CAS  Google Scholar 

  54. Lahtinen T, Franke K, van Dijken S (2012) Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci Rep 2:258. https://doi.org/10.1038/srep00258

    Article  CAS  Google Scholar 

  55. Yadagiri K, Long J, Wang Y, Zhu Z, Wu T (2022) Magnetodynamic properties on square patterned of FeGaB and Al2O3/FeGaB thin films. J Mater Sci Mater Electron 33(19):15927–15935. https://doi.org/10.1007/s10854-022-08491-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KY contributed to investigation, data curation, formal analysis, methodology, visualization, and writing original manuscript. WY contributed to investigation, data curation, visualization, and writing review. TW contributed to supervision and validation.

Corresponding author

Correspondence to K. Yadagiri.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadagiri, K., Wang, Y. & Wu, T. Magnetic field driven magnetic domains and ferromagnetic resonances in multilayer thin films Ta/FeGaB/Ta for microwave application. J Mater Sci 58, 11327–11338 (2023). https://doi.org/10.1007/s10853-023-08713-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08713-y

Navigation