Skip to main content
Log in

A review of low-cost approaches to synthesize graphene and its functional composites

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials have sought intensive research attention from diverse scientific disciplines due to their unique and exciting properties. The most well-known 2D material is graphene that finds applications in various physical and life sciences fields. There has been a surge in the protocols available to synthesize graphene during the last two decades. Furthermore, several of these protocols have been revisited to improve the quality and yield of graphene that has resulted in a large body of literature. Young researchers, however, may not be entirely aware of these approaches. This review attempts to highlight the synthesis schemes that students and researchers could quickly adopt—even those having limited access to sophisticated tools. This review focuses on the top-down synthesis schemes that use low-end readily available equipment, benefitting the inexperienced and under-equipped researchers. This review's primary goal is to reach out to the young students, researchers, and technocrats working in diverse fields (not limited to nanoscience), to provide them with a roadmap for graphene synthesis. We will also present students entering academia with exciting applications that can be undertaken in university laboratories and high schools.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Copyright 2020, Elsevier.), liquid-phase exfoliation (Adapted with permission from reference [46]. Copyright 2017, American Chemical Society.), chemical reduction (Adapted with permission from reference [47]. Copyright 2018, Springer Nature.), epitaxial growth (Adapted with permission from reference [48]. Copyright 2012, Elsevier.), and solvothermal synthesis (adapted with permission from reference [49]. Copyright 2016, Elsevier)

Figure 3

Copyright 2020, Elsevier)

Figure 4

Copyright 2004, American Association for the Advancement of Science.) and b Two routes for mechanical exfoliation of graphene (Adapted with permission from reference [75]. Copyright 2020, Wiley)

Figure 5

Copyright 2011, American Association for the Advancement of Science)

Figure 6

Copyright 2008, Elsevier)

Figure 7

Copyright 2015, Springer Nature)

Figure 8
Figure 9

Copyright 2020, Elsevier)

Figure 10

Copyright 2017, American Chemical Society)

Figure 11

Copyright 2017, American Chemical Society)

Figure 12

Copyright 2020, American Chemical Society)

Figure 13

Copyright 2020, American Chemical Society)

Figure 14

Copyright 2014, American Chemical Society)

Figure 15

Copyright 2021, American Chemical Society.) f Transmission electron microscopy (TEM) images and g Histogram of nanosheet length for liquid-exfoliated graphene. (Inset) Structure of silicone oil. h Photograph of hand-rolled spheres of putty and G-putty. i SEM image of the surface of G-putty (8 volume %) showing a network of graphene sheets. (Adapted with permission from reference [139]. Copyright 2016, American Association for the Advancement of Science)

Figure 16

Copyright 2012, American Association for the Advancement of Science)

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV et al (1979) (2004) Electric field in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  2. Manzeli S, Ovchinnikov D, Pasquier D et al (2017) 2D transition metal dichalcogenides. Nat Rev Mater 2:17033

    Article  CAS  Google Scholar 

  3. Han SA, Bhatia R, Kim S-W (2015) Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Converg 2:17

    Article  Google Scholar 

  4. Marsh KL, Souliman M, Kaner RB (2015) Co-solvent exfoliation and suspension of hexagonal boron nitride. Chem Commun 51:187–190

    Article  CAS  Google Scholar 

  5. Nie X, Li G, Jiang Z et al (2020) Co-solvent exfoliation of hexagonal boron nitride: effect of raw bulk boron nitride size and co-solvent composition. Nanomaterials 10:1035

    Article  CAS  Google Scholar 

  6. Shi Y, Hamsen C, Jia X et al (2010) Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett 10:4134–4139

    Article  CAS  Google Scholar 

  7. Xi L, Han W, Shengxi H et al (2015) The renaissance of black phosphorus. Proc Natl Acad Sci 112:4523–4530

    Article  Google Scholar 

  8. Naguib M, Mashtalir O, Carle J et al (2012) Two-dimensional transition metal carbides. ACS Nano 6:1322–1331

    Article  CAS  Google Scholar 

  9. Das SK, Bedar A, Kannan A et al (2015) Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation. Sci Rep 5:1–11

    Article  Google Scholar 

  10. James AL, Jasuja K (2017) Chelation assisted exfoliation of layered borides towards synthesizing boron based nanosheets. RSC Adv 7:1905–1914

    Article  CAS  Google Scholar 

  11. Gunda H, Das SK, Jasuja K (2018) Simple, green, and high-yield production of boron-based nanostructures with diverse morphologies by dissolution and recrystallization of layered magnesium diboride crystals in water. ChemPhysChem 19:880–891

    Article  CAS  Google Scholar 

  12. Patidar R, Gunda H, Varma AK, et al. Co-solvent exfoliation of layered titanium diboride into few-layer-thick nanosheets. Ceram Int. Epub ahead of print 1 August 2020. DOI: https://doi.org/10.1016/j.ceramint.2020.07.336.

  13. Gunda H, Klebanoff LE, Sharma PA et al (2021) Progress, challenges, and opportunities in the synthesis, characterization, and application of metal-boride-derived two-dimensional nanostructures. ACS Mater Lett 3:535–556

    Article  CAS  Google Scholar 

  14. James AL, Lenka M, Pandey N, et al. Processable Dispersions of Photocatalytically Active Nanosheets derived from Titanium diboride: Self Assembly into Hydrogels and Paper-like Macrostructures. Nanoscale. Epub ahead of print 2020. DOI: https://doi.org/10.1039/D0NR03677C.

  15. Mannix AJ, Kiraly B, Hersam MC et al (2017) Synthesis and chemistry of elemental 2D materials. Nat Rev Chem 1:14

    Article  CAS  Google Scholar 

  16. Novoselov KS, Geim AK (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  17. Geim AK (1979) Graphene: status and prospects. Science 2009(324):1530–1534

    Google Scholar 

  18. Moser J, Barreiro A, Bachtold A (2007) Current-induced cleaning of graphene. Appl Phys Lett 91:163513

    Article  Google Scholar 

  19. Morozov S, Novoselov KS, Katsnelson MI et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:16602

    Article  CAS  Google Scholar 

  20. Changgu L, Xiaoding WKJ et al (1979) (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Google Scholar 

  21. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  22. Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  CAS  Google Scholar 

  23. Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568

    Article  CAS  Google Scholar 

  24. Khan U, O’Neill A, Lotya M et al (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871

    Article  CAS  Google Scholar 

  25. Łoś S, Duclaux L, Alvarez L et al (2013) Cleavage and size reduction of graphite crystal using ultrasound radiation. Carbon N Y 55:53–61

    Article  Google Scholar 

  26. Lin C, Yang L, Ouyang L et al (2017) A new method for few-layer graphene preparation via plasma-assisted ball milling. J Alloys Compd 728:578–584

    Article  CAS  Google Scholar 

  27. Muñoz R, Gómez-Aleixandre C (2013) Review of CVD synthesis of graphene. Chem Vap Deposition 19:297–322

    Article  Google Scholar 

  28. Yu Aristov V, Urbanik G, Kummer K et al (2010) Graphene synthesis on cubic SiC/Si wafers. perspectives for mass production of graphene-based electronic devices. Nano Lett 10:992–995

    Article  Google Scholar 

  29. Xuesong L, Weiwei C, Jinho A et al (1979) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009(324):1312–1314

    Google Scholar 

  30. Berger C, Song Z, Li T et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912–19916

    Article  CAS  Google Scholar 

  31. Prekodravac JR, Kepić DP, Colmenares JC et al (2021) A comprehensive review on selected graphene synthesis methods: from electrochemical exfoliation through rapid thermal annealing towards biomass pyrolysis. J Mater Chem C Mater 9:6722–6748

    Article  CAS  Google Scholar 

  32. Molaei MJ (2021) Magnetic graphene, synthesis, and applications: a review. Mater Sci Eng, B 272:115325

    Article  CAS  Google Scholar 

  33. Kumar N, Salehiyan R, Chauke V et al (2021) Top-down synthesis of graphene: a comprehensive review. FlatChem 27:100224

    Article  CAS  Google Scholar 

  34. Aghigh A, Alizadeh V, Wong HY et al (2015) Recent advances in utilization of graphene for filtration and desalination of water: a review. Desalination 365:389–397

    Article  CAS  Google Scholar 

  35. Chen J, Duan M, Chen G (2012) Continuous mechanical exfoliation of graphene sheets via three-roll mill. J Mater Chem 22:19625–19628

    Article  CAS  Google Scholar 

  36. Ullah S, Shi Q, Zhou J et al (2020) Advances and trends in chemically doped graphene. Adv Mater Interfaces 7:2000999

    Article  CAS  Google Scholar 

  37. Li F, Long L, Weng Y (2020) A review on the contemporary development of composite materials comprising graphene/graphene derivatives. Adv Mater Sci Eng 2020:7915641

    Google Scholar 

  38. Tiwari SK, Mishra RK, Ha SK et al (2018) Evolution of graphene oxide and graphene: from imagination to industrialization. ChemNanoMat 4:598–620

    Article  CAS  Google Scholar 

  39. Lu X, Huang H, Nemchuk N et al (1999) Patterning of highly oriented pyrolytic graphite by oxygen plasma etching. Appl Phys Lett 75:193–195

    Article  CAS  Google Scholar 

  40. van Bommel AJ, Crombeen JE, van Tooren A (1975) LEED and Auger electron observations of the SiC(0001) surface. Surf Sci 48:463–472

    Article  Google Scholar 

  41. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  42. Watcharotone S, Dikin DA, Stankovich S et al (2007) Graphene−silica composite thin films as transparent conductors. Nano Lett 7:1888–1892

    Article  CAS  Google Scholar 

  43. Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  44. Lu X, Yu M, Huang H et al (1999) Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10:269–272

    Article  CAS  Google Scholar 

  45. Casallas Caicedo FM, Vera López E, Agarwal A et al (2020) Synthesis of graphene oxide from graphite by ball milling. Diam Relat Mater 109:108064

    Article  CAS  Google Scholar 

  46. Backes C, Higgins TM, Kelly A et al (2017) Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation. Chem Mater 29:243–255

    Article  CAS  Google Scholar 

  47. Priyadarsini S, Mohanty S, Mukherjee S et al (2018) Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostructure Chem 8:123–137

    Article  CAS  Google Scholar 

  48. Çelebi C, Yanik C, Demirkol AG et al (2012) The effect of a SiC cap on the growth of epitaxial graphene on SiC in ultra high vacuum. Carbon N Y 50:3026–3031

    Article  Google Scholar 

  49. Tian R, Zhong S, Wu J et al (2016) Solvothermal method to prepare graphene quantum dots by hydrogen peroxide. Opt Mater (Amst) 60:204–208

    Article  CAS  Google Scholar 

  50. Acun A, Zhang L, Bampoulis P et al (2015) Germanene: the germanium analogue of graphene. J Phys: Condens Matter 27:443002

    CAS  Google Scholar 

  51. Song Z, Ang WL, Sturala J et al (2021) Functionalized germanene-based nanomaterials for the detection of single nucleotide polymorphism. ACS Appl Nano Mater 4:5164–5175

    Article  CAS  Google Scholar 

  52. Nijamudheen A, Bhattacharjee R, Choudhury S et al (2015) Electronic and chemical properties of germanene: the crucial role of buckling. The Journal of Physical Chemistry C 119:3802–3809

    Article  CAS  Google Scholar 

  53. Singh D, Gupta SK, Sonvane Y et al (2016) Antimonene: a monolayer material for ultraviolet optical nanodevices. J Mater Chem C Mater 4:6386–6390

    Article  CAS  Google Scholar 

  54. Ji J, Song X, Liu J et al (2016) Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat Commun 7:13352

    Article  CAS  Google Scholar 

  55. Yang X, Wu R, Xu N et al (2020) Application and prospect of antimonene: a new two-dimensional nanomaterial in cancer theranostics. J Inorg Biochem 212:111232

    Article  CAS  Google Scholar 

  56. Reis F et al (1979) (2017) Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science 357:287–290

    Article  Google Scholar 

  57. Ozhukil Valappil M, Ganguly A, Benson J et al (2020) Bismuthene nanosheets produced by ionic liquid assisted grinding exfoliation and their use for oxygen reduction reaction. RSC Adv 10:43585–43591

    Article  CAS  Google Scholar 

  58. Oughaddou H, Enriquez H, Tchalala MR et al (2015) Silicene, a promising new 2D material. Prog Surf Sci 90:46–83

    Article  CAS  Google Scholar 

  59. Kharadi MA, Malik GFA, Khanday FA et al (2020) Review—silicene: from material to device applications. ECS Journal of Solid State Science and Technology 9:115031

    Article  CAS  Google Scholar 

  60. Liu H, Neal AT, Zhu Z et al (2014) Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8:4033–4041

    Article  CAS  Google Scholar 

  61. Carvalho A, Wang M, Zhu X et al (2016) Phosphorene: from theory to applications. Nat Rev Mater 1:16061

    Article  CAS  Google Scholar 

  62. Akhtar M, Anderson G, Zhao R, et al (2017) Recent advances in synthesis, properties, and applications of phosphorene. NPJ 2D Mater Appl1: 5.

  63. Deng J, Xia B, Ma X et al (2018) Epitaxial growth of ultraflat stanene with topological band inversion. Nat Mater 17:1081–1086

    Article  CAS  Google Scholar 

  64. Lyu J-K, Zhang S-F, Zhang C-W et al (2019) Stanene: a promising material for new electronic and spintronic applications. Ann Phys 531:1900017

    Article  CAS  Google Scholar 

  65. Zhao C-X, Jia J-F (2020) Stanene: a good platform for topological insulator and topological superconductor. Front Phys (Beijing) 15:53201

    Article  Google Scholar 

  66. Mannix AJ, Zhang Z, Guisinger NP et al (2018) Borophene as a prototype for synthetic 2D materials development. Nat Nanotechnol 13:444–450

    Article  CAS  Google Scholar 

  67. Li J, Xu T, Zhu GB et al (2020) Photoinduced anomalous Hall and nonlinear Hall effect in borophene. Solid State Commun 322:114092

    Article  CAS  Google Scholar 

  68. Xie Z, Meng X, Li X et al (2020) Two-dimensional borophene: properties, fabrication, and promising applications. Research 2020:2624617

    Article  CAS  Google Scholar 

  69. Li S, Gunda H, Ray KG et al (2021) Spontaneous dynamical disordering of borophenes in MgB2 and related metal borides. Nat Commun 12:6268

    Article  CAS  Google Scholar 

  70. Kaneti YV, Benu DP, Xu X et al (2022) Borophene: two-dimensional boron monolayer: synthesis, properties, and potential applications. Chem Rev 122:1000–1051

    Article  CAS  Google Scholar 

  71. Randviir EP, Brownson DAC, Banks CE (2014) A decade of graphene research: production, applications and outlook. Mater Today 17:426–432

    Article  CAS  Google Scholar 

  72. Novoselov KS et al (2005) Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences 102: 10451–10453.

  73. Tiwari S, Purabgola A, Kandasubramanian B (2020) Functionalised graphene as flexible electrodes for polymer photovoltaics. J Alloy Compd 825:153954

    Article  CAS  Google Scholar 

  74. Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A Mater 3:11700–11715

    Article  CAS  Google Scholar 

  75. Mohd Firdaus R, Berrada N, Desforges A et al (2020) From 2D graphene nanosheets to 3D graphene-based macrostructures. Chem Asian J 15:2902–2924

    Article  CAS  Google Scholar 

  76. Ohashi Y, Koizumi T, Yoshikawa T et al (1997) Size effect inthe in-plane electrical resistivity of very thin graphite crystals. TANSO 1997:235–238

    Article  Google Scholar 

  77. Zhang Y, Small JP, Pontius WV et al (2005) Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl Phys Lett 86:73104

    Article  Google Scholar 

  78. Zhang Y, Tan Y-W, Stormer HL et al (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204

    Article  CAS  Google Scholar 

  79. Zhang Y, Small JP, Amori MES et al (2005) Electric field modulation of galvanomagnetic properties of mesoscopic graphite. Phys Rev Lett 94:176803

    Article  Google Scholar 

  80. Bhuyan MdSA, Uddin MdN, Islam MdM et al (2016) Synthesis of graphene. Int. Nano Lett 6:65–83

    Article  CAS  Google Scholar 

  81. Blake P, Hill EW, Castro Neto AH et al (2007) Making graphene visible. Appl Phys Lett 91:063124

    Article  Google Scholar 

  82. Li H, Wu J, Huang X et al (2013) Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7:10344–10353

    Article  CAS  Google Scholar 

  83. Martin J, Akerman N, Ulbricht G et al (2008) Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat Phys 4:144–148

    Article  CAS  Google Scholar 

  84. Shmavonyan GSh, Sevoyan G, Aroutiounian VM. Enlarging the surface area of monolayer graphene synthesized by mechanical exfoliation. 2013.

  85. Sahu D, Sutar H, Senapati P, et al. Graphene, Graphene-Derivatives and Composites: Fundamentals, Synthesis Approaches to Applications. Journal of Composites Science ; 5. Epub ahead of print 2021. DOI: https://doi.org/10.3390/jcs5070181.

  86. Jagiełło J, Chlanda A, Baran M, et al. Synthesis and Characterization of Graphene Oxide and Reduced Graphene Oxide Composites with Inorganic Nanoparticles for Biomedical Applications. Nanomaterials ; 10. Epub ahead of print 2020. DOI: https://doi.org/10.3390/nano10091846.

  87. Ayrat DV, Alexander S et al (1979) Layer-by-Layer Removal of Graphene for Device Patterning. Science 2011(331):1168–1172

    Google Scholar 

  88. Warner JH, Schäffel F, Bachmatiuk A et al (2021) Chapter 4 - methods for obtaining graphene. Elsevier

    Google Scholar 

  89. Zhu H, Liu A, Shan F et al (2017) Direct transfer of graphene and application in low-voltage hybrid transistors. RSC Adv 7:2172–2179

    Article  CAS  Google Scholar 

  90. Chung Y, Ho Kim H, Lee S et al (2015) Ubiquitous graphene electronics on scotch tape. Sci Rep 5:12575

    Article  CAS  Google Scholar 

  91. Novoselov KS, Castro Neto AH (2012) Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys Scr T146:14006

    Article  Google Scholar 

  92. Martiradonna L (2013) Multifunctional graphene. Nat Mater 12:688

    Article  CAS  Google Scholar 

  93. Paton KR, Varrla E, Backes C et al (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630

    Article  CAS  Google Scholar 

  94. Varrla E, Paton KR, Backes C et al (2014) Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale 6:11810–11819

    Article  CAS  Google Scholar 

  95. Yi M, Shen Z (2014) Kitchen blender for producing high-quality few-layer graphene. Carbon N Y 78:622–626

    Article  CAS  Google Scholar 

  96. Das SK, Chakrabarty S, Gawas R et al (2022) Serendipitous formation of photoluminescent carbon quantum dots by mere immersion of a polymer in an organic solvent. Carbon Trends 8:100183

    Article  CAS  Google Scholar 

  97. Das SK, Gawas R, Chakrabarty S et al (2019) An unexpected transformation of organic solvents into 2D fluorescent quantum dots during ultrasonication-assisted liquid-phase exfoliation. J Phys Chem C 123:25412–25421

    Article  CAS  Google Scholar 

  98. Wu W, Liu M, Gu Y et al (2020) Fast chemical exfoliation of graphite to few-layer graphene with high quality and large size via a two-step microwave-assisted process. Chem Eng J 381:122592

    Article  CAS  Google Scholar 

  99. Liu X, Liu J, Zhan D et al (2013) Repeated microwave-assisted exfoliation of expandable graphite for the preparation of large scale and high quality multi-layer graphene. RSC Adv 3:11601–11606

    Article  CAS  Google Scholar 

  100. Liu M, Liu T, Wu W et al (2018) A novel and efficient approach to prepare few-layer graphene with high quality. Mater Lett 228:183–186

    Article  CAS  Google Scholar 

  101. Sridhar V, Jeon J-H, Oh I-K (2010) Synthesis of graphene nano-sheets using eco-friendly chemicals and microwave radiation. Carbon N Y 48:2953–2957

    Article  CAS  Google Scholar 

  102. Morales GM, Schifani P, Ellis G et al (2011) High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon N Y 49:2809–2816

    Article  CAS  Google Scholar 

  103. Jiang F, Yu Y, Feng A et al (2018) Effects of ammonia on graphene preparation via microwave assisted intercalation exfoliation method. Ceram Int 44:12763–12766

    Article  CAS  Google Scholar 

  104. Lin J, Huang Y, Wang S et al (2017) Microwave-assisted rapid exfoliation of graphite into graphene by using ammonium bicarbonate as the intercalation agent. Ind Eng Chem Res 56:9341–9346

    Article  CAS  Google Scholar 

  105. Kang HG, Jeong J, Hong SB et al (2019) Scalable exfoliation and activation of graphite into porous graphene using microwaves for high–performance supercapacitors. J Alloys Compd 770:458–465

    Article  CAS  Google Scholar 

  106. Wang C, Han X, Xu P et al (2011) The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl Phys Lett 98:072906

    Article  Google Scholar 

  107. Hu H, Zhao Z, Zhou Q et al (2012) The role of microwave absorption on formation of graphene from graphite oxide. Carbon N Y 50:3267–3273

    Article  CAS  Google Scholar 

  108. Chen C-Y, Pu N-W, Liu Y-M et al (2017) Remarkable microwave absorption performance of graphene at a very low loading ratio. Compos B Eng 114:395–403

    Article  CAS  Google Scholar 

  109. Thostenson ET, Chou T-W (1999) Microwave processing: fundamentals and applications. Compos Part A Appl Sci Manuf 30:1055–1071

    Article  Google Scholar 

  110. Jones DA, Lelyveld TP, Mavrofidis SD et al (2002) Microwave heating applications in environmental engineering—a review. Resour Conserv Recycl 34:75–90

    Article  Google Scholar 

  111. Schwenke AM, Hoeppener S, Schubert US (2015) Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv Mater 27:4113–4141

    Article  CAS  Google Scholar 

  112. Tompsett GA, Conner WC, Yngvesson KS (2006) Microwave synthesis of nanoporous materials. ChemPhysChem 7:296–319

    Article  CAS  Google Scholar 

  113. Hassan HMA, Abdelsayed V, Khder AERS et al (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19:3832–3837

    Article  CAS  Google Scholar 

  114. Murugan AV, Muraliganth T, Manthiram A (2009) Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem Mater 21:5004–5006

    Article  CAS  Google Scholar 

  115. Li Z, Yao Y, Lin Z et al (2010) Ultrafast, dry microwave synthesis of graphene sheets. J Mater Chem 20:4781–4783

    Article  CAS  Google Scholar 

  116. Chen W, Yan L, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon N Y 48:1146–1152

    Article  CAS  Google Scholar 

  117. Al-Hazmi FS, Al-Harbi GH, Beall GW et al (2015) One pot synthesis of graphene based on microwave assisted solvothermal technique. Synth Met 200:54–57

    Article  CAS  Google Scholar 

  118. Jasuja K, Linn J, Melton S et al (2010) Microwave-reduced uncapped metal nanoparticles on graphene: tuning catalytic, electrical, and raman properties. J Phys Chem Lett 1:1853–1860

    Article  CAS  Google Scholar 

  119. Backes C, Szydłowska BM, Harvey A et al (2016) Production of highly monolayer enriched dispersions of liquid-exfoliated nanosheets by liquid cascade centrifugation. ACS Nano 10:1589–1601

    Article  CAS  Google Scholar 

  120. Han JT, Jang JI, Kim H et al (2014) Extremely efficient liquid exfoliation and dispersion of layered materials by unusual acoustic cavitation. Sci Rep 4:1–7

    Article  Google Scholar 

  121. Li L, Zhou M, Jin L et al (2019) Research progress of the liquid-phase exfoliation and stable dispersion mechanism and method of graphene. Frontiers in Materials 6:325

    Article  Google Scholar 

  122. Yi M, Shen Z, Liang S et al (2013) Water can stably disperse liquid-exfoliated graphene. Chem Commun 49:11059–11061

    Article  CAS  Google Scholar 

  123. Khan U, May P, O’Neill A et al (2013) Polymer reinforcement using liquid-exfoliated boron nitride nanosheets. Nanoscale 5:581–587

    Article  CAS  Google Scholar 

  124. Griffin A, Nisi K, Pepper J, et al. Effect of Surfactant Choice and Concentration on the Dimensions and Yield of Liquid-Phase-Exfoliated Nanosheets. Chemistry of Materials 2020; acs.chemmater.9b04684.

  125. Manna K, Huang HN, Li WT et al (2016) Toward Understanding the Efficient Exfoliation of Layered Materials by Water-Assisted Cosolvent Liquid-Phase Exfoliation. Chem Mater 28:7586–7593

    Article  CAS  Google Scholar 

  126. Durge R, Kshirsagar R v., Tambe P. Effect of sonication energy on the yield of graphene nanosheets by liquid-phase exfoliation of graphite. In: Procedia Engineering. Elsevier Ltd, 2014, pp. 1457–1465.

  127. Backes C, Campi D, Szydlowska BM, et al. Equipartition of Energy Defines the Size-Thickness Relationship in Liquid-Exfoliated Nanosheets. ACS Nano. Epub ahead of print 2019. DOI: https://doi.org/10.1021/acsnano.9b02234.

  128. Ji LJ, Qin Y, Gui D et al (2018) Quantifying the exfoliation ease level of 2D materials via mechanical anisotropy. Chem Mater 30:8732–8738

    Article  CAS  Google Scholar 

  129. Turner P, Hodnett M, Dorey R et al (2019) Controlled sonication as a route to in-situ graphene flake size control. Sci Rep 9:8710

    Article  Google Scholar 

  130. Skaltsas T, Ke X, Bittencourt C et al (2013) Ultrasonication induces oxygenated species and defects onto exfoliated graphene. J Phys Chem C 117:23272–23278

    Article  CAS  Google Scholar 

  131. Kim J, Kwon S, Cho DH et al (2015) Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control. Nat Commun 6:1–9

    Article  Google Scholar 

  132. Liscio A, Kouroupis-Agalou K, Betriu XD, et al (2017) Evolution of the size and shape of 2D nanosheets during ultrasonic fragmentation. 2d Mater 4: 025017.

  133. Hernandez Y, Lotya M, Rickard D et al (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26:3208–3213

    Article  CAS  Google Scholar 

  134. Kouroupis-Agalou K, Liscio A, Treossi E et al (2014) Fragmentation and exfoliation of 2-dimensional materials: a statistical approach. Nanoscale 6:5926–5933

    Article  CAS  Google Scholar 

  135. Li Z, Young RJ, Backes C et al (2020) Mechanisms of liquid-phase exfoliation for the production of graphene. ACS Nano 14:10976–10985

    Article  CAS  Google Scholar 

  136. Kaur H, Coleman JN (2022) Liquid-phase exfoliation of nonlayered non-van der waals crystals into nanoplatelets. Adv Mater 5:2202164

    Article  Google Scholar 

  137. Boland C, Khan U, Backes C et al (2014) Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano 8:8819–8830

    Article  CAS  Google Scholar 

  138. O’Driscoll DP, Vega-Mayoral V, Harley I, et al (2018) Optimising composite viscosity leads to high sensitivity electromechancial sensors. 2d Mater 5: 035042.

  139. Boland CS, Khan U, Ryan G et al (1979) Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 2016(354):1257–1260

    Google Scholar 

  140. O’Driscoll DP, McMahon S, Garcia J et al (2021) Printable G-putty for frequency- and rate-independent. High-Performance Strain Sensors Small 17:2006542

    Google Scholar 

  141. Boland C, O’Driscoll P, Kelly DG et al (2021) Highly sensitive composite foam bodily sensors based on the g-putty ink soaking procedure. ACS Appl Mater & Interfaces 13:60489–60497

    Article  CAS  Google Scholar 

  142. El-Kady MF, Veronica S, Sergey D et al (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 1979(335):1326–1330

    Article  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the help extended by Varun Dolia for preparing the abstract figure of this article. The authors acknowledge the funding support from the seed funding from IIT Gandhinagar; INSPIRE Faculty Award Research Grant (DST/INSPIRE/04/2014/001601), Core Research Grant (EMR/2017/000730) by the Department of Science and Technology India, and Grant-in-Aid Funds (ARMREB/CDSW/2019/219) by Armament Research Board, Defense Research & Development Organization, India. The authors are also thankful for the funding provided by Dr. Dinesh O Shah Chair Fellowship at IIT Gandhinagar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabeer Jasuja.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2841 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasyotra, A., Thakur, A., Gaykwad, B. et al. A review of low-cost approaches to synthesize graphene and its functional composites. J Mater Sci 58, 4359–4383 (2023). https://doi.org/10.1007/s10853-023-08304-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08304-x

Navigation