Skip to main content

Advertisement

Log in

Processing-structure–property relationships of oleanolic acid loaded PLGA fiber membranes

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

A Correction to this article was published on 16 March 2023

This article has been updated

Abstract

Oleanolic acid (OA) loaded poly(lactic-co-glycolic) acid fiber membranes were developed utilizing the Forcespinning technology. OA is a natural pentacyclic triterpenoid compound available in fruits and vegetables and known for its plethora of biological activities. The incorporation of OA into polymeric fine fiber membranes opens promising potential applications for biomedical applications, such as a system for transdermal delivery of bioactive agents. In this study, nonwoven fiber membranes were developed with different concentrations of OA, and morphological, thermo-physical, and biological studies were conducted. Results show a high yield of fiber membranes with average fiber diameters ranging from 541 to 630 nm, depending on the concentration of OA. Developed membranes are composed of long and continuous fibers showing rough surfaces with stability in aqueous media. Thermo-physical analysis showed miscibility of the components and negligible effects of processing conditions on the structure and stability of the components. High drug loading efficiency (> 80%) was observed, and cellular studies indicated that the developed fiber membranes were not toxic to fibroblast cells. The structural and thermal stability and non-cytotoxic behavior of these membranes make them a promising potential vehicle for drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Change history

References

  1. Meng ZX, Xu XX, Zheng W, Zhou HM, Li L, Zheng YF, Lou X (2011) Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Coll Surf B Biointerfaces 84:97–102. https://doi.org/10.1016/j.colsurfb.2010.12.022

    Article  CAS  Google Scholar 

  2. Malik R, Garg T, Goyal AK, Rath G (2015) Polymeric nanofibers: targeted gastro-retentive drug delivery systems. J Drug Target 23:109–124. https://doi.org/10.3109/1061186X.2014.965715

    Article  CAS  Google Scholar 

  3. Mir M, Ahmed N, ur Rehman A (2017) Recent applications of PLGA based nanostructures in drug delivery. Coll Surf B Biointerfaces 159:217–231. https://doi.org/10.1016/j.colsurfb.2017.07.038

    Article  CAS  Google Scholar 

  4. Yang J, liu J, liuhongyan XYZ, lipingchu Q, liu N, cuihong S (2014) Tianjin peptide nanofiber as a carrier for effective curcumin delivery. Int J Nanomed 9:197–207

    Google Scholar 

  5. Mondal K, Ali MA, Agrawal VV, Malhotra BD, Sharma A (2014) Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing. ACS Appl Mater Interfaces 6:2516–2527. https://doi.org/10.1021/am404931f

    Article  CAS  Google Scholar 

  6. Janković B, Pelipenko J, Škarabot M, Muševič I, Kristl J (2013) The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers. Int J Pharm 455:338–347. https://doi.org/10.1016/j.ijpharm.2013.06.083

    Article  CAS  Google Scholar 

  7. Han D, Filocamo S, Kirby R, Steckl AJ (2011) Deactivating chemical agents using enzyme-coated nanofibers formed by electrospinning. ACS Appl Mater Interfaces 3:4633–4639. https://doi.org/10.1021/am201064b

    Article  CAS  Google Scholar 

  8. Peng H, Zhou S, Guo T, Li Y, Li X, Wang J, Weng J (2008) In vitro degradation and release profiles for electrospun polymeric fibers containing paracetanol. Coll Surf B Biointerfaces 66:206–212. https://doi.org/10.1016/j.colsurfb.2008.06.021

    Article  CAS  Google Scholar 

  9. Shoba E, Lakra R, Kiran MS, Korrapati PS (2017) Fabrication of core-shell nanofibers for controlled delivery of bromelain and salvianolic acid B for skin regeneration in wound therapeutics. Biomed Mater. https://doi.org/10.1088/1748-605X/aa6684

    Article  Google Scholar 

  10. Moydeen AM, Ali Padusha MS, Aboelfetoh EF, Al-Deyab SS, El-Newehy MH (2018) Fabrication of electrospun poly(vinyl alcohol)/dextran nanofibers via emulsion process as drug delivery system: kinetics and in vitro release study. Int J Biol Macromol 116:1250–1259. https://doi.org/10.1016/j.ijbiomac.2018.05.130

    Article  CAS  Google Scholar 

  11. Sarkar K, Gomez C, Zambrano S, Ramirez M, De Hoyos E, Vasquez H, Lozano K (2010) Electrospinning to forcespinning™. Mater Today 13:12–14. https://doi.org/10.1016/S1369-7021(10)70199-1

    Article  CAS  Google Scholar 

  12. Padron S, Fuentes A, Caruntu D, Lozano K (2013) Experimental study of nanofiber production through forcespinning. J Appl Phys. https://doi.org/10.1063/1.4769886

    Article  Google Scholar 

  13. Zhang X, Tang K, Zheng X (2016) Electrospinning and crosslinking of COL/PVA nanofiber-microsphere containing salicylic acid for drug delivery. J Bionic Eng 13:143–149. https://doi.org/10.1016/S1672-6529(14)60168-2

    Article  Google Scholar 

  14. Eskitoros-Togay M, Bulbul YE, Tort S, Demirtaş Korkmaz F, Acartürk F, Dilsiz N (2019) Fabrication of doxycycline-loaded electrospun PCL/PEO membranes for a potential drug delivery system. Int J Pharm 565:83–94. https://doi.org/10.1016/j.ijpharm.2019.04.073

    Article  CAS  Google Scholar 

  15. Khampieng T, Wnek GE, Supaphol P (2014) Electrospun DOXY-h loaded-poly(acrylic acid) nanofiber mats: in vitro drug release and antibacterial properties investigation. J Biomater Sci Polym Ed 25:1292–1305. https://doi.org/10.1080/09205063.2014.929431

    Article  CAS  Google Scholar 

  16. Gouda M, Hebeish AA, Aljafari AI (2014) Synthesis and characterization of novel drug delivery system based on cellulose acetate electrospun nanofiber mats. J Ind Text 43:319–329. https://doi.org/10.1177/1528083713495250

    Article  CAS  Google Scholar 

  17. Parwe SP, Chaudhari PN, Mohite KK, Selukar BS, Nande SS, Garnaik B (2014) Synthesis of ciprofloxacin-conjugated poly (L-lactic acid) polymer for nanofiber fabrication and antibacterial evaluation. Int J Nanomed 9:1463–1477. https://doi.org/10.2147/IJN.S54971

    Article  Google Scholar 

  18. Almajhdi FN, Fouad H, Khalil KA, Awad HM, Mohamed SHS, Elsarnagawy T, Albarrag AM, Al-Jassir FF, Abdo HS (2014) In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning. J Mater Sci Mater Med 25:1045–1053. https://doi.org/10.1007/s10856-013-5131-y

    Article  CAS  Google Scholar 

  19. Semnani K, Shams-Ghahfarokhi M, Afrashi M, Fakhrali A, Semnani D (2018) Antifungal activity of eugenol loaded electrospun PAN nanofiber mats against candida albicans. Curr Drug Deliv 15:860–866. https://doi.org/10.2174/1567201815666180226120436

    Article  CAS  Google Scholar 

  20. Akduman C, Özgüney I, Kumbasar EPA (2016) Preparation and characterization of naproxen-loaded electrospun thermoplastic polyurethane nanofibers as a drug delivery system. Mater Sci Eng C 64:383–390. https://doi.org/10.1016/j.msec.2016.04.005

    Article  CAS  Google Scholar 

  21. Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659. https://doi.org/10.3390/ijms15033640

    Article  CAS  Google Scholar 

  22. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522. https://doi.org/10.1016/j.jconrel.2012.01.043

    Article  CAS  Google Scholar 

  23. Guimarães PPG, Oliveira MF, Gomes ADM, Gontijo SML, Cortés ME, Campos PP, Viana CTR, Andrade SP, Sinisterra RD (2015) PLGA nanofibers improves the antitumoral effect of daunorubicin. Coll Surf B Biointerfaces 136:248–255. https://doi.org/10.1016/j.colsurfb.2015.09.005

    Article  CAS  Google Scholar 

  24. Shanmugam MK, Dai X, Kumar AP, Tan BKH, Sethi G, Bishayee A (2014) Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: preclinical and clinical evidence. Cancer Lett 346:206–216. https://doi.org/10.1016/j.canlet.2014.01.016

    Article  CAS  Google Scholar 

  25. Jie L (1995) Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol 49:57–68. https://doi.org/10.1016/0378-8741(95)01310-5

    Article  Google Scholar 

  26. Pollier J, Goossens A (2012) Oleanolic acid. Phytochemistry 77:10–15. https://doi.org/10.1016/j.phytochem.2011.12.022

    Article  CAS  Google Scholar 

  27. Khwaza V, Oyedeji OO, Aderibigbe BA (2018) Antiviral activities of oleanolic acid and its analogues. Molecules. https://doi.org/10.3390/molecules23092300

    Article  Google Scholar 

  28. Fukumura M, Ando H, Hirai Y, Toriizuka K, Ida Y, Kuchino Y (2009) Achyranthoside H methyl ester, a novel oleanolic acid saponin derivative from achyranthes fauriei roots, induces apoptosis in human breast cancer MCF-7 and MDA-MB-453 cells via a caspase activation pathway. J Nat Med 63:181–188. https://doi.org/10.1007/s11418-008-0311-7

    Article  CAS  Google Scholar 

  29. Tian T, Liu X, Lee ES, Sun J, Feng Z, Zhao L, Zhao C (2017) Synthesis of novel oleanolic acid and ursolic acid in C-28 position derivatives as potential anticancer agents. Arch Pharm Res 40:458–468. https://doi.org/10.1007/s12272-016-0868-8

    Article  CAS  Google Scholar 

  30. Dharmappa KK, Kumar RV, Nataraju A, Mohamed R, Shivaprasad HV, Vishwanath BS (2009) Anti-inflammatory activity of oleanolic acid by inhibition of secretory phospholipase A2. Planta Med 75:211–215. https://doi.org/10.1055/s-0028-1088374

    Article  CAS  Google Scholar 

  31. Wang X, Ye X, Liu R, Chen HL, Bai H, Liang X, Zhang XDi, Wang Z, Li Wl, Hai CX (2010) Antioxidant activities of oleanolic acid in vitro: possible role of Nrf2 and MAP kinases. Chem Biol Interact 184:328–337. https://doi.org/10.1016/j.cbi.2010.01.034

    Article  CAS  Google Scholar 

  32. Zhao H, Zhou M, Duan L, Wang W, Zhang J, Wang D, Liang X (2013) Efficient synthesis and anti-fungal activity of oleanolic acid oxime esters. Molecules 18:3615–3629. https://doi.org/10.3390/molecules18033615

    Article  CAS  Google Scholar 

  33. Kong L, Li S, Liao Q, Zhang Y, Sun R, Zhu X, Zhang Q, Wang J, Wu X, Fang X et al (2013) Oleanolic acid and ursolic acid: novel hepatitis C virus antivirals that inhibit NS5B activity. Antiviral Res 98:44–53. https://doi.org/10.1016/j.antiviral.2013.02.003

    Article  CAS  Google Scholar 

  34. Mengoni F, Lichtner M, Battinelli L, Marzi M, Mastroianni CM, Vullo V, Mazzanti G (2002) In vitro anti-HIV activity of oleanolic acid on infected human mononuclear cells. Planta Med 68:111–114. https://doi.org/10.1055/s-2002-20256

    Article  CAS  Google Scholar 

  35. Gao D, Li Q, Li Y, Liu Z, Liu Z, Fan Y, Han Z, Li J, Li K (2007) Antidiabetic potential of oleanolic acid from Ligustrum lucidum Ait. Can J Physiol Pharmacol 85:1076–1083. https://doi.org/10.1139/Y07-098

    Article  CAS  Google Scholar 

  36. Wang X, Liu R, Zhang W, Zhang X, Liao N, Wang Z, Li W, Qin X, Hai C (2013) Oleanolic acid improves hepatic insulin resistance via antioxidant, hypolipidemic and anti-inflammatory effects. Mol Cell Endocrinol 376:70–80. https://doi.org/10.1016/j.mce.2013.06.014

    Article  CAS  Google Scholar 

  37. Liu Q, Liu H, Zhang L, Guo T, Wang P, Geng M, Li Y (2013) Synthesis and antitumor activities of naturally occurring oleanolic acid triterpenoid saponins and their derivatives. Eur J Med Chem 64:1–15. https://doi.org/10.1016/j.ejmech.2013.04.016

    Article  CAS  Google Scholar 

  38. Kim S, Lee H, Lee S, Yoon Y, Choi KH (2015) Antimicrobial action of oleanolic acid on listeria monocytogenes, enterococcus faecium, and enterococcus faecalis. PLoS ONE 10:1–11. https://doi.org/10.1371/journal.pone.0118800

    Article  CAS  Google Scholar 

  39. Wang ZH, Hsu CC, Huang CN, Yin MC (2010) Anti-glycative effects of oleanolic acid and ursolic acid in kidney of diabetic mice. Eur J Pharmacol 628:255–260. https://doi.org/10.1016/j.ejphar.2009.11.019

    Article  CAS  Google Scholar 

  40. Wang Y, Zhu P, Li G, Zhu S, Liu K, Liu Y, He J, Lei J (2019) Amphiphilic carboxylated cellulose-g-poly(L-lactide) copolymer nanoparticles for oleanolic acid delivery. Carbohydr Polym 214:100–109. https://doi.org/10.1016/j.carbpol.2019.03.033

    Article  CAS  Google Scholar 

  41. Fu H, Yen FL, Huang PH, Yang CY, Yen CH (2021) Oleanolic acid nanofibers attenuated particulate matter-induced oxidative stress in keratinocytes. Antioxidants 10:1–17. https://doi.org/10.3390/antiox10091411

    Article  CAS  Google Scholar 

  42. Fan JP, Zhong H, Zhang XH, Yuan TT, Chen HP, Peng HL (2021) Preparation and characterization of oleanolic acid-based Low-molecular-weight supramolecular hydrogels induced by heating. ACS Appl Mater Interfaces 13:29130–29136. https://doi.org/10.1021/acsami.1c05800

    Article  CAS  Google Scholar 

  43. Gao M, Xu H, Bao X, Zhang C, Guan X, Liu H, Lv L, Deng S, Gao D, Wang C et al (2016) Oleanolic acid-loaded PLGA-TPGS nanoparticles combined with heparin sodium-loaded PLGA-TPGS nanoparticles for enhancing chemotherapy to liver cancer. Life Sci 165:63–74. https://doi.org/10.1016/j.lfs.2016.09.008

    Article  CAS  Google Scholar 

  44. Raimi-Abraham BT, Mahalingam S, Davies PJ, Edirisinghe M, Craig DQM (2015) Development and characterization of amorphous nanofiber drug dispersions prepared using pressurized gyration. Mol Pharm 12:3851–3861. https://doi.org/10.1021/acs.molpharmaceut.5b00127

    Article  CAS  Google Scholar 

  45. Katti DS, Robinson KW, Ko FK, Laurencin CT (2004) Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res Part B Appl Biomater 70:286–296. https://doi.org/10.1002/jbm.b.30041

    Article  CAS  Google Scholar 

  46. Xiao ZB, Guo MM, Guo RK (2014) Thermal decomposition mechanism and kinetics of ursolic acid and caffeic acid. Chem Ind For Prod 34:33–39. https://doi.org/10.3969/j.issn.0253-2417.2014.02.006

    Article  CAS  Google Scholar 

  47. Akgün M, Başaran I, Suner SC, Oral A (2019) Geraniol and cinnamaldehyde as natural antibacterial additives for poly(lactic acid) and their plasticizing effects. J Polym Eng. https://doi.org/10.1515/polyeng-2019-0198

    Article  Google Scholar 

  48. Maiza M, Benaniba MT, Quintard G, Massardier-Nageotte V (2015) Biobased additive plasticizing polylactic acid (PLA). Polimeros 25:581–590. https://doi.org/10.1590/0104-1428.1986

    Article  CAS  Google Scholar 

  49. Gao N, Guo M, Fu Q, He Z (2017) Application of hot melt extrusion to enhance the dissolution and oral bioavailability of oleanolic acid. Asian J Pharm Sci 12:66–72. https://doi.org/10.1016/j.ajps.2016.06.006

    Article  Google Scholar 

  50. Blasi P, Schoubben A, Giovagnoli S, Perioli L, Ricci M, Rossi C (2007) Ketoprofen poly(lactide-co-glycolide) physical interaction. AAPS PharmSciTech 8:1–8. https://doi.org/10.1208/pt0802037

    Article  Google Scholar 

  51. Shawe J, Riesen R, Widmann J, Schubnell M (2000) UserCom. Mettler TOLEDO. 1 28

  52. Wegiel LA, Mauer LJ, Edgar KJ, Taylor LS (2013) Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-Impact of different polymers. J Pharm Sci 102:171–184. https://doi.org/10.1002/jps.23358

    Article  CAS  Google Scholar 

  53. Irene B, Ambrogi V, Laura A, Cosimo C (2014) A hyperbranched polyester as antinucleating agent for artemisinin in electrospun nanofibers. Eur Polym J 60:145–152. https://doi.org/10.1016/j.eurpolymj.2014.09.005

    Article  CAS  Google Scholar 

  54. Ghosh S, Kar N, Bera T (2016) Oleanolic acid loaded poly lactic co- glycolic acid- vitamin E TPGS nanoparticles for the treatment of leishmania donovani infected visceral leishmaniasis. Int J Biol Macromol 93:961–970. https://doi.org/10.1016/j.ijbiomac.2016.09.014

    Article  CAS  Google Scholar 

  55. Basu S, Mukherjee B, Chowdhury SR, Paul P, Choudhury R, Kumar A, Mondal L, Hossain CM, Maji R (2012) Colloidal gold-loaded, biodegradable, polymer-based stavudine nanoparticle uptake by macrophages: an in vitro study. Int J Nanomedi 7:6049–6061. https://doi.org/10.2147/IJN.S38013

    Article  CAS  Google Scholar 

  56. Teixeira ACT, Garcia AR, Ilharco LM, Gonçalves Da Silva AMPS, Fernandes AC (2010) Phase behaviour of oleanolic acid, pure and mixed with stearic acid: interactions and crystallinity. Chem Phys Lipids 163:655–666. https://doi.org/10.1016/j.chemphyslip.2010.06.001

    Article  CAS  Google Scholar 

  57. Barbosa R, Villarreal A, Rodriguez C, De Leon H, Gilkerson R, Lozano K (2021) Aloe vera extract-based composite nanofibers for wound dressing applications. Mater Sci Eng C 124:112061. https://doi.org/10.1016/j.msec.2021.112061

    Article  CAS  Google Scholar 

  58. Venkatesh DN, Baskaran M, Karri VVSR, Mannemala SS, Radhakrishna K, Goti S (2015) Fabrication and in vivo evaluation of nelfinavir loaded PLGA nanoparticles for enhancing oral bioavailability and therapeutic effect. Saudi Pharm J 23:667–674. https://doi.org/10.1016/j.jsps.2015.02.021

    Article  Google Scholar 

  59. Liu Q, Ouyang WC, Zhou XH, Jin T, Wu ZW (2021) Antibacterial activity and drug loading of moxifloxacin-loaded poly(vinyl alcohol)/chitosan electrospun nanofibers. Front Mater 8:1–9. https://doi.org/10.3389/fmats.2021.643428

    Article  Google Scholar 

  60. Böncü TE, Ozdemir N (2022) Effects of drug concentration and PLGA addition on the properties of electrospun ampicillin trihydrate-loaded PLA nanofibers. Beilstein J Nanotechnol 13:245–254. https://doi.org/10.3762/bjnano.13.19

    Article  CAS  Google Scholar 

  61. Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY (2010) Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul 27:187–197. https://doi.org/10.3109/02652040903131301

    Article  CAS  Google Scholar 

  62. Barichello JM, Morishita M, Takayama K, Nagai T (1999) Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 25:471–476. https://doi.org/10.1081/DDC-100102197

    Article  CAS  Google Scholar 

  63. Rodriguez C, Padilla V, Lozano K, Ahmad F, Chapa A, Villarreal A, McDonald A, Materon L, Gilkerson R (2022) Cell proliferative properties of Forcespinning® nopal composite nanofibers. J Bioact Compat Polym 37:28–37. https://doi.org/10.1177/08839115211060404

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mr. Bryan Hoke for his technical support in PXRD analysis. The authors acknowledge Ms. Casandra Lira for her support during fiber fabrication. Authors gratefully acknowledge the support received from National Science Foundation under PREM award DMR 2122178.

Author information

Authors and Affiliations

Authors

Contributions

SA, AN and KL conceived the project. SA carried out the experiments. SA conducted data analysis and drafted the manuscript. RG carried out the cell viability and cell interaction experiments and drafted the biological section of the manuscript. VMP provided technical support on SEM. VMP and KL edited the manuscript.

Corresponding author

Correspondence to Karen Lozano.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests or personal/financial contributed conflicts that could influence the work imparted in this manuscript.

Additional information

Handling Editor: Jaime Grunlan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Padilla-Gainza, V.M., Gilkerson, R. et al. Processing-structure–property relationships of oleanolic acid loaded PLGA fiber membranes. J Mater Sci 58, 4240–4255 (2023). https://doi.org/10.1007/s10853-023-08246-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08246-4

Navigation