Skip to main content
Log in

Ultra-lightweight and multifunctional ionic liquid-modified graphene/polyimide aerogels for efficient electromagnetic wave absorption

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, 1-aminoethyl-3-methylimidazolium bromide ionic liquid was used to modify the surface of graphene nanosheets (GNs) through “π–π” interaction to achieve good dispersion and conductivity. By introducing ionic liquid-modified graphene nanosheets (IGNs) into the PI matrix, the ultra-lightweight and multifunctional IGNs/PI aerogels were prepared via freeze-drying and thermal imidization. Benefiting from the porous structure and the introduction of conductive IGNs, the IGNs/PI aerogels exhibit excellent electromagnetic wave (EMW) absorption properties, compression properties, thermal insulation properties and thermal stability. Notably, when the volume content of IGNs is 10%, the IGNs/PI-10 aerogels show the best EMW absorption performance with a minimum reflection loss (RLmin) of −24.8 dB at 2.44 mm and an effective absorption bandwidth (EAB) of 3.6 GHz at 3.00 mm. These promising characteristics including excellent EMW absorption, compression properties and thermal insulation endow IGNs/PI aerogels great application prospects as multifunctional EMW absorbers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lin TF, Yu HJ, Wang L, Fahad S, Khan A, Naveed KR, Haq F, Nazir A, Amin BU (2021) A review of recent advances in the preparation of polyaniline-based composites and their electromagnetic absorption properties. J Mater Sci 56:5449–5478

    Article  CAS  Google Scholar 

  2. Qiao YJ, Yao ZD, Wang XD, Zhang XH, Bai CY, Li QW, Chen KX, Li ZR, Zheng T (2020) Lattice composites with embedded short carbon fiber/Fe3O4/epoxy hollow spheres for structural performance and microwave absorption. Mater Des 188:108427

    Article  CAS  Google Scholar 

  3. Xu XD, Wang YX, Yue Y, Wang CJ, Wang YB, Liu DM (2022) Porous micro-antennas decorated turbostratic graphitized carbon/TiO2 derived from polyaniline/Ti3C2Tx for high-performance electromagnetic wave absorption. Compos A 162:107138

    Article  CAS  Google Scholar 

  4. Ge YQ, Li CP, Waterhouse GI, Zhang ZM (2021) ZnFe2O4@PDA@Polypyrrole composites with efficient electromagnetic wave absorption properties in the 18–40 GHz region. J Mater Sci 56:10876–10891

    Article  CAS  Google Scholar 

  5. Wang YP, Zhong WX, Zhang S, Zhang X, Zhu CL, Zhang XL, Zhang XT, Chen YJ (2022) Pearl necklace-like CoMn-based nanostructures derived from metal-organic frames for enhanced electromagnetic wave absorption. Carbon 188:254–264

    Article  CAS  Google Scholar 

  6. Song SX, Shi YJ, Tan JJ, Wu ZS, Zhang MY, Qiang S, Nie JY, Liu HT (2022) An efficient approach to fabricate lightweight polyimide/aramid sponge with excellent heat insulation and sound absorption performance. J Ind Eng Chem 109:404–412

    Article  CAS  Google Scholar 

  7. Liu TS, Liu N, Gai LX, An QD, Xiao ZY, Zhai SR, Cai WJ, Wang HS, Li ZC (2020) Hierarchical carbonaceous composites with dispersed Co species prepared using the inherent nanostructural platform of biomass for enhanced microwave absorption. Microporous Mesoporous Mater 302:110210

    Article  CAS  Google Scholar 

  8. Chang M, Jia ZR, He SQ, Zhou JX, Zhang S, Tian ML, Wang BB, Wu GL (2021) Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability. Compos B 225:109306

    Article  CAS  Google Scholar 

  9. Xu ML, Wei LF, Ma L, Lu JW, Liu T, Zhang L, Zhao L, Park CB (2022) Microcellular foamed polyamide 6/carbon nanotube composites with superior electromagnetic wave absorption. J Mater Sci Technol 117:215–224

    Article  Google Scholar 

  10. Zhan C, Jana SC (2020) Shrinkage reduced polyimide-graphene oxide composite aerogel for oil absorption. Microporous and Mesoporous Mater 307:110501

    Article  CAS  Google Scholar 

  11. Nguyen BN, Scheiman DA, Meador MB, Guo J, Hamilton B, McCorkle LS (2021) Effect of urea links in the backbone of polyimide aerogels. ACS Appl Polym Mater 3(4):2027–2037

    Article  CAS  Google Scholar 

  12. Zhang TT, Yang ZH, Piao F, Guo HQ (2022) Transparent polyimide films with ultra-low coefficient of thermal expansion. High Perform Polym 34(8):871–879

    Article  CAS  Google Scholar 

  13. Wang HY, Zhu DM, Zhou WC, Luo F (2014) Microwave electromagnetic properties of polyimide/carbonyl iron composites. J Polym Res 21:1–8

    Article  Google Scholar 

  14. Jiang M, Lin DL, Jia W, Du J, Han EL, Zhang MY, Niu HQ, Wu DZ (2021) Preparation and properties of polyimide/carbon nanotube composite films with electromagnetic wave absorption performance. Polym Eng Sci 61:2691–2700

    Article  CAS  Google Scholar 

  15. Wang HY, Zhu DM, Zhou WC, Luo F (2015) High temperature electromagnetic and microwave absorbing properties of polyimide/multi-walled carbon nanotubes nancomposites. Chem Phys Lett 633:223–228

    Article  CAS  Google Scholar 

  16. Zhang L, Shi CS, Rhee KY, Zhao NQ (2012) Properties of Co0.5Ni0.5Fe2O4/carbon nanotubes/polyimide nanocomposites for microwave absorption. Compos A 43:2241–2248

    Article  CAS  Google Scholar 

  17. Zhou J, Chen YJ, Li H, Dugnani R, Du Q, UrRehman H, Kang HM, Liu HZ (2018) Facile synthesis of three-dimensional lightweight nitrogen-doped graphene aerogel with excellent electromagnetic wave absorption properties. J Mater Sci 53:4067–4077

    Article  CAS  Google Scholar 

  18. Guo R, Zheng Q, Wang LJ, Fan YC, Jiang W (2022) Porous N-doped Ni@SiO2/graphene network: three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption. J Mater Sci Technol 106:108–117

    Article  Google Scholar 

  19. Zhu DS, Yang ZH, Zhao JY, Guo HQ, Gao LX (2021) Ultrahigh energy density of polymer nanocomposites containing electrostatically self-assembled graphene oxide and hydrotalcite nanosheets. Ceram Int 47(23):33766–33774

    Article  CAS  Google Scholar 

  20. Liu Y, Wu YX, Li KX, Wang J, Zhang CL, Ji JL, Wang WJ (2019) Amorphous SnS nanosheets/graphene oxide hybrid with efficient dielectric loss to improve the high-frequency electromagnetic wave absorption properties. Appl Surf Sci 486:344–353

    Article  CAS  Google Scholar 

  21. Wang L, Wang WW, Fan P, Zhou ML, Yang JT, Chen F, Zhong MQ (2017) Ionic liquid-modified graphene/poly (vinyl alcohol) composite with enhanced properties. J Appl Polym Sci 134(26):45006

    Article  Google Scholar 

  22. Gai LX, An QD, Xiao ZY, Zhai SR, Wang HS, Cai WJ, Li ZC (2020) Rational construction of Co NPs embedded N-doped carbon layer/ZrSBA-15 composites with hierarchical succulent-like nanostructures for enhanced microwave absorption. Microporous Mesoporous Mater 294:109880

    Article  CAS  Google Scholar 

  23. Budtova T, Lokki T, Malakooti S, Rege A, Lu HB, Milow B, Vapaavuori J, Vivod SL (2022) Acoustic properties of aerogels: current status and prospects. Adv Eng Mater 25(6):2201137

    Article  Google Scholar 

  24. Lee SJ, Morgan AB, Schiraldi DA, Maia J (2019) Improving the flame retardancy of polypropylene foam with piperazine pyrophosphate via multilayering coextrusion of film/foam composites. J Appl Polym Sci 137(15):48552

    Article  Google Scholar 

  25. Liu PB, Wang Y, Zhang GZ, Huang Y, Zhang RX, Liu XH, Zhang XF, Che RC (2022) Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv Funct Mater 32:2202588

    Article  CAS  Google Scholar 

  26. Dai D, Lan XL, Wu LN, Wang ZJ (2022) Designed fabrication of lightweight SiC/Si3N4 aerogels for enhanced electromagnetic wave absorption and thermal insulation. J Alloys Compd 901:163651

    Article  CAS  Google Scholar 

  27. Wang ZC, Wei RB, Gu JW, Liu H, Liu CT, Luo CJ, Kong J, Shao Q, Wang N, Guo ZH, Liu XB (2018) Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139:1126–1135

    Article  CAS  Google Scholar 

  28. Jiang SH, Uch B, Agarwal S, Greiner A (2017) Ultralight, thermally insulating, compressible polyimide fiber assembled sponges. ACS Appl Mater Interfaces 9:32308–32315

    Article  CAS  Google Scholar 

  29. Zhao B, Deng JS, Zhao CX, Wang CD, Chen YG, Hamidinejad M, Li RS, Park CB (2020) Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure. J Mater Chem C 8:58–70

    Article  CAS  Google Scholar 

  30. Zhu JD, Zhao FX, Peng TP, Liu H, Xie L, Jiang CW (2021) Highly elastic and robust hydroxyapatite nanowires/polyimide composite aerogel with anisotropic structure for thermal insulation. Compos B 223:109081

    Article  CAS  Google Scholar 

  31. Li YQ, Zhang Q, Xie X, Xu X, Lu SR, Huang XH, Ruan H (2020) Enhanced electromagnetic wave absorption properties of ionic liquid doped graphene. J Mater Sci: Mater Elec 31:13273–13283

    CAS  Google Scholar 

  32. Fan XQ, Wang LP (2015) High-performance lubricant additives based on modified graphene oxide by ionic liquids. J Colloid Interface Sci 452:98–108

    Article  CAS  Google Scholar 

  33. Zhang YW, Li SS, Tang XW, Fan W, Lan QQ, Li L, Ma PM, Dong WF, Wang ZC, Liu TX (2022) Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption. J Mater Sci Technol 102:97–104

    Article  Google Scholar 

  34. Luo JW, Wang Y, Qu ZJ, Wang W, Yu D (2022) Anisotropic, multifunctional and lightweight CNTs@CoFe2O4/polyimide aerogels for high efficient electromagnetic wave absorption and thermal insulation. Chem Eng J 442:136388

    Article  CAS  Google Scholar 

  35. Pu L, Li SS, Zhang YW, Zhu HY, Fan W, Ma PM, Dong WF, Wang ZC, Liu TX (2021) Polyimide-based graphene composite foams with hierarchical impedance gradient for efficient electromagnetic absorption. J Mater Chem C 9:2086–2094

    Article  CAS  Google Scholar 

  36. Ha HW, Choudhury A, Kamal T, Kim DH, Park SY (2012) Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites. ACS Appl Mater Interfaces 4:4623–4630

    Article  CAS  Google Scholar 

  37. Wang YY, Zhou ZH, Zhou CG, Sun WJ, Gao JF, Dai K, Yan DX, Li ZM (2020) Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl Mater Interfaces 12:8704–8712

    Article  CAS  Google Scholar 

  38. Bai B, Zhu YP, Miao JF, Wang X, Bi SG, Kong LJ, Liu WS, Zhang LY (2022) Electromagnetic wave absorption performance and mechanisms of geoploymer-based composites containing core-shell SiO2@Fe3O4 nanoparticles. Ceram Int 48:2755–2762

    Article  CAS  Google Scholar 

  39. Bi YX, Ma ML, Liao ZJ, Tong ZY, Chen Y, Wang RZ, Ma Y, Wu GL (2022) One-dimensional Ni@Co/C@PPy composites for superior electromagnetic wave absorption. J Colloid Interface Sci 605:483–492

    Article  CAS  Google Scholar 

  40. Zhou W, Zhang YT, Li Y, Gou YZ, Zhou XB (2022) In-situ synthesis of ternary layered Y3Si2C2 ceramic on silicon carbide fiber for enhanced electromagnetic wave absorption. Ceram Int 48:1908–1915

    Article  CAS  Google Scholar 

  41. Zhang KL, Chen J, Yue SJ, Zhang HY, Meng C, Wang JG (2020) Facile synthesis of core-shell CI/SiO2 decorated RGO sheets composite for excellent electromagnetic wave absorption performance covering the whole X-band. Compos A 130:105755

    Article  CAS  Google Scholar 

  42. Liu JL, Zhang LM, Wu HJ (2022) Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through f-regulation engineering. Adv Funct Mater 32:2110496

    Article  CAS  Google Scholar 

  43. Gao ZG, Lan D, Zhang LM, Wu HJ (2021) Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption. Adv Funct Mater 31:2106677

    Article  CAS  Google Scholar 

  44. Liu W, Shao QW, Ji GB, Liang XH, Cheng Y, Quan B, Du YW (2017) Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem Eng J 313:734–744

    Article  CAS  Google Scholar 

  45. Wang HY, Zhu DM, Zhou WC, Luo F (2015) Electromagnetic and microwave absorbing properties of polyimide nanocomposites at elevated temperature. J Alloys Compd 648:313–319

    Article  CAS  Google Scholar 

  46. Liu Z, Lv YX, Fang JY, Zuo XD, Zhang CY, Yue XG (2018) A new method for an efficient porous carbon/Fe3O4 composite based electromagnetic wave absorber derived from a specially designed polyimide. Compos B 155:148–155

    Article  CAS  Google Scholar 

  47. Dong J, Zhou WC, Wang CH, Lu LL, Luo F, Zhu DM (2019) Anisotropic particle geometry effect on magnetism and microwave absorption of carbonyl iron/polyimide composites. J Magn and Magn Mater 491:165643

    Article  CAS  Google Scholar 

  48. Li XP, Li ZQ, Que LK, Ma YJ, Zhu L, Pei CH (2020) Electromagnetic wave absorption performance of graphene/SiC nanowires based on graphene oxide. J Alloys Compd 835:155172

    Article  CAS  Google Scholar 

  49. Li YR, Li DM, Yang J, Luo H, Chen F, Wang X, Gong RZ (2018) Enhanced microwave absorption and surface wave attenuation properties of Co0.5Ni0.5Fe2O4 fibers/reduced graphene oxide composites. Materials 11(4):508

    Article  Google Scholar 

  50. Zhao TK, Ji XL, Jin WB, Xiong CY, Ma WX, Wang C, Duan SC, Dang AL, Li H, Li TH, Shang SM, Zhou ZF (2017) Synthesis and electromagnetic wave absorption property of amorphous carbon nanotube networks on a 3D graphene aerogel/BaFe12O19 nanocomposite. J Alloys Compd 708:115–122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Natural Science Foundation of Guangxi Province (No. 2022GXNSFAA035536), the Project of Department of Science and Technology of Guilin (No. 20210217-5) and Natural Science Foundation of Hunan Province (No. 2022JJ50086).

Author information

Authors and Affiliations

Authors

Contributions

JY helped in investigation and writing–original draft. YL helped in funding acquisition, conceptualization, supervision, investigation, writing–original draft and writing–review & editing. FQ helped in writing–review & editing. SL contributed to supervision and writing–review & editing. CY done validation and writing–review & editing. WZ contributed to supervision and writing–review & editing.

Corresponding authors

Correspondence to Yuqi Li or Wei Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor:Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Li, Y., Qin, F. et al. Ultra-lightweight and multifunctional ionic liquid-modified graphene/polyimide aerogels for efficient electromagnetic wave absorption. J Mater Sci 58, 9181–9195 (2023). https://doi.org/10.1007/s10853-023-08607-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08607-z

Navigation