Skip to main content
Log in

Highly defective carbon nanotubes with improved electrochemical properties by introduction of mesoporous holes on the side walls

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly defective carbon nanotubes (HD-CNTs) are fabricated by template carbonization of polydopamine nanofilm coated on mesoporous titanium nitride nanotube arrays. With introduction of mesoporous holes on the side walls from the template, HD-CNTs exhibit much improved electrochemical properties. An ideal Nernst behavior toward [Fe(CN)6]3−/4− redox couple was observed on the HD-CNTs, with a heterogeneous charge transfer rate constant k0 greater than 0.5 cm/s that is among the fastest kinetics of electrode materials. Sensitive determination of dopamine has been demonstrated in the presence of ascorbic acid and uric acid, with a linear range of 0.1–180 μM, a detection limit of 0.074 μM (S/N = 3) and a sensitivity of 555 µA mM−1 cm−2. The excellent electrochemical activity should be attributed to the large number of exposed edge planes on the carbon nanofilm, the free-standing highly conductive titanium nitride architecture that is beneficial for electron transfer, mesoporous morphology that promotes the mass transfer between the nanotubes, and effective ion-accessible surface area.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wang ZX, Zhao HL, Chen KC, Zhou FF, Magdassi S, Lan MB (2022) Two-dimensional mesoporous nitrogen-rich carbon nanosheets loaded with CeO2 nanoclusters as nanozymes for the electrochemical detection of superoxide anions in HepG2 cells. Biosens Bioelectron 209:114229. https://doi.org/10.1016/j.bios.2022.114229

    Article  CAS  Google Scholar 

  2. Cho IH, Kim DH, Park S (2020) Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res 24:1–6. https://doi.org/10.1186/s40824-019-0181-y

    Article  CAS  Google Scholar 

  3. Maduraiveeran G, Kundu M, Sasidharan M (2018) Electrochemical detection of hydrogen peroxide based on silver nanoparticles via amplified electron transfer process. J Mater Sci 53:8328–8338. https://doi.org/10.1007/s10853-018-2141-7

    Article  CAS  Google Scholar 

  4. Zhai WZ, Srikanth N, Kong LB, Zhou K (2017) Carbon nanomaterials in tribology. Carbon 119:150–171. https://doi.org/10.1016/j.carbon.2017.04.027

    Article  CAS  Google Scholar 

  5. Ni JF, Li Y (2016) Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv Energy Mater 6:1600278. https://doi.org/10.1002/aenm.201600278

    Article  CAS  Google Scholar 

  6. Cardenas-Benitez B, Djordjevic I, Hosseini S, Madou MJ, Martinez-Chapa SO (2018) Review-covalent functionalization of carbon nanomaterials for biosensor applications: an update. J Electrochem Soc 165:B103. https://doi.org/10.1149/2.0381803jes

    Article  CAS  Google Scholar 

  7. Dai LM, Chang DW, Baek JB, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8:1130–1166. https://doi.org/10.1002/smll.201101594

    Article  CAS  Google Scholar 

  8. Yu J, Zhang YY, Li H, Wan QJ, Li YW, Yang NJ (2018) Electrochemical properties and sensing applications of nanocarbons: a comparative study. Carbon 129:301–309. https://doi.org/10.1016/j.carbon.2017.11.092

    Article  CAS  Google Scholar 

  9. Chen GH, Dodson B, Hedges DM, Steffensen SC, Harb JN, Puleo C, Galligan C, Ashe J, Vanfleet R, Davis R (2018) Fabrication of high aspect ratio millimeter-tall free-standing carbon nanotube-based microelectrode arrays. ACS Biomater Sci Eng 4:1900–1907. https://doi.org/10.1021/acsbiomaterials.8b00038

    Article  CAS  Google Scholar 

  10. Bulusheva LG, Arkhipov VE, Fedorovskaya EO, Zhang S, Kurenya AG, Kanygin MA, Asanov IP, Tsygankova AR, Chen XH, Song HH, Okotrub AV (2016) Fabrication of free-standing aligned multiwalled carbon nanotube array for Li-ion batteries. J Power Sources 311:42–48. https://doi.org/10.1016/j.jpowsour.2016.02.036

    Article  CAS  Google Scholar 

  11. Liu YL, Wan LL, Wang J, Cheng L, Chen RS, Ni HW (2020) Binary electrocatalyst composed of Mo2C nanocrystals with ultra-low Pt loadings anchored in TiO2 nanotube arrays for hydrogen evolution reaction. Appl Surf Sci 509:144679. https://doi.org/10.1016/j.apsusc.2019.144679

    Article  CAS  Google Scholar 

  12. Mohammadniaei M, Park C, Min JH, Sohn H, Lee T (2018) Fabrication of electrochemical -based bioelectronic device and biosensor composed of biomaterial-nanomaterial hybrid. Biomim Med Mater 1064:263–296. https://doi.org/10.1007/978-981-13-0445-3_17

    Article  CAS  Google Scholar 

  13. Schroeder V, Savagatrup S, He M, Lin SB, Swager TM (2018) Carbon nanotube chemical sensors. Chem Rev 119:599–663. https://doi.org/10.1021/acs.chemrev.8b00340

    Article  CAS  Google Scholar 

  14. Barsan MM, Ghica ME, Brett CMA (2015) Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Anal Chim Acta 881:1–23. https://doi.org/10.1016/j.aca.2015.02.059

    Article  CAS  Google Scholar 

  15. Liu XQ, Yan R, Zhang JM, Zhu J, Wong DKY (2015) Evaluation of a carbon nanotube -titanate nanotube nanocomposite as an electrochemical biosensor scaffold. Biosens Bioelectron 66:208–215. https://doi.org/10.1016/j.bios.2014.11.028

    Article  CAS  Google Scholar 

  16. Wang J, Liu YL, Cheng L, Chen RS, Ni HW (2020) Quasi-aligned nanorod arrays composed of nickel-cobalt nanoparticles anchored on TiO2/C nanofiber arrays as free standing electrode for enzymeless glucose sensors. J Alloy Compd 821:153510. https://doi.org/10.1016/j.jallcom.2019.153510

    Article  CAS  Google Scholar 

  17. Briza PL, Arben M (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16. https://doi.org/10.1007/s00604-012-0871-9

    Article  CAS  Google Scholar 

  18. Farzin L, Shamsipur M, Samandari L, Sheibani S (2018) Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: a review. Microchim Acta 185:276. https://doi.org/10.1007/s00604-018-2820-8

    Article  CAS  Google Scholar 

  19. McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108:2646–2687. https://doi.org/10.1021/cr068076m

    Article  CAS  Google Scholar 

  20. Goncalves LM, McAuley CB, Barros AA, Compton RG (2010) Electrochemical oxidation of adenine: a mixed adsorption and diffusion response on an edge-plane pyrolytic graphite electrode. J Phys Chem C 114:14213–14219. https://doi.org/10.1021/jp1046672

    Article  CAS  Google Scholar 

  21. Zhao JY, Cheng L, Wang J, Liu YL, Yang J, Xu QZ, Chen RS, Ni HW (2019) Heteroatom -doped carbon nanofilm embedded in highly ordered TiO2 nanotube arrays by thermal nitriding with enhanced electrochemical activity. J Electroanal Chem 852:113513. https://doi.org/10.1016/j.jelechem.2019.113513

    Article  CAS  Google Scholar 

  22. Chen RS, Li YY, Huo KF, Chu PK (2013) Microelectrode arrays based on carbon nanomaterials: emerging electrochemical sensors for biological and environmental applications. RSC Adv 3:18698–18715. https://doi.org/10.1039/c3ra43033b

    Article  CAS  Google Scholar 

  23. Komori K, Tatsuma T, Sakai Y (2016) Direct electron transfer kinetics of peroxidase at edge plane sites of cup-stacked carbon nanofibers and their comparison with single-walled carbon nanotubes. Langmuir 32:9163–9170. https://doi.org/10.1021/acs.langmuir.6b02407

    Article  CAS  Google Scholar 

  24. Pan FP, Li BY, Sarnello E, Fei YH, Gang Y, Xiang XM, Du ZC, Zhang P, Wang GF, Nguyen HT, Li T, Hu YH, Zhou HC, Li Y (2020) Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction. ACS Nano 14:5506–5516. https://doi.org/10.1021/acsnano.9b09658

    Article  CAS  Google Scholar 

  25. Lei R, Ni HW, Chen RS, Gu HZ, Zhang H, Dong S (2018) In situ growth of self-supported and defect-engineered carbon nanotube networks on 316L stainless steel as binder-free supercapacitors. J Colloid Interface Sci 532:622–629. https://doi.org/10.1016/j.jcis.2018.08.035

    Article  CAS  Google Scholar 

  26. Mohan R, Modak A, Schechter A (2019) A comparative study of plasma-treated oxygen -doped single-walled and multiwalled carbon nanotubes as electrocatalyst for efficient oxygen reduction reaction. ACS Sustain Chem Eng 7:11396–11406. https://doi.org/10.1021/acssuschemeng.9b01125

    Article  CAS  Google Scholar 

  27. Adusei PK, Gbordzoe S, Kanakaraj SN, Hsieh YY, Alvarez NT, Fang YB, Johnson K, McConnell C, Shanov V (2020) Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nanotube fibers. J Energy Chem 40:120–131. https://doi.org/10.1016/j.jechem.2019.03.005

    Article  Google Scholar 

  28. Hu LS, Fong CC, Zhang XM, Chan LL, Lam PK-S, Chu PK, Wong K-Y, Yang MS (2016) Au nanoparticles decorated TiO2 nanotube arrays as a recyclable sensor for photoenhanced electrochemical detection of bisphenol A. Environ Sci Technol 50:4430–4438. https://doi.org/10.1021/acs.est.5b05857

    Article  CAS  Google Scholar 

  29. Wang Y-W, Liu Y-L, Xu JQ, Qin Y, Huang W-H (2018) Stretchable and photocatalytically renewable electrochemical sensor based on sandwich nanonetworks for real-time monitoring of cells. Anal Chem 90:5977–5981. https://doi.org/10.1021/acs.analchem.8b01396

    Article  CAS  Google Scholar 

  30. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430. https://doi.org/10.1126/science.1147241

    Article  CAS  Google Scholar 

  31. Wang J, Zeng Y, Wan LL, Zhao JY, Yang J, Hu J, Liang F (2020) Catalyst-free fabrication of one-dimensional N-doped carbon coated TiO2 nanotube arrays by template carbonization of polydopamine for high performance electrochemical sensors. Appl Surf Sci 509:145301. https://doi.org/10.1016/j.apsusc.2020.145301

    Article  CAS  Google Scholar 

  32. Scroccarello A, Della Pelle F, Fratini E, Ferraro G, Scarano S, Palladino P, Compagnone D (2020) Colorimetric determination of polyphenols via a gold nanoseeds-decorated polydopamine film. Microchim Acta 187:267. https://doi.org/10.1007/s00604-020-04228-4

    Article  CAS  Google Scholar 

  33. Yang J, Cheng L, Wan LL, Yan JB, Chen RS, Ni HW (2018) Fabrication of sandwich structured C/NiO/TiO2 nanotube arrays for enhanced electrocatalytic activity towards hydrogen evolution. Electrochem Commun 97:68–72. https://doi.org/10.1016/j.elecom.2018.10.018

    Article  CAS  Google Scholar 

  34. Hu LB, Hecht DS, Gruner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110:5790–5844. https://doi.org/10.1021/cr9002962

    Article  CAS  Google Scholar 

  35. Chen M, Zhao G, Shao L-L, Yuan Z-Y, Jing Q-S, Huang K-J, Huang X-H, Zou G-D (2017) Controlled synthesis of nickel encapsulated into nitrogen-doped carbon nanotubes with covalent bonded interfaces: the structural and electronic modulation strategy for an efficient electrocatalyst in dye-sensitized solar cells. Chem Mater 29:9680–9694. https://doi.org/10.1021/acs.chemmater.7b03385

    Article  CAS  Google Scholar 

  36. Lu XH, Liu TY, Zhai T, Wang GM, Yu MH, Xie SL, Ling YC, Liang CL, Tong YX, Li Y (2014) Improving the cycling stability of metal-nitride supercapacitor electrodes with a thin carbon shell. Adv Energy Mater 4:1300994. https://doi.org/10.1002/aenm.201300994

    Article  CAS  Google Scholar 

  37. Fan HW, Zhang SY, Zhu XF (2019) Nitrided TiO2 nanoparticles/nanotube arrays for better electrochemical properties. Chem Phys Lett 730:340–344. https://doi.org/10.1016/j.cplett.2019.06.025

    Article  CAS  Google Scholar 

  38. Sun P, Lin R, Wang ZL, Qiu MJ, Chai ZS, Zhang BD, Meng H, Tan SZ, Zhao CX, Mai WJ (2017) Rational design of carbon shell endows TiN@C nanotube based fiber supercapacitors with significantly enhanced mechanical stability and electrochemical performance. Nano Energy 31:432–440. https://doi.org/10.1016/j.nanoen.2016.11.052

    Article  CAS  Google Scholar 

  39. Cheng L, Li YY, Liu YL, Wang J, Chen RS, Ni HW (2019) One-dimensional nitrogen-doped carbon nanotube arrays fabricated by template carbonization over anodized TiO2 nanotube arrays. Mater Lett 256:126602. https://doi.org/10.1016/j.matlet.2019.126602

    Article  CAS  Google Scholar 

  40. Zhao JY, Zeng Y, Wang J, Xu QZ, Chen RS, Ni HW, Cheng GJ (2020) Ultrahigh electrocatalytic activity with trace amounts of platinum loadings on free-standing mesoporous titanium nitride nanotube arrays for hydrogen evolution reactions. Nanoscale 12:15393–15401. https://doi.org/10.1039/d0nr01316a

    Article  CAS  Google Scholar 

  41. Wang JL, Meng Z, Yan XF, Ying HJ, Zhang SL, Han WQ (2019) Facile preparation of porous TiN-C microspheres as an efficient sulfur host for high performance lithium-sulfur battery. Mater Today Energy 13:1–10. https://doi.org/10.1016/j.mtener.2019.04.010

    Article  Google Scholar 

  42. Chen RS, Hu LS, Huo KF, Fu JJ, Ni HW, Tang Y, Chu PK (2011) Controllable growth of conical and cylindrical TiO2-carbon core-shell nanofiber arrays and morphologically dependent electrochemical properties. Chem Eur J 17:14552–14558. https://doi.org/10.1002/chem.201102219

    Article  CAS  Google Scholar 

  43. Mao ZY, Chen JJ, Yang YF, Bie LJ, Fahlman BD, Wang DJ (2017) Modification of surface properties and enhancement of photocatalytic performance for g-C3N4 via plasma treatment. Carbon 123:651–659. https://doi.org/10.1016/j.carbon.2017.08.020

    Article  CAS  Google Scholar 

  44. Ensafi AA, Arashpour B, Rezaei B, Allafchian AR (2014) Voltammetric behavior of dopamine at a glassy carbon electrode modified with NiFe2O4 magnetic nanoparticles decorated with multiwall carbon nanotubes. Mater Sci Eng C Mater Biol Appl 39:78. https://doi.org/10.1016/j.msec.2014.02.024

    Article  CAS  Google Scholar 

  45. Bali Prasad B, Jauhari D, Tiwari MP (2013) A dual-template imprinted polymer-modified carbon ceramic electrode for ultra trace simultaneous analysis of ascorbic acid and dopamine. Biosens Bioelectron 50:19. https://doi.org/10.1016/j.bios.2013.05.062

    Article  CAS  Google Scholar 

  46. Rezaei B, Boroujeni MK, Ensafi AA (2015) Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosens Bioelectron 66:490. https://doi.org/10.1016/j.bios.2014.12.009

    Article  CAS  Google Scholar 

  47. Zhu W, Chen T, Ma X, Ma H, Chen S (2013) Highly sensitive and selective detection of dopamine based on hollow gold nanoparticles-graphene nanocomposite modified electrode. Colloid Surf B 111:321. https://doi.org/10.1016/j.colsurfb.2013.06.026

    Article  CAS  Google Scholar 

  48. Rezaei B, Havakeshian E, Ensafi AA (2015) Decoration of nanoporous stainless steel with nanostructured gold via galvanic replacement reaction and its application for electrochemical determination of dopamine. Sens Actuat B-Chem 213:484. https://doi.org/10.1016/j.snb.2015.02.106

    Article  CAS  Google Scholar 

  49. Wu D, Li Y, Zhang Y, Wang P, Wei Q, Du B (2014) Sensitive electrochemical sensor for simultaneous determination of dopamine, ascorbic acid, and uric acid enhanced by amino-group functionalized mesoporous Fe3O4@graphene sheets. Electrochim Acta 116:244. https://doi.org/10.1016/j.electacta.2013.11.033

    Article  CAS  Google Scholar 

  50. Chiniforoshan H, Ensafi AA, Heydari-Bafrooei E, Khalesi SB, Tabrizi L (2015) Polymeric nanoparticle of copper(II)-4,4′-dicyanamidobiphenyl ligand: synthetic, spectral and structural aspect; application to electrochemical sensing of dopamine and ascorbic acid. Appl Surf Sci 347:315. https://doi.org/10.1016/j.apsusc.2015.04.062

    Article  CAS  Google Scholar 

  51. Sun X, Zhang L, Zhang X, Liu X, Jian J, Kong D, Zeng D, Yuan H, Feng S (2020) Electrochemical dopamine sensor based on superionic conducting potassium ferrite. Biosens Bioelectron 153:112045. https://doi.org/10.1016/j.bios.2020.112045

    Article  CAS  Google Scholar 

  52. Umapathi S, Masud J, Coleman H, Nath M (2020) Electrochemical sensor based on CuSe for determination of dopamine. Microchim Acta 187:440. https://doi.org/10.1007/s00604-020-04405-5

    Article  CAS  Google Scholar 

  53. Wang S, Guo P, Ma G, Wei J, Wang Z, Cui L, Sun L, Wang A (2020) Three-dimensional hierarchical mesoporous carbon for regenerative electrochemical dopamine sensor. Electrochim Acta 360:137016. https://doi.org/10.1016/j.electacta.2020.137016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2020YFC1909702) and National Natural Science Foundation of China (U21A20317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongsheng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44308 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, M., Li, Y., Nie, Y. et al. Highly defective carbon nanotubes with improved electrochemical properties by introduction of mesoporous holes on the side walls. J Mater Sci 57, 20567–20579 (2022). https://doi.org/10.1007/s10853-022-07949-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07949-4

Navigation