Skip to main content

Advertisement

Log in

Facile construction of a degradable and renewable superhydrophobic indole-based hemiaminal aerogel for efficient oil–water separation

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Design readily available and inexpensive aerogels as potential sorbent materials for oil–water separation is extremely significant because of the increasing discharge of domestic oil pollution. Hereby, a novel superhydrophobic indole-based hemiaminal aerogel (PCINA) without any post-surface treatment was fabricated by a facile, simple and mild method via sol–gel technology followed by freeze-drying. The as-obtained indole-based hemiaminal aerogel exhibited high absorption capacity for varieties of oils and organic solvents. In addition, the separation efficiency of oil–water mixture was as high as 99.8%, even the separation efficiency of emulsion could achieve to 98.2%. More excitingly, the indole-based hemiaminal aerogel PCINA possessed repeatability and regeneration due to the feasible desorption and rapid degradation, suggesting that the green and renewable aerogel was a promising material for the treatment of oil contaminants in different fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Some or all data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Chang J, Ong C, Shi Y, Yuan J, Ahmed Z, Wang P (2021) Smart sand by surface engineering: toward controllable oil/water separation. Ind Eng Chem Res 60:9475–9481. https://doi.org/10.1021/acs.iecr.1c01450

    Article  CAS  Google Scholar 

  2. Liu C, Peng Y, Huang C, Ning Y, Shang J, Li Y (2022) Bioinspired superhydrophobic/superhydrophilic janus copper foam for on-demand oil/water separation. ACS Appl Mater Interfaces 14:11981–11988. https://doi.org/10.1021/acsami.2c00585

    Article  CAS  Google Scholar 

  3. Bai Z, Jia K, Liu C et al (2021) A solvent regulated hydrogen bond crosslinking strategy to prepare robust hydrogel paint for oil/water separation. Adv Funct Mater 31:2104701. https://doi.org/10.1002/adfm.202104701

    Article  CAS  Google Scholar 

  4. Huang J, Lu Z, Li J, Jia F, Wang Y, Hua L (2023) In situ growth of ZIF-8 onto aramid nanofiber composite aerogel for efficient removal of pollutants in water. ACS Appl Polym Mater 5:1606–1612. https://doi.org/10.1021/acsapm.2c02110

    Article  CAS  Google Scholar 

  5. Li H, Yang H, Shu Y, Li C, Li B, Xiao W, Liao X (2023) Stainless steel screen modified with renatured xerogel for efficient and highly stable oil/water separation via gravity. Langmuir 39:3131–3141. https://doi.org/10.1021/acs.langmuir.2c03307

    Article  CAS  Google Scholar 

  6. Grigorenko AN, Roberts NW, Dickinson MR, Zhang Y (2008) Nanometric optical tweezers based on nanostructured substrates. Nat Photonics 2:365–370. https://doi.org/10.1038/nphoton.2008.78

    Article  CAS  Google Scholar 

  7. Lin Q, Mendelssohn IA, Bryner NP, Walton WD (2005) In-situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type. Environ Sci Technol 39:1848–1854. https://doi.org/10.1021/es049063y

    Article  CAS  Google Scholar 

  8. Hazen TC, Dubinsky EA, DeSantis TZ et al (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208. https://doi.org/10.1126/science.1195979

    Article  CAS  Google Scholar 

  9. Prince RC (2015) Oil spill dispersants: boon or bane? Environ Sci Technol 49:6376–6384. https://doi.org/10.1021/acs.est.5b00961

    Article  CAS  Google Scholar 

  10. Li L, Zhang J, Wang A (2018) Removal of organic pollutants from water using superwetting materials. Chem Rec 18:118–136. https://doi.org/10.1002/tcr.201700029

    Article  CAS  Google Scholar 

  11. Broje V, Keller AA (2006) Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface. Environ Sci Technol 40:7914–7918. https://doi.org/10.1021/es061842m

    Article  CAS  Google Scholar 

  12. Li R, Rao L, Zhang J et al (2021) Novel in-situ electroflotation driven by hydrogen evolution reaction (HER) with polypyrrole (PPy)-Ni-modified fabric membrane for efficient oil/water separation. J Membr Sci 635:119502. https://doi.org/10.1016/j.memsci.2021.119502

    Article  CAS  Google Scholar 

  13. Qiu L, Sun Y, Guo Z (2020) Designing novel superwetting surfaces for high-efficiency oil-water separation: design principles, opportunities, trends and challenges. J Mater Chem A 8:16831–16853. https://doi.org/10.1039/D0TA02997A

    Article  CAS  Google Scholar 

  14. Wang Y, Yang H, Chen Z et al (2018) Recyclable oil-absorption foams via secondary phase separation. ACS Sustain Chem Eng 6:13834–13843. https://doi.org/10.1021/acssuschemeng.8b01950

    Article  CAS  Google Scholar 

  15. Qiu S, Li Y, Li G, Zhang Z, Li Y, Wu T (2019) Robust superhydrophobic sepiolite-coated polyurethane sponge for highly efficient and recyclable oil absorption. ACS Sustain Chem Eng 7:5560–5567. https://doi.org/10.1021/acssuschemeng.9b00098

    Article  CAS  Google Scholar 

  16. Sakthivel T, Reid DL, Goldstein I, Hench L, Seal S (2013) Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation. Environ Sci Technol 47:5843–5850. https://doi.org/10.1021/es3048174

    Article  CAS  Google Scholar 

  17. Choi HM, Cloud RM (1992) Natural sorbents in oil spill cleanup. Environ Sci Technol 26:772–776. https://doi.org/10.1021/es00028a016

    Article  CAS  Google Scholar 

  18. Tang Y, Zheng Q, Chen B, Ma Z, Gong S (2017) A new class of flexible nanogenerators consisting of porous aerogel films driven by mechanoradicals. Nano Energy 38:401–411. https://doi.org/10.1016/j.nanoen.2017.06.022

    Article  CAS  Google Scholar 

  19. Zhao Y, Shen L, Yuan Y, Xiao L, Cai J, Lu Z, Hou L (2023) Preparation of porous poly(4-tert-butylstyrene) based monoliths with high efficiency for oil-water separation via high internal phase emulsion template. J Appl Polym Sci 140:e53801. https://doi.org/10.1002/app.53801

    Article  Google Scholar 

  20. Liu T, Li D, Huang K, Tan S, Huang L (2023) Preparation and water/oil separation of super-hydrophobic biomass adsorbent based on three-dimensional graphene aerogel. J Chem Technol Biotechnol 98:744–755. https://doi.org/10.1002/jctb.7279

    Article  CAS  Google Scholar 

  21. Ma W, Lu T, Cao W, Xiong R, Huang C (2023) Bioinspired nanofibrous aerogel with vertically aligned channels for efficient water purification and salt-rejecting solar desalination. Adv Funct Mater 2023:2214157. https://doi.org/10.1002/adfm.202214157

    Article  Google Scholar 

  22. Yang Y, Chen X, Li Y, Yin Z, Bao M (2021) Construction of a superhydrophobic sodium alginate aerogel for efficient oil absorption and emulsion separation. Langmuir 37:882–893. https://doi.org/10.1021/acs.langmuir.0c03229

    Article  CAS  Google Scholar 

  23. Zhuo L, Ma C, Xie F, Chen S, Lu Z (2020) Methylcellulose strengthened polyimide aerogels with excellent oil/water separation performance. Cellulose 27:7677–7689. https://doi.org/10.1007/s10570-020-03311-6

    Article  CAS  Google Scholar 

  24. Lin B, Wang Z, Zhu Q, Binti Hamzah WN, Yao Z, Cao K (2020) Aerogels for the separation of asphalt-containing oil-water mixtures and the effect of asphalt stabilizer. RSC Adv 10:24840–24846. https://doi.org/10.1039/D0RA00544D

    Article  CAS  Google Scholar 

  25. Ieamviteevanich P, Palaporn D, Chanlek N, Poo-arporn Y, Mongkolthanaruk W, Eichhorn SJ, Pinitsoontorn S (2020) Carbon nanofiber aerogel/magnetic core-shell nanoparticle composites as recyclable oil sorbents. ACS Appl Nano Mater 3:3939–3950. https://doi.org/10.1021/acsanm.0c00818

    Article  CAS  Google Scholar 

  26. Jiang J, Zhang Q, Zhan X, Chen F (2019) A multifunctional gelatin-based aerogel with superior pollutants adsorption, oil/water separation and photocatalytic properties. Chem Eng J 358:1539–1551. https://doi.org/10.1016/j.cej.2018.10.144

    Article  CAS  Google Scholar 

  27. Bai X, Yuan Z, Lu C, Zhan H, Ge W, Li W, Liu Y (2023) Recent advances in superwetting materials for separation of oil/water mixtures. Nanoscale 15:5139–5157. https://doi.org/10.1039/D2NR07088J

    Article  CAS  Google Scholar 

  28. Chhajed M, Verma C, Gupta P, Maji PK (2023) Multifunctional esterified nanocellulose aerogel: impact of fatty chain length on oil/water separation and thermal insulation. Cellulose 30:1717–1739. https://doi.org/10.1007/s10570-022-04993-w

    Article  CAS  Google Scholar 

  29. Fox CH, Hurrne GM, Wojtecki RJ et al (2015) Supramolecular motifs in dynamic covalent PEG-hemiaminal organogels. Nat Commun 6:7417. https://doi.org/10.1038/ncomms8417

    Article  CAS  Google Scholar 

  30. Li Z, Qiu J, Yuan S, Luo Q, Pei C (2017) Rapidly degradable and sustainable polyhemiaminal aerogels for self-driven efficient separation of oil/water mixture. Ind Eng Chem Res 56:6508–6514. https://doi.org/10.1021/acs.iecr.7b00312

    Article  CAS  Google Scholar 

  31. Guan X, Ma Y, Yang L et al (2020) Unprecedented toughening high-performance polyhexahydrotriazines constructed by incorporating point-face cation-π interactions in covalently crosslinked networks and the visual detection of tensile strength. Chem Commun 56:1054–1057. https://doi.org/10.1039/C9CC08603J

    Article  CAS  Google Scholar 

  32. Wang Y, Zhang L, Yang L, Chang G (2020) An indole-based smart aerogel for simultaneous visual detection and removal of trinitrotoluene in water via synergistic effect of dipole-π and donor-acceptor interactions. Chem Eng J 384:123358. https://doi.org/10.1016/j.cej.2019.123358

    Article  CAS  Google Scholar 

  33. Li Y, Du M, Yang L et al (2021) Hydrophilic domains compose of interlocking cation-π blocks for constructing hard actuator with robustness and rapid humidity responsiveness. Chem Eng J 414:128820. https://doi.org/10.1016/j.cej.2021.128820

    Article  CAS  Google Scholar 

  34. Wang Y, Liu D, Zheng Q et al (2014) Disulfide bond bridge insertion turns hydrophobic anticancer prodrugs into self-assembled nanomedicines. Nano Lett 14:5577–5583

    Article  CAS  Google Scholar 

  35. Briggs D, Beamson G (1993) XPS studies of the oxygen 1s and 2s levels in a wide range of functional polymers. Anal Chem 65:1517–1523. https://doi.org/10.1021/ac00059a006

    Article  CAS  Google Scholar 

  36. Cheng Y, Guan S, Li D, Zhu J, Zeng B (2019) Robust and durable superhydrophobic cotton fabrics via a one-step solvothermal method for efficient oil/water separation. Cellulose 26:2861–2872. https://doi.org/10.1007/s10570-019-02267-6

    Article  CAS  Google Scholar 

  37. Meng X, Dong Y, Zhao Y, Liang L (2020) Preparation and modification of cellulose sponge and application of oil/water separation. RSC Adv 10:41713–41719. https://doi.org/10.1039/D0RA07910C

    Article  CAS  Google Scholar 

  38. Jha P, Koiry SP, Sridevi C, Putta V, Gupta D, Chauhan AK (2020) A strategy towards the synthesis of superhydrophobic/superoleophilic non-fluorinated polypyrrole nanotubes for oil-water separation. RSC Adv 10:33747–33752. https://doi.org/10.1039/D0RA06409B

    Article  CAS  Google Scholar 

  39. Li X, Zhang T, Xu Z, Chi H, Wu Z, Zhao Y (2020) Amphiphobic polyHIPEs with pH-triggered transition to hydrophilicity-oleophobicity for the controlled removal of water from oil-water mixtures. Polym Chem 11:6935–6943. https://doi.org/10.1039/D0PY01144D

    Article  CAS  Google Scholar 

  40. Wang B, Yang X, Sha D, Shi K, Xu J, Ji X (2020) Silane functionalized polyvinyl-alcohol formaldehyde sponges on fast oil absorption. ACS Appl Polym Mater 2:5309–5317. https://doi.org/10.1021/acsapm.0c01052

    Article  CAS  Google Scholar 

  41. Zhu C, Jiang W, Hu J, Sun P, Li A, Zhang Q (2020) Polylactic acid nonwoven fabric surface modified with stereocomplex crystals for recyclable use in oil/water separation. ACS Appl Polym Mater 2:2509–2516. https://doi.org/10.1021/acsapm.9b01197

    Article  CAS  Google Scholar 

  42. Guo Z, Long B, Gao S et al (2021) Carbon nanofiber based superhydrophobic foam composite for high performance oil/water separation. J Hazard Mater 402:123838. https://doi.org/10.1016/j.jhazmat.2020.123838

    Article  CAS  Google Scholar 

  43. Han L, Wu W, Huang Z et al (2021) Preparation and characterization of a novel fluorine-free and pH-sensitive hydrophobic porous diatomite ceramic as highly efficient sorbent for oil-water separation. Sep Purif Technol 254:117620. https://doi.org/10.1016/j.seppur.2020.117620

    Article  CAS  Google Scholar 

  44. Chang G, Wang Y, Wang C, Li Y, Xu Y, Yang L (2018) A recyclable hydroxyl functionalized polyindole hydrogel for sodium hydroxide extraction via the synergistic effect of cation-π interactions and hydrogen bonding. Chem Commun 54:9785–9788. https://doi.org/10.1039/C8CC05819A

    Article  CAS  Google Scholar 

  45. He C, Huang J, Li S, Meng K, Zhang L, Chen Z, Lai Y (2018) Mechanically resistant and sustainable cellulose-based composite aerogels with excellent flame retardant, sound-absorption, and superantiwetting ability for advanced engineering materials. ACS Sustain Chem Eng 6:927–936. https://doi.org/10.1021/acssuschemeng.7b03281

    Article  CAS  Google Scholar 

  46. Zhu T, Cheng Y, Huang J et al (2020) A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning. Chem Eng J 399:125746. https://doi.org/10.1016/j.cej.2020.125746

    Article  CAS  Google Scholar 

  47. Li J, Yang L, Liu H, Li G, Li R, Cao Y, Zeng H (2020) Simple preparation method for hydrophilic/oleophobic coatings. ACS Appl Mater Interfaces 12:45266–45273. https://doi.org/10.1021/acsami.0c11596

    Article  CAS  Google Scholar 

  48. Bai X, Shen Y, Tian H, Yang Y, Feng H, Li J (2019) Facile fabrication of superhydrophobic wood slice for effective water-in-oil emulsion separation. Sep Purif Technol 210:402–408. https://doi.org/10.1016/j.seppur.2018.08.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21973076 and 22006122), the Project of the Central-Guided Local Science and Technology Development (2022ZYD0025), the Sichuan Talent Fund for Distinguished Young Scholars (2021JDJQ0033), the Applied Basic Research Programs of Sichuan Science and Technology Department (2021YJ0059), the Natural Science Foundation of Sichuan Province (2022NSFSC0310), and the Innovation and Development Fund of China Academy of Engineering Physics (CX20210039).

Author information

Authors and Affiliations

Authors

Contributions

RG and YZ performed the characterization analysis and application experiments. RG and RY synthesized the samples. YH and GC conceived the study. RG, LY, LW and GC wrote the manuscript.

Corresponding authors

Correspondence to Li Yang or Guanjun Chang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethical approval

Not applicable.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 517 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Zhang, Y., Wang, L. et al. Facile construction of a degradable and renewable superhydrophobic indole-based hemiaminal aerogel for efficient oil–water separation. J Mater Sci 58, 8346–8358 (2023). https://doi.org/10.1007/s10853-023-08564-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08564-7

Navigation