Skip to main content

Advertisement

Log in

Understanding the doping mechanism of Sn in TiO2 nanorods toward efficient photoelectrochemical performance

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Doping metal ions into titanium dioxide (TiO2) is an effective strategy toward the goal of high-performance photoelectrochemical (PEC) water splitting. Understanding the doping mechanism is crucial for tailoring the intrinsic properties of doped TiO2. In this study, we synthesized tin (Sn)-doped TiO2 nanorods using a hydrothermal method and aim to understand the doping mechanism of Sn into TiO2 for enhancing its PEC performance. The experimental results based on the morphological and structural analysis confirm the success of Sn doping into TiO2 in which the dopant is homogeneously distributed in the structure of the nanorods. Density functional theory calculation combined with thermodynamic analysis provides clear evidence for the doping mechanism of Sn into TiO2 crystal lattice. These results indicate that Sn dopant enters the rutile TiO2 lattice as a substitute for Ti site and while the substituted Sn does not induce any localized state within the band gap of TiO2, it gives a significant amount of its valence electron to conduction, thereby helping to improve the photocatalytic activity. Compared with the TiO2 nanorods sample, the Sn-doped TiO2 nanorods sample shows highly efficient PEC performance, where its photocurrent density is significantly improved to 4.2 mA/cm2 with a high photoconversion efficiency of 2.1%. Our results may afford a better understanding of the doping mechanism of Sn in TiO2 and thus suggest that Sn-doped TiO2 can serve as a potential photocatalyst material for a variety of solar energy-driven applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473. https://doi.org/10.1021/cr1002326

    Article  CAS  Google Scholar 

  2. Li Y, Takata T, Cha D, Takanabe K, Minegishi T, Kubota J, Domen K (2013) Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv Mater 25:125–131. https://doi.org/10.1002/adma.201202582

    Article  CAS  Google Scholar 

  3. Hu X, Lu S, Tian J, Wei N, Song X, Wang X, Cui H (2019) The selective deposition of MoS2 nanosheets onto (101) facets of TiO2 nanosheets with exposed (001) facets and their enhanced photocatalytic H2 production. Appl Catal B 241:329–337. https://doi.org/10.1016/j.apcatb.2018.09.051

    Article  CAS  Google Scholar 

  4. Shen S, Chen J, Wang M, Sheng X, Chen X, Feng X, Mao SS (2018) Titanium dioxide nanostructures for photoelectrochemical applications. Prog Mater Sci 98:299–385. https://doi.org/10.1016/j.pmatsci.2018.07.006

    Article  CAS  Google Scholar 

  5. Trung TN, Seo D-B, Quang ND, Kim D, Kim E-T (2018) Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO. Electrochim Acta 260:150–156. https://doi.org/10.1016/j.electacta.2017.11.089

    Article  CAS  Google Scholar 

  6. Volokh M, Peng G, Barrio J, Shalom M (2019) Carbon nitride materials for water splitting photoelectrochemical cells. Angew Chem Int Ed 58:6138–6151. https://doi.org/10.1002/anie.201806514

    Article  CAS  Google Scholar 

  7. Seo D-B, Trung TN, Kim D-O et al (2020) Plasmonic Ag-decorated few-layer MoS2 nanosheets vertically grown on graphene for efficient photoelectrochemical water splitting. Nano-Micro Lett 12:172. https://doi.org/10.1007/s40820-020-00512-3

    Article  CAS  Google Scholar 

  8. Kang JS, Kim J, Lee MJ et al (2017) Electrochemical synthesis of nanoporous tungsten carbide and its application as electrocatalysts for photoelectrochemical cells. Nanoscale 9:5413–5424. https://doi.org/10.1039/C7NR00216E

    Article  Google Scholar 

  9. Seo D-B, Kim M-S, Trung TN, Kim E-T (2020) Controllable low-temperature growth and enhanced photoelectrochemical water splitting of vertical SnS2 nanosheets on graphene. Electrochim Acta 364:137164. https://doi.org/10.1016/j.electacta.2020.137164

    Article  CAS  Google Scholar 

  10. Tian J, Zhao Z, Kumar A, Boughton RI, Liu H (2014) Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem Soc Rev 43:6920–6937. https://doi.org/10.1039/c4cs00180j

    Article  CAS  Google Scholar 

  11. Ge M, Cao C, Huang J et al (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4:6772–6801. https://doi.org/10.1039/C5TA09323F

    Article  CAS  Google Scholar 

  12. Seo D-B, Kim S, Trung TN, Kim D, Kim E-T (2019) Conformal growth of few-layer MoS2 flakes on closely-packed TiO2 nanowires and their enhanced photoelectrochemical reactivity. J Alloy Compd 770:686–691. https://doi.org/10.1016/j.jallcom.2018.08.151

    Article  CAS  Google Scholar 

  13. Ghoreishian SM, Ranjith KS, Lee H et al (2021) Tuning the phase composition of 1D TiO2 by Fe/Sn co-doping strategy for enhanced visible-light-driven photocatalytic and photoelectrochemical performances. J Alloy Compd 851:156826. https://doi.org/10.1016/j.jallcom.2020.156826

    Article  CAS  Google Scholar 

  14. Basavarajappa PS, Patil SB, Ganganagappa N, Reddy KR, Raghu AV, Reddy CV (2020) Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int J Hydrog Energy 45:7764–7778. https://doi.org/10.1016/j.ijhydene.2019.07.241

    Article  CAS  Google Scholar 

  15. Ali N, Ali F, Khurshid R et al (2020) TiO2 nanoparticles and epoxy-TiO2 nanocomposites: a review of synthesis, modification strategies, and photocatalytic potentialities. J Inorg Organomet Polym Mater 30:4829–4846. https://doi.org/10.1007/s10904-020-01668-6

    Article  CAS  Google Scholar 

  16. Feng H, Zhang M-H, Yu LE (2012) Hydrothermal synthesis and photocatalytic performance of metal-ions doped TiO2. Appl Catal A 413–414:238–244. https://doi.org/10.1016/j.apcata.2011.11.014

    Article  CAS  Google Scholar 

  17. Adyani SM, Ghorbani M (2018) A comparative study of physicochemical and photocatalytic properties of visible light responsive Fe, Gd and P single and tri-doped TiO2 nanomaterials. J Rare Earths 36:72–85. https://doi.org/10.1016/j.jre.2017.06.012

    Article  CAS  Google Scholar 

  18. Xu M, Da P, Wu H, Zhao D, Zheng G (2012) Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. Nano Lett 12:1503–1508. https://doi.org/10.1021/nl2042968

    Article  CAS  Google Scholar 

  19. Long R, Dai Y, Huang B (2009) Geometric and electronic properties of Sn-doped TiO2 from first-principles calculations. J Phys Chem C 113:650–653. https://doi.org/10.1021/jp8043708

    Article  CAS  Google Scholar 

  20. Zhu X, Pei L, Zhu R, Jiao Y, Tang R, Feng W (2018) Preparation and characterization of Sn/La co-doped TiO2 nanomaterials and their phase transformation and photocatalytic activity. Sci Rep 8:12387. https://doi.org/10.1038/s41598-018-30050-3

    Article  CAS  Google Scholar 

  21. Wategaonkar SB, Parale VG, Mali SS et al (2021) Influence of Tin doped TiO2 nanorods on dye sensitized solar cells. Materials (Basel) 14:6282. https://doi.org/10.3390/ma14216282

    Article  CAS  Google Scholar 

  22. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871. https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  23. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  24. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  25. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  26. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3688. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  28. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57:1505–1509. https://doi.org/10.1103/PhysRevB.57.1505

    Article  Google Scholar 

  29. Bocquet AE, Mizokawa T, Morikawa K et al (1996) Electronic structure of early 3d-transition-metal oxides by analysis of the 2p core-level photoemission spectra. Phys Rev B 53:1161–1170. https://doi.org/10.1103/PhysRevB.53.1161

    Article  Google Scholar 

  30. Morgan BJ, Watson GW (2009) A density functional theory + U study of oxygen vacancy formation at the (110), (100), (101), and (001) surfaces of rutile TiO2. J Phys Chem C 113:7322–7328. https://doi.org/10.1021/jp811288n

    Article  CAS  Google Scholar 

  31. Morgan BJ, Watson GW (2007) A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface. Surf Sci 601:5034–5041. https://doi.org/10.1016/j.susc.2007.08.025

    Article  CAS  Google Scholar 

  32. Tezuka Y, Shin S, Ishii T, Ejima T, Suzuki S, Sato S (1994) Photoemission and bremsstrahlung isochromat spectroscopy studies of TiO2 (rutile) and SrTiO3. J Phys Soc Jpn 63:347–357. https://doi.org/10.1143/JPSJ.63.347

    Article  Google Scholar 

  33. Chiodo L, García-Lastra JM, Iacomino A, Ossicini S, Zhao J, Petek H, Rubio A (2010) Self-energy and excitonic effects in the electronic and optical properties of TiO2 crystalline phases. Phys Rev B 82:045207. https://doi.org/10.1103/PhysRevB.82.045207

    Article  CAS  Google Scholar 

  34. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215. https://doi.org/10.1063/1.1564060

    Article  CAS  Google Scholar 

  35. Heyd J, Scuseria GE, Ernzerhof M (2006) Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. The J Chem Phys 124: 219906. https://doi.org/10.1063/1.2204597

  36. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  37. Mazza T, Barborini E, Piseri P et al (2007) Raman spectroscopy characterization of TiO2 rutile nanocrystals. Phys Rev B 75:045416. https://doi.org/10.1103/PhysRevB.75.045416

    Article  CAS  Google Scholar 

  38. Swamy V, Muddle BC, Dai Q (2006) Size-dependent modifications of the Raman spectrum of rutile TiO2. Appl Phys Lett 89:163118. https://doi.org/10.1063/1.2364123

    Article  CAS  Google Scholar 

  39. Zhang Y, Harris CX, Wallenmeyer P, Murowchick J, Chen X (2013) Asymmetric lattice vibrational characteristics of rutile TiO2 as revealed by laser power dependent Raman spectroscopy. J Phys Chem C 117:24015–24022. https://doi.org/10.1021/jp406948e

    Article  CAS  Google Scholar 

  40. Wang C, Chen Z, Jin H, Cao C, Li J, Mi Z (2014) Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. J Mater Chem A 2:17820–17827. https://doi.org/10.1039/C4TA04254A

    Article  CAS  Google Scholar 

  41. Li J, Zeng HC (2006) Preparation of monodisperse Au/TiO2 nanocatalysts via self-assembly. Chem Mater 18:4270–4277. https://doi.org/10.1021/cm060362r

    Article  CAS  Google Scholar 

  42. Li J, Xu X, Liu X, Yu C, Yan D, Sun Z, Pan L (2016) Sn doped TiO2 nanotube with oxygen vacancy for highly efficient visible light photocatalysis. J Alloy Compd 679:454–462. https://doi.org/10.1016/j.jallcom.2016.04.080

    Article  CAS  Google Scholar 

  43. Long R, Dai Y, Meng G, Huang B (2009) Energetic and electronic properties of X- (Si, Ge, Sn, Pb) doped TiO2 from first-principles. Phys Chem Chem Phys 11:8165–8172. https://doi.org/10.1039/B903298C

    Article  Google Scholar 

  44. Yong Z, Linghu J, Xi S et al (2018) Ti1-xSnxO2 nanofilms: layer-by-layer deposition with extended Sn solubility and characterization. Appl Surf Sci 428:710–717. https://doi.org/10.1016/j.apsusc.2017.09.135

    Article  CAS  Google Scholar 

  45. Li B, Tang N (2022) Study on Zr, Sn, Pb, Si and Pt doped TiO2 photoanode for dye-sensitized solar cells: the first-principles calculations. Chem Phys Lett 799:139636. https://doi.org/10.1016/j.cplett.2022.139636

    Article  CAS  Google Scholar 

  46. Han X, Shao G (2011) Electronic properties of rutile TiO2 with nonmetal dopants from first principles. J Phys Chem C 115:8274–8282. https://doi.org/10.1021/jp1106586

    Article  CAS  Google Scholar 

  47. Filippatos P-P, Kelaidis N, Vasilopoulou M, Davazoglou D, Chroneos A (2020) Atomic structure and electronic properties of hydrogenated X (=C, Si, Ge, and Sn) doped TiO2: a theoretical perspective. AIP Adv 10:115316. https://doi.org/10.1063/5.0032564

    Article  CAS  Google Scholar 

  48. Li L, Li W, Zhu C, Mao L-F (2020) The dopant local effect on the stability of an oxygen vacancy and the reliability of a conductive filament in rutile titanium dioxide. Phys Status Solidi B 257:1900455. https://doi.org/10.1002/pssb.201900455

    Article  CAS  Google Scholar 

  49. Choudhury B, Choudhury A (2013) Oxygen vacancy and dopant concentration dependent magnetic properties of Mn doped TiO2 nanoparticle. Curr Appl Phys 13:1025–1031. https://doi.org/10.1016/j.cap.2013.02.007

    Article  Google Scholar 

  50. Khatun N, Tiwari S, Vinod CP, Tseng C-M, Liu SW, Biring S, Sen S (2018) Role of oxygen vacancies and interstitials on structural phase transition, grain growth, and optical properties of Ga doped TiO2. J Appl Phys 123:245702. https://doi.org/10.1063/1.5027672

    Article  CAS  Google Scholar 

  51. Kumaravel V, Rhatigan S, Mathew S et al (2020) Mo doped TiO2: impact on oxygen vacancies, anatase phase stability and photocatalytic activity. J Phys Mater 3:025008. https://doi.org/10.1088/2515-7639/ab749c

    Article  CAS  Google Scholar 

  52. Labat F, Baranek P, Domain C, Minot C, Adamo C (2007) Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: performances of different exchange-correlation functionals. J Chem Phys 126:154703. https://doi.org/10.1063/1.2717168

    Article  CAS  Google Scholar 

  53. Lee H-Y, Clark SJ, Robertson J (2012) Calculation of point defects in rutile TiO${}_{2}$ by the screened-exchange hybrid functional. Phys Rev B 86:075209. https://doi.org/10.1103/PhysRevB.86.075209

    Article  CAS  Google Scholar 

  54. Li B, Wu S, Gao X (2020) Theoretical calculation of a TiO2-based photocatalyst in the field of water splitting: a review. Nanotechnol Rev 9:1080–1103. https://doi.org/10.1515/ntrev-2020-0085

    Article  CAS  Google Scholar 

  55. Thatribud A (2019) Electronic and optical properties of TiO2 by first-principle calculation (DFT-GW and BSE). Mater Res Express 6:095021. https://doi.org/10.1088/2053-1591/ab2cad

    Article  CAS  Google Scholar 

  56. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403. https://doi.org/10.1063/1.458517

    Article  Google Scholar 

  57. Savin A, Jepsen O, Flad J, Andersen OK, Preuss H, von Schnering HG (1992) Electron localization in solid-state structures of the elements: the diamond structure. Angew Chem Int Ed 31:187–188. https://doi.org/10.1002/anie.199201871

    Article  Google Scholar 

  58. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686. https://doi.org/10.1038/371683a0

    Article  Google Scholar 

  59. Causà M, D’Amore M, Gentile F, Menendez M, Calatayud M (2015) Electron localization function and maximum probability domains analysis of semi-ionic oxides crystals, surfaces and surface defects. Comput Theor Chem 1053:315–321. https://doi.org/10.1016/j.comptc.2014.11.001

    Article  CAS  Google Scholar 

  60. Koumpouras K, Larsson JA (2020) Distinguishing between chemical bonding and physical binding using electron localization function (ELF). J Phys Condens Matter 32:315502. https://doi.org/10.1088/1361-648x/ab7fd8

    Article  CAS  Google Scholar 

  61. Grin Y, Savin A, Silvi B (2014) The ELF perspective of chemical bonding. In: Frenking G, Shaik S (eds) The chemical bond. https://doi.org/10.1002/9783527664696.ch10

  62. Tantardini C, Oganov AR (2021) Thermochemical electronegativities of the elements. Nat Commun 12:2087. https://doi.org/10.1038/s41467-021-22429-0

    Article  CAS  Google Scholar 

  63. Tang W, Sanville E, Henkelman G (2009) A grid-based Bader analysis algorithm without lattice bias. J Phys Condens Matter 21:084204. https://doi.org/10.1088/0953-8984/21/8/084204

    Article  CAS  Google Scholar 

  64. Koch D, Manzhos S (2017) On the charge state of titanium in titanium dioxide. J Phys Chem Lett 8:1593–1598. https://doi.org/10.1021/acs.jpclett.7b00313

    Article  CAS  Google Scholar 

  65. Sun B, Shi T, Peng Z, Sheng W, Jiang T, Liao G (2013) Controlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting. Nanoscale Res Lett 8:462. https://doi.org/10.1186/1556-276X-8-462

    Article  CAS  Google Scholar 

  66. Le Formal F, Sivula K, Grätzel M (2012) The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the influence of surface treatments. J Phys Chem C 116:26707–26720. https://doi.org/10.1021/jp308591k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02-2018.329.

Author information

Authors and Affiliations

Authors

Contributions

TNT contributed to conceptualization, data curation, formal analysis, investigation, methodology, writing-original draft. NTTK contributed to investigation, software, writing—original draft. DQH contributed to software, writing—original draft. D-BS and E-TK contributed to investigation and validation.

Corresponding authors

Correspondence to Tran Nam Trung or Eui-Tae Kim.

Ethics declarations

Conflict of interest

The authors state that they have no competing financial interests or known personal relationships that could appear to affect the work presented in this article.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 148 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trung, T.N., Kieu, N.T.T., Ho, D.Q. et al. Understanding the doping mechanism of Sn in TiO2 nanorods toward efficient photoelectrochemical performance. J Mater Sci 58, 2156–2169 (2023). https://doi.org/10.1007/s10853-023-08158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08158-3

Navigation