Skip to main content
Log in

Pd/SmMn2O5 catalyst for methane combustion: efficient lattice oxygen and strong metal-support interaction

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Manganese-based mullite-type and perovskite-type mixed oxides were prepared by sol–gel method, and then palladium was loaded onto the mixed oxides by wet impregnation method. The catalytic performance for methane combustion, the influence of the supports, and the interaction between noble metal and the mixed oxides were investigated via experiments and theoretical calculations. The Pd/SmMn2O5 catalyst exhibited superior low-temperature catalytic activity for methane combustion (T50 = 328 °C), which was superior to the Pd/perovskites catalysts and even better than Pd/Al2O3 catalyst. It was ascribed to the abundant labile surface lattice oxygen species with high mobility and the uniformly dispersed Pd species on SmMn2O5, as revealed by TEM, CO-chemisorption, H2-TPR and XPS. DFT calculations verified the significant metal-support interaction via electron transfer between Pd and SmMn2O5, which further activated the lattice oxygen and improved the catalytic performance. It demonstrates the prospect of utilizing SmMn2O5 mullite to optimize the typical noble metal catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Li J, Liang X, Xu S, Hao J (2009) Catalytic performance of manganese cobalt oxides on methane combustion at low temperature. Appl Catal B 90(1–2):307–312. https://doi.org/10.1016/j.apcatb.2009.03.027

    Article  CAS  Google Scholar 

  2. Trivedi S, Prasad R (2016) Reactive calcination route for synthesis of active Mn–Co3O4 spinel catalysts for abatement of CO–CH4 emissions from CNG vehicles. J Environ Chem Eng 4(1):1017–1028. https://doi.org/10.1016/j.jece.2016.01.002

    Article  CAS  Google Scholar 

  3. Wang Y, Arandiyan H, Tahini HA, Scott J, Tan X, Dai H, Gale JD, Rohl AL, Smith SC, Amal R (2017) The controlled disassembly of mesostructured perovskites as an avenue to fabricating high performance nanohybrid catalysts. Nat Commun 8:15553. https://doi.org/10.1038/ncomms15553

    Article  CAS  Google Scholar 

  4. Zheng Y, Thampy S, Ashburn N, Dillon S, Wang L, Jangjou Y, Tan K, Kong F, Nie Y, Kim MJ, Epling WS, Chabal YJ, Hsu JWP, Cho K (2019) Stable and active oxidation catalysis by cooperative lattice oxygen redox on SmMn2O5 mullite surface. J Am Chem Soc 141(27):10722–10728. https://doi.org/10.1021/jacs.9b03334

    Article  CAS  Google Scholar 

  5. Chen Z, Liu X, Cho K, Chen R, Shan B (2015) Density functional theory study of the oxygen chemistry and no oxidation mechanism on low-index surfaces of SmMn2O5 mullite. ACS Catal 5(8):4913–4926. https://doi.org/10.1021/acscatal.5b00249

    Article  CAS  Google Scholar 

  6. Lang Y, Zhang J, Feng Z, Liu X, Zhu Y, Zeng T, Zhao Y, Chen R, Shan B (2018) CO oxidation over MOx (M = Mn, Fe Co, Ni, Cu) supported on SmMn2O5 composite catalysts. Catal Sci Technol 8(21):5490–5497. https://doi.org/10.1039/c8cy01263f

    Article  CAS  Google Scholar 

  7. Li W, Mao H, Jin B, Ding J, Ma Y, Wu X, Ran R, Si Z, Weng D (2021) High-surface-area SmMn2O5 nanosheets with crystal orientation for propane combustion: a facile microwave-assisted hydrothermal method. Fuel 306:121685. https://doi.org/10.1016/j.fuel.2021.121685

    Article  CAS  Google Scholar 

  8. Thampy S, Zheng Y, Dillon S, Liu C, Jangjou Y, Lee Y-J, Epling WS, Xiong K, Chabal YJ, Cho K, Hsu JWP (2018) Superior catalytic performance of Mn-Mullite over Mn-perovskite for NO oxidation. Catal Today 310:195–201. https://doi.org/10.1016/j.cattod.2017.05.008

    Article  CAS  Google Scholar 

  9. Chen S, Li H, Hao Y, Chen R, Chen T (2020) Porous Mn-based oxides for complete ethanol and toluene catalytic oxidation: the relationship between structure and performance. Catal Sci Technol 10(6):1941–1951. https://doi.org/10.1039/c9cy02522g

    Article  CAS  Google Scholar 

  10. Feng Z, Du C, Chen Y, Lang Y, Zhao Y, Cho K, Chen R, Shan B (2018) Improved durability of Co3O4 particles supported on SmMn2O5 for methane combustion. Catal Sci Technol 8(15):3785–3794. https://doi.org/10.1039/c8cy00897c

    Article  CAS  Google Scholar 

  11. Liu X, Yang J, Shen G, Shen M, Zhao Y, Cho K, Chen R, Shan B (2019) Tuning the structure of bifunctional Pt/SmMn2O5 interfaces for promoted low-temperature CO oxidation activity. Nanoscale 11(17):8150–8159. https://doi.org/10.1039/c8nr09054h

    Article  CAS  Google Scholar 

  12. Zhu Y, Du C, Feng Z, Chen Y, Li H, Chen R, Shan B, Shen M (2018) Highly dispersed Pd on macroporous SmMn2O5 mullite for low temperature oxidation of CO and C3H8. Rsc Adv 8(10):5459–5467. https://doi.org/10.1039/c7ra11551b

    Article  CAS  Google Scholar 

  13. Xiong H, Wiebenga MH, Carrillo C, Gaudet JR, Pham HN, Kunwar D, Oh SH, Qi G, Kim CH, Datye AK (2018) Design considerations for low-temperature hydrocarbon oxidation reactions on Pd based catalysts. Appl Catal B: Environ 236:436–444. https://doi.org/10.1016/j.apcatb.2018.05.049

    Article  CAS  Google Scholar 

  14. Jang EJ, Lee J, Oh DG, Kwak JH (2021) CH4 oxidation activity in Pd and Pt–Pd bimetallic catalysts: correlation with surface PdOx quantified from the DRIFTS study. ACS Catal 11(10):5894–5905. https://doi.org/10.1021/acscatal.1c00156

    Article  CAS  Google Scholar 

  15. He L, Fan Y, Bellettre J, Yue J, Luo L (2020) A review on catalytic methane combustion at low temperatures: catalysts, mechanisms, reaction conditions and reactor designs. Renew Sustain Energy Rev 119:109589. https://doi.org/10.1016/j.rser.2019.109589

    Article  CAS  Google Scholar 

  16. Barrera A, Fuentes S, Díaz G, Gómez-Cortés A, Tzompantzi F, Molina JC (2012) Methane oxidation over Pd catalysts supported on binary Al2O3–La2O3 oxides prepared by the sol–gel method. Fuel 93:136–141. https://doi.org/10.1016/j.fuel.2011.11.049

    Article  CAS  Google Scholar 

  17. Ding Y, Wu Q, Lin B, Guo Y, Guo Y, Wang Y, Wang L, Zhan W (2020) Superior catalytic activity of a Pd catalyst in methane combustion by fine-tuning the phase of ceria-zirconia support. Appl Catal B: Environ 266:118631. https://doi.org/10.1016/j.apcatb.2020.118631

    Article  CAS  Google Scholar 

  18. Zou X, Rui Z, Ji H (2017) Core–shell NiO@PdO nanoparticles supported on alumina as an advanced catalyst for methane oxidation. ACS Catal 7(3):1615–1625. https://doi.org/10.1021/acscatal.6b03105

    Article  CAS  Google Scholar 

  19. Yang X, Li Q, Lu E, Wang Z, Gong X, Yu Z, Guo Y, Li W, Guo Y, Zhan W, Zhang J, Dai S (2019) Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat Commun 10(1):1611. https://doi.org/10.1038/s41467-019-09662-4

    Article  CAS  Google Scholar 

  20. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set—ScienceDirect. Comput Mater Sci 6(1):15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  21. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B: Conden Matter 59(3):1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  22. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  23. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36(3):354–360. https://doi.org/10.1016/j.commatsci.2005.04.010

    Article  Google Scholar 

  24. Yu M, Trinkle DR (2011) Accurate and efficient algorithm for Bader charge integration. J Chem Phys 134:064111. https://doi.org/10.1063/1.3553716

    Article  CAS  Google Scholar 

  25. Koch G, Hävecker M, Teschner D, Carey SJ, Wang Y, Kube P, Trunschke A (2020) Surface conditions that constrain alkane oxidation on perovskites. ACS Catal 10(13):7007–7020. https://doi.org/10.1021/acscatal.0c01289

    Article  CAS  Google Scholar 

  26. Jin B, Zhao B, Liu S, Li Z, Li K, Ran R, Xiaodong W (2020) SmMn2O5 catalysts modified with silver for soot oxidation: dispersion of silver and distortion of mullite. Appl Catal B: Environ 273:119058. https://doi.org/10.1016/j.apcatb.2020.119058

    Article  CAS  Google Scholar 

  27. Zhao BH, Ran R, Sun L, Yang ZS, Wu XD, Weng D (2018) A high-surface-area La-Ce-Mn mixed oxide with enhanced activity for CO and C3H8 oxidation. Catal Commun 105:26–30. https://doi.org/10.1016/j.catcom.2017.11.007

    Article  CAS  Google Scholar 

  28. Si W, Wang Y, Peng Y, Li J (2015) Selective dissolution of A-Site cations in ABO3 perovskites: a new path to high-performance catalysts. Angew Chem Int Ed 54(27):7954–7957. https://doi.org/10.1002/anie.201502632

    Article  CAS  Google Scholar 

  29. Feng Z, Wang J, Liu X, Wen Y, Chen R, Yin H, Shen M, Shan B (2016) Promotional role of La addition in the NO oxidation performance of a SmMn2O5 mullite catalyst. Catal Sci Technol 6(14):5580–5589. https://doi.org/10.1039/c5cy01919b

    Article  CAS  Google Scholar 

  30. Mo S, Zhang Q, Li J, Sun Y, Ren Q, Zou S, Zhang Q, Lu J, Fu M, Mo D, Wu J (2019) Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS. Appl Catal B: Environ 264:118464. https://doi.org/10.1016/j.apcatb.2019.118464

    Article  CAS  Google Scholar 

  31. Yang W, Peng Y, Wang Y, Wang Y, Liu H, Su ZA, Yang W, Chen J, Si W, Li J (2020) Controllable redox-induced in-situ growth of MnO2 over Mn2O3 for toluene oxidation: Active heterostructure interfaces. Appl Catal B: Environ 278:119279. https://doi.org/10.1016/j.apcatb.2020.119279

    Article  CAS  Google Scholar 

  32. Datye AK, Bravo J, Nelson TR, Atanasova P, Lyubovsky M, Pfefferle L (2000) Catalyst microstructure and methane oxidation reactivity during the Pd↔PdO transformation on alumina supports. Appl Catal A: General 198:179–196. https://doi.org/10.1016/s0926-860x(99)00512-8

    Article  CAS  Google Scholar 

  33. Zou X, Rui Z, Song S, Ji H (2016) Enhanced methane combustion performance over NiAl2O4-interface-promoted Pd/γ-Al2O3. J Catal 338:192–201. https://doi.org/10.1016/j.jcat.2015.12.031

    Article  CAS  Google Scholar 

  34. Xiao Y, Li J, Wang C, Zhong F, Zheng Y, Jiang L (2021) Construction and evolution of active palladium species on phase-regulated reducible TiO2 for methane combustion. Catal Sci Technol 11(3):836–845. https://doi.org/10.1039/d0cy01658f

    Article  CAS  Google Scholar 

  35. Jiang D, Khivantsev K, Wang Y (2020) Low-temperature methane oxidation for efficient emission control in natural gas vehicles: Pd and beyond. ACS Catal 10(23):14304–14314. https://doi.org/10.1021/acscatal.0c03338

    Article  CAS  Google Scholar 

  36. Xiong J, Yang J, Chi X, Wu K, Song L, Li T, Zhao Y, Huang H, Chen P, Wu J, Chen L (2021) Pd-Promoted Co2NiO4 with lattice Co O Ni and interfacial Pd O activation for highly efficient methane oxidation. Applied Catalysis B: Environmental 292:120201. https://doi.org/10.1016/j.apcatb.2021.120201

    Article  CAS  Google Scholar 

  37. Thampy S, Ibarra V, Lee Y-J, McCool G, Cho K, Hsu JWP (2016) Effects of synthesis conditions on structure and surface properties of SmMn2O5 mullite-type oxide. Appl Surf Sci 385:490–497. https://doi.org/10.1016/j.apsusc.2016.05.151

    Article  CAS  Google Scholar 

  38. Si WZ, Wang Y, Zhao S, Hu FY, Li JH (2016) A facile method for in situ preparation of the MnO2/LaMnO3 catalyst for the removal of toluene. Environ Sci Technol 50(8):4572–4578. https://doi.org/10.1021/acs.est.5b06255

    Article  CAS  Google Scholar 

  39. Levasseur B, Kaliaguine S (2008) Effect of the rare earth in the perovskite-type mixed oxides AMnO3 (A = Y, La, Pr, Sm, Dy) as catalysts in methanol oxidation. J Solid State Chem 181(11):2953–2963. https://doi.org/10.1016/j.jssc.2008.07.029

    Article  CAS  Google Scholar 

  40. Fiuk MM, Adamski A (2015) Activity of MnOx–CeO2 catalysts in combustion of low concentrated methane. Catal Today 257:131–135. https://doi.org/10.1016/j.cattod.2015.01.029

    Article  CAS  Google Scholar 

  41. Jia J, Ran R, Wu X, Chen W, Si Z, Weng D (2019) Tuning nonstoichiometric defects in single-phase MnOx for methane complete oxidation. Mol Catal 467:120–127. https://doi.org/10.1016/j.mcat.2019.01.032

    Article  CAS  Google Scholar 

  42. Chen Z, Wang S, Liu W, Gao X, Gao D, Wang M, Wang S (2016) Morphology-dependent performance of Co3O4 via facile and controllable synthesis for methane combustion. Appl Catal A 525:94–102. https://doi.org/10.1016/j.apcata.2016.07.009

    Article  CAS  Google Scholar 

  43. Corro G, Cano C, Fierro JLG (2010) A study of Pt–Pd/γ-Al2O3 catalysts for methane oxidation resistant to deactivation by sulfur poisoning. J Mol Catal A: Chem 315(1):35–42. https://doi.org/10.1016/j.molcata.2009.08.023

    Article  CAS  Google Scholar 

  44. Wang W, Yuan F, Niu X, Zhu Y (2016) Preparation of Pd supported on La(Sr)–Mn–O perovskite by microwave irradiation method and its catalytic performances for the methane combustion. Sci Rep 6:19511–19520. https://doi.org/10.1038/srep19511

    Article  CAS  Google Scholar 

  45. Chen H-Y, Lu J, Fedeyko JM, Raj A (2022) Zeolite supported Pd catalysts for the complete oxidation of methane: a critical review. Appl Catal A 633:118534–118546. https://doi.org/10.1016/j.apcata.2022.118534

    Article  CAS  Google Scholar 

  46. Gao Z, Wang R (2010) Catalytic activity for methane combustion of the perovskite-type La1−xSrxCoO3−δ oxide prepared by the urea decomposition method. Appl Catal B 98(3–4):147–153. https://doi.org/10.1016/j.apcatb.2010.05.023

    Article  CAS  Google Scholar 

  47. Alifanti M, Kirchnerova J, Delmon B, Klvana D (2004) Methane and propane combustion over lanthanum transition-metal perovskites: role of oxygen mobility. Appl Catal A 262(2):167–176. https://doi.org/10.1016/j.apcata.2003.11.024

    Article  CAS  Google Scholar 

  48. Meng Q, Wang W, Weng X, Liu Y, Wang H, Wu Z (2016) Active oxygen species in Lan+1NinO3n+1 layered perovskites for catalytic oxidation of toluene and methane. J Phys Chem C 120(6):3259–3266. https://doi.org/10.1021/acs.jpcc.5b08703

    Article  CAS  Google Scholar 

  49. Senftle TP, van Duin ACT, Janik MJ (2015) Role of site stability in methane activation on PdxCe1–xOδ surfaces. ACS Catal 5(10):6187–6199. https://doi.org/10.1021/acscatal.5b00741

    Article  CAS  Google Scholar 

  50. Ciuparu D, Altman E, Pfefferle L (2001) Contributions of lattice oxygen in methane combustion over pdo-based catalysts. J Catal 203(1):64–74. https://doi.org/10.1006/jcat.2001.3331

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (project numbers 2016YFC0205000) and the National Engineering Laboratory for Mobile Source Emission Control Technology (NELMS2020A08). We also thank the Key Laboratory of Advanced Materials (MOE) at the School of Materials Science and Engineering for performing material characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Ran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This work does not involve any human tissues.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2023_8179_MOESM1_ESM.docx

The Supplementary Material contains the comparison of different catalysts reported in literatures, results of EDS mapping and HRTEM, cycle reaction activity of PSM2 catalyst and the optimized structures from DFT calculations. Supplementary file1 (DOCX 2350 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Li, G., Ran, R. et al. Pd/SmMn2O5 catalyst for methane combustion: efficient lattice oxygen and strong metal-support interaction. J Mater Sci 58, 2494–2505 (2023). https://doi.org/10.1007/s10853-023-08179-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08179-y

Navigation