Skip to main content

Advertisement

Log in

Enhanced molecular interaction by polymer additive for efficient and stable flexible perovskite solar cells

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Flexible perovskite solar cells were potential photovoltaic technologies for achieving wearable power sources with excellent power conversion efficiency (PCE) and continuous roll-to-roll processability. However, the inherent fragile property and poor crystallinity of perovskite films on flexible substrates leaded to inferior photovoltaic performance, which impeded their application in wearable devices. Herein, a biodegradable polymer macromolecule, poly(D, L-lactide) (PDLLA), was doped into perovskite precursor solution to prepare perovskite films with favorable bendable and stretchable properties as well as the corresponding flexible PSCs. Extensive theoretical calculations and experimental analysis unraveled that the carbonyl (C = O) groups of PDLLA cross-linkers and undercoordinated Pb2+ defect sites of perovskite films were chemically coupled through C = O···Pb coordination bond and the hydroxyl (O–H) groups at the end of PDLLA molecules anchored perovskite via O–H···I hydrogen bonding interaction. The strong chemical interactions could govern perovskite crystallization to modulate the films morphology, thus prompting the photovoltaic performance of PSCs. Furthermore, this cross-linking structure was instrumental in suppressing perovskite grain boundaries defects to minimize nonradiative recombination and advancing the film flexibility to enhance environmental and mechanical stability of the devices. Consequently, the optimized devices were fabricated in open-air conditions with desirable efficiencies of 18.94% on a rigid substrate and 16.61% on the corresponding flexible substrate. Since the strong chemical interaction between PDLLA additives and perovskites, the as-fabricated flexible devices assembled on the PET/ITO substrate exhibited favorable bending property, retaining 92.1% of the initial PCE after 2000 bending cycles within a bending radius of 2 mm, suggesting the benign mechanical stability of PSCs. This provided a guide for improving the flexibility of perovskite films for the purpose of the realization of the wearable electronic device.

Graphical Abstract

PDLLA accumulated at the grain boundary regions cross-links the neighboring perovskite crystals via C = O···Pb coordination bond and O–H···I hydrogen bonding interaction. The suitable molecular chemical chelation can simultaneously coordinate the defects accumulated at the grain boundaries and suppress the ion migration to optimize the photovoltaic performance and the mechanical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hashemi SA, Ramakrishna S, Aberle AG (2020) Recent progress in flexible wearable solar cells for self-powered electronic devices. Energy Environ Sci 13:685–743

    CAS  Google Scholar 

  2. Long GK, Sabatini R, Saidaminov MI, Lakhwani G, Rasmita A, Liu XG, Sargent EH, Gao WB (2020) Chiral-perovskite optoelectronics. Nat Rev Mater 5:423–439

    Google Scholar 

  3. Zheng Z, Li F, Gong J, Ma Y, Gu J, Liu X, Chen S, Liu M (2022) Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Adv Mater 34:2109879

    CAS  Google Scholar 

  4. Li Z, Klein TR, Kim DH, Yang MJ, Berry JJ, Van Hest M, Zhu K (2018) Scalable fabrication of perovskite solar cells. Nat Rev Mater 3:18017

    CAS  Google Scholar 

  5. Jung HS, Han GS, Park NG, Ko MJ (2019) Flexible perovskite solar cells. Joule 3:1850–1880

    CAS  Google Scholar 

  6. Cao T, Shi XL, Chen ZG (2023) Advances in the design and assembly of flexible thermoelectric device. Prog Mater Sci 131:101003

    CAS  Google Scholar 

  7. Tu YG, Wu J, Xu GN, Yang XY, Cai R, Gong QH, Zhu R, Huang W (2021) Perovskite solar cells for space applications: progress and challenges. Adv Mater 22:2006545

    Google Scholar 

  8. Chen WY, Shi XL, Zou J, Chen ZG (2021) Wearable fiber-based thermoelectrics from materials to applications. Nano Energy 81:105684

    CAS  Google Scholar 

  9. Sharma R, Sharma A, Agarwal S, Dhaka MS (2022) Stability and efficiency issues, solutions and advancements in perovskite solar cells: a review. Sol Energy 244:516–535

    CAS  Google Scholar 

  10. Watson BL, Rolston N, Printz AD, Dauskardt RH (2017) Scaffold-reinforced perovskite compound solar cells. Energy Environ Sci 10:2500–2508

    CAS  Google Scholar 

  11. Yang L, Feng J, Liu Z, Duan Y, Zhan S, Yang S, He K, Li Y, Zhou Y, Yuan N, Ding J, Liu S (2022) Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv Mater 34:2201681

    CAS  Google Scholar 

  12. Niu TQ, Lu J, Munir R, Li JB, Barrit D, Zhang X, Hu HL, Yang Z, Amassian A, Zhao K, Liu SZ (2018) Stable high-performance perovskite solar cells via grain boundary passivation. Adv Mater 30:1706576

    Google Scholar 

  13. Jiang Q, Zhao Y, Zhang XW, Yang XL, Chen Y, Chu ZM, Ye QF, Li XX, Yin ZG, You JB (2019) Surface passivation of perovskite film for efficient solar cells. Nat Photonics 13:460

    CAS  Google Scholar 

  14. Chen B, Rudd PN, Yang S, Yuan YB, Huang JS (2019) Imperfections and their passivation in halide perovskite solar cells. Chem Soc Rev 48:3842–3867

    CAS  Google Scholar 

  15. Park NG (2020) Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv Energy Mater 10:1903106

    CAS  Google Scholar 

  16. Park BW, Seok SI (2019) Intrinsic instability of inorganic-organic hybrid halide perovskite materials. Adv Mater 31:1805337

    Google Scholar 

  17. Han TH, Lee JW, Choi C, Tan S, Lee C, Zhao YP, Dai ZH, De Marco N, Lee SJ, Bae SH, Yuan YH, Lee HM, Huang Y, Yang Y (2019) Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat Commun 10:520

    CAS  Google Scholar 

  18. Goetz S, Wibowo RA, Bauch M, Bansal N, Ligorio G, List-Kratochvil E, Linke C, Franzke E, Winkler J, Valtiner M, Dimopoulos T (2021) Fast sputter deposition of MoOx/Metal/MoOx transparent electrodes on glass and PET substrates. J Mater Sci 56:9047–9064. https://doi.org/10.1007/s10853-021-05839-9

    Article  CAS  Google Scholar 

  19. Khan Y, Ahn Y, Kang JH, Ali A, Park YJ, Walker B, Seo JH (2022) Organic cation-polystyrene sulfonate polyelectrolytes as hole transporting interfacial layers in perovskite solar cells. Appl Surf Sci 588:152826

    CAS  Google Scholar 

  20. Wang JTW, Wang ZP, Pathak S, Zhang W, deQuilettes DW, Wisnivesky-Rocca-Rivarola F, Huang J, Nayak PK, Patel JB, Yusof HAM, Vaynzof Y, Zhu R, Ramirez I, Zhang J, Ducati C, Grovenor C, Johnston MB, Ginger DS, Nicholas RJ, Snaith HJ (2016) Efficient perovskite solar cells by metal ion doping. Energy Environ Sci 9:2892–2901

    CAS  Google Scholar 

  21. Gao F, Zhao Y, Zhang XW, You JB (2020) Recent progresses on defect passivation toward efficient perovskite solar cells. Adv Energy Mater 10:1902650

    CAS  Google Scholar 

  22. Xue DJ, Hou Y, Liu SC, Wei M, Chen B, Huang Z, Li Z, Sun B, Proppe AH, Dong Y, Saidaminov MI, Kelley SO, Hu JS, Sargent EH (2020) Regulating strain in perovskite thin films through charge-transport layers. Nat Commun 11:1514

    CAS  Google Scholar 

  23. Wu T, Liu X, He X, Wang Y, Meng X, Noda T, Yang X, Han L (2020) Efficient and stable tin-based perovskite solar cells by introducing Pi-conjugated lewis base. Sci China Chem 63:107–115

    CAS  Google Scholar 

  24. Zhen JM, Zhou WR, Chen MQ, Li BR, Jia LB, Wang MT, Yang SF (2019) Pyridine-functionalized fullerene additive enabling coordination interactions with CH3NH3PbI3 perovskite towards highly efficient bulk heterojunction solar cells. J Mater Chem A 7:2754–2763

    CAS  Google Scholar 

  25. Liu G, Liu J, Tao X, Li DS, Zhang Q (2016) Surfactants as additives make the structures of organic-inorganic hybrid Bromoplumbates diverse. Inorg Chem Front 3:1388

    CAS  Google Scholar 

  26. Zuo L, Guo H, deQuilettes DW, Jariwala S, De Marco N, Dong S, DeBlock R, Ginger DS, Dunn B, Wang M, Yang Y (2017) Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci Adv 3:e1700106

    Google Scholar 

  27. Bi D, Yi C, Luo J, Décoppet JD, Zhang F, Zakeeruddin SM, Li X, Hagfeldt A, Grätzel M (2016) Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat Energy 1:16142

    CAS  Google Scholar 

  28. Huang ZQ, Hu XT, Liu C, Tan LC, Chen YW (2017) Nucleation and crystallization control via polyurethane to enhance the bendability of perovskite solar cells with excellent device performance. Adv Funct Mater 27:1703061

    Google Scholar 

  29. Yang JM, Xiong SB, Qu TY, Zhang YX, He XX, Guo XW, Zhao QH, Braun S, Chen JQ, Xu JH, Li Y, Liu XJ, Duan CG, Tang JX, Fahlman M, Bao Q (2019) Extremely low-cost and green cellulose passivating perovskites for stable and high-performance solar cells. ACS Appl Mater Interface 11:13491–13498

    CAS  Google Scholar 

  30. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications-a comprehensive review. Adv Drug Deliv Rev 107:367–392

    CAS  Google Scholar 

  31. Cai Y, Cui J, Chen M, Zhang MM, Han Y, Qian F, Zhao H, Yang SM, Yang Z, Bian HT, Wang T, Guo KP, Cai ML, Dai SY, Liu ZK, Liu SZ (2021) Multifunctional enhancement for highly stable and efficient perovskite solar cells. Adv Funct Mater 31:2005776

    CAS  Google Scholar 

  32. Cai FL, Cai JL, Yang LY, Li W, Gurney RS, Yi HN, Iraqi A, Liu D, Wang T (2018) Molecular engineering of conjugated polymers for efficient hole transport and defect passivation in perovskite solar cells. Nano Energy 45:28–36

    CAS  Google Scholar 

  33. Eames C, Frost JM, Barnes PRF, O’Regan BC, Walsh A, Islam MS (2015) Ionic transport in hybrid lead iodide perovskite solar cells. Nat Commun 6:7497

    CAS  Google Scholar 

  34. Zhou Q, Qiu J, Wang Y, Yu M, Zhang X (2021) Multifunctional chemical bridge and defect passivation for highly efficient inverted perovskite solar cells. ACS Energy Lett 6:1596–1606

    CAS  Google Scholar 

  35. Xie L, Chen J, Vashishtha P, Zhao X, Shin GS, Mhaisalkar SG, Park NG (2019) Importance of functional groups in cross-linking Methoxysilane additives for high-efficiency and stable perovskite solar cells. ACS Energy Lett 4:2192–2200

    CAS  Google Scholar 

  36. Liu ZZ, Cao FR, Wang M, Wang M, Li L (2020) Observing the defect Passivation of grain boundary with 2-Aminoterephthalic acid for efficient and stable perovskite solar cells. Angew Chem Int Ed 59:4161–4167

    CAS  Google Scholar 

  37. Chen K, Wu JN, Wang YA, Guo Q, Chen QY, Cao TT, Guo X, Zhou Y, Chen N, Zhang MJ, Li YF (2019) Defect passivation by alcohol-soluble small molecules for efficient p-i-n planar perovskite solar cells with high open-circuit voltage. J Mater Chem A 7:21140–21148

    CAS  Google Scholar 

  38. Zhang W, Liu X, He B, Zhu J, Li X, Shen K, Chen H, Duan Y, Tang Q (2020) Enhanced efficiency of air-stable CsPbBr3 perovskite solar cells by defect dual passivation and grain size enlargement with a multifunctional additive. ACS Appl Mater Interface 12:36092–36101

    CAS  Google Scholar 

  39. Singh RK, Kumar R, Kumar A, Jain N, Singh RK, Singh J (2018) Novel synthesis process of methyl ammonium bromide and effect of particle size on structural, optical and thermodynamic behavior of CH3NH3PbBr3 organometallic perovskite light harvester. J Alloy Compd 743:728–736

    CAS  Google Scholar 

  40. Xie J, Yan K, Zhu H, Li G, Wang H, Zhu H, Hang P, Zhao S, Guo W, Ye D, Shao L, Guan X, Ngai T, Yu X, Xu J (2020) Identifying the functional groups effect on passivating perovskite solar cells. Sci Bull 65:1726–1734

    CAS  Google Scholar 

  41. Hadadian M, Correa-Baena JP, Goharshadi EK, Ummadisingu A, Seo JY, Luo J, Gholipour S, Zakeeruddin SM, Saliba M, Abate A, Grätzel M, Hagfeldt A (2016) Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation. Adv Mater 28:8681–8686

    CAS  Google Scholar 

  42. Kim J, Cho S, Dinic F, Choi J, Choi C, Jeong SM, Lee JS, Voznyy O, Ko MJ, Kim Y (2020) Hydrophobic stabilizer-anchored fully inorganic perovskite quantum dots enhance moisture resistance and photovoltaic performance. Nano Energy 75:104985

    CAS  Google Scholar 

  43. Zhao YP, Zhu PC, Wang MH, Huang S, Zhao ZP, Tan S, Han TH, Lee JW, Huang TY, Wang R, Xue JJ, Meng D, Huang Y, Marian J, Zhu J, Yang Y (2020) A polymerization-assisted grain growth strategy for efficient and stable perovskite solar cells. Adv Mater 32:1907769

    CAS  Google Scholar 

  44. Li XD, Zhang WX, Wang YC, Zhang WJ, Wang HQ, Fang JF (2018) In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nat Commun 9:3806

    Google Scholar 

  45. Kazemi MAA, Raval P, Cherednichekno K, Chotard JN, Krishna A, Demortiere A, Reddy GNM, Sauvage F (2021) Molecular-level insight into correlation between surface defects and stability of Methylammonium lead halide perovskite under controlled humidity. Small Method 5:2000834

    Google Scholar 

  46. Yang WS, Park BW, Jung EH, Jeon NJ, Kim YC, Lee DU, Shin SS, Seo J, Kim EK, Noh JH, Seok SI (2017) Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356:1376

    CAS  Google Scholar 

  47. Ning L, Ingabire PB, Gu NX, Du PF, Lv DF, Chen X, Song LX, Chen WH, Xiong J (2022) Fabrication of stable perovskite solar cells with efficiency over 20% in open air using in-situ polymerized bi-functional additives. J Mater Chem A 7:3688–3697

    Google Scholar 

  48. Wang M, Wang K, Gao Y, Khan JI, Yang W, De Wolf S, Laquai F (2021) Impact of photoluminescence reabsorption in metal-halide perovskite solar cells. Solar RRL 5:2100029

    CAS  Google Scholar 

  49. Han SQ, Zhang HM, Wang RF, He QC (2021) Research progress of absorber film of inorganic perovskite solar cells: fabrication techniques and additive engineering in defect passivation. Mater Sci Semicond Process 127:105666

    CAS  Google Scholar 

  50. Wang SH, Chen HY, Zhang JD, Xu GY, Chen WJ, Xue RM, Zhang MY, Li YW, Li YF (2019) Targeted therapy for interfacial engineering toward stable and efficient perovskite solar cells. Adv Mater 31:1903691

    CAS  Google Scholar 

  51. Pereyra C, Xie HB, Lira-Cantu M (2017) Additive engineering for stable halide perovskite solar cells. J Energy Chem 60:599–634

    Google Scholar 

  52. Chen K, Hu Q, Liu T, Zhao L, Luo D, Wu J, Zhang Y, Zhang W, Liu F, Russell TP, Zhu R, Gong Q (2018) Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells. Adv Mater 28:10718–10724

    Google Scholar 

  53. Chang CY, Huang WK, Chang YC, Lee KT, Chen CT (2016) A solution-processed n-doped fullerene cathode interfacial layer for efficient and stable large-area perovskite solar cells. J Mater Chem A 4:640–648

    CAS  Google Scholar 

  54. Turren-Cruz SH, Saliba M, Mayer MT, Juarez-Santiesteban H, Mathew X, Nienhaus L, Tress W, Erodici MP, Sher MJ, Bawendi MG, Gratzel M, Abate A, Hagfeldt A, Correa-Baena JP (2018) Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy Environ Sci 11:78–86

    CAS  Google Scholar 

  55. Yang JC, Tang WJ, Yuan RH, Chen Y, Wang J, Wu YH, Yin WJ, Yuan NY, Ding JN, Zhang WH (2021) Defect mitigation using d-penicillamine for efficient Methylammonium-free perovskite solar cells with high operational stability. Chem Sci 12:2050–2059

    CAS  Google Scholar 

  56. Chen WH, Qiu LL, Zhang PY, Jiang PC, Du PF, Song LX, Xiong J, Ko F (2019) Simple fabrication of a highly conductive and passivated PEDOT:PSS film via cryo-controlled quasi-congealing spin-coating for flexible perovskite solar cells. J Mater Chem C 7:10247–10256

    CAS  Google Scholar 

  57. Jinno H, Fukuda K, Xu XM, Park S, Suzuki Y, Koizumi M, Yokota T, Osaka I, Takimiya K, Someya T (2017) Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat Energy 2:6

    Google Scholar 

  58. Wang CL, Guan L, Zhao DW, Yu Y, Grice CR, Song ZN, Awni RA, Chen J, Wang JB, Zhao XZ, Yan YF (2017) Water vapor treatment of low-temperature deposited SnO2 electron selective layers for efficient flexible perovskite solar cells. ACS Energy Lett 2:2118–2124

    CAS  Google Scholar 

  59. Lu Z, Lou YH, Ma PP, Zhu KP, Cong S, Wang C, Su XD, Zou GF (2020) Highly flexible and transparent polylactic acid composite electrode for perovskite solar cells. Solar RRL 4:2000320

    CAS  Google Scholar 

  60. Chen NL, Yi XH, Zhuang J, Wei YZ, Zhang YY, Wang FY, Cao SK, Li C, Wang JZ (2020) An efficient trap passivator for perovskite solar cells: Poly(propylene glycol) bis(2-aminopropyl ether). Nano Micro Lett 12:177

    CAS  Google Scholar 

  61. Peng C, Xia X, Wang X, Peng J, Fan Z, Li F (2022) Role of π-conjugated-length-regulated perovskite intergrain interconnecting in the photovoltaic performance of perovskite solar cells. Appl Surf Sci 585:152670

    CAS  Google Scholar 

  62. Vasilopoulou M, Fakharuddin A, Coutsolelos AG, Falaras P, Argitis P, Yusoff ARBM, Nazeeruddin MK (2020) Molecular materials as interfacial layers and additives in perovskite solar cells. Chem Soc Rev 49:4496–4526

    CAS  Google Scholar 

  63. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    CAS  Google Scholar 

  64. Delley B (2002) Hardness conserving semilocal pseudopotentials. Phys Rev B Condens Matter 66:155125

    Google Scholar 

  65. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  Google Scholar 

  66. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support of this work was provided by Zhejiang Provincial Natural Science Foundation of China (LY21F040008), Fundamental Research Funds of Zhejiang Sci-Tech University (2021Q001), the Applied Basic Research Project of China National Textile and Apparel Council (J201801), and the opening Fund of China National Textile and Apparel Council Key Laboratory of Flexible Devices for Intelligent Textile and Apparel, Soochow University (SDHY2107).

Author information

Authors and Affiliations

Authors

Contributions

LXS and JX conceived and designed the experiments. LN and NXG fabricated devices and measured photovoltaic parameters. LN and XW fabricated the flexible solar cells and analyzed the corresponding properties. JY conducted the theoretical calculation and the TEM images. PFD and LXS provided advisable suggestions and financial support. LN and LXS co-wrote the manuscript.

Corresponding authors

Correspondence to Lixin Song or Jie Xiong.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10175 kb)

Supplementary file2 (MP4 2429 kb)

Supplementary file3 (MP4 2040 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, L., Song, L., Wen, X. et al. Enhanced molecular interaction by polymer additive for efficient and stable flexible perovskite solar cells. J Mater Sci 57, 20654–20671 (2022). https://doi.org/10.1007/s10853-022-07930-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07930-1

Navigation