Skip to main content
Log in

Heat-induced structural changes in magnesium alloys AZ91 and AZ31 investigated by in situ synchrotron high-energy X-ray diffraction

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In situ time/temperature-resolved synchrotron high-energy X-ray diffraction is applied to study heat-mediated structural changes and phase transformations in rolled sheets of AZ91 and AZ31 magnesium alloys. Azimuthal diffraction intensities along the Debye–Scherrer rings (AT-plots) are used to obtain information on grain recovery and recrystallization temperatures as well as temperature-assisted grain rotations. The azimuthally integrated diffraction intensities, plotted as functions of the scattering vector (QT-plots), provide vital data on the temperature-dependent lattice parameters of the Mg/Al matrix and intermetallic precipitates, as well as on the evolution of the precipitates’ volume fraction. It was found that in AZ31, the main precipitates are of the AlMn type, which is rather stable in the investigated temperature range (up to 773 K). In contrast, in AZ91, the major intermetallic precipitates, Al12Mg17, undergo complete dissolution above 600 K. It is caused by the enhanced diffusion of Al into the Mg/Al matrix, which according to the Al–Mg phase diagram, can adopt more Al at elevated temperatures. This diffusion is revealed by the proportional diminishing of the matrix lattice parameter (chemical strain), allowing us to quantify the Al content in the matrix. Fast temperature-dependent manipulation with intermetallic content in the Mg/Al alloy can, in principle, be used for controlling its mechanical properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

Synchrotron data is logged under proposal number 2013B3721, data sets #S 297 and #S 298 for specimens AZ91 and AZ31, respectively. Availability under reasonable request to KDL.

References

  1. Mordike BL, Ebert T (2001) Magnesium properties - applications - potential. Mater Sci Eng A 302:37–45. https://doi.org/10.1016/S0921-5093(00)01351-4

    Article  Google Scholar 

  2. Polmear IJ (2012) Magnesium alloys and applications. Mater Sci Technol 10:1–16. https://doi.org/10.1179/026708394790163401

    Article  Google Scholar 

  3. Easton M, Beer A, Barnett M et al (2008) Magnesium alloy applications in automative structures. Jom 60:57–62. https://doi.org/10.1007/s11837-008-0150-8

    Article  CAS  Google Scholar 

  4. You S, Huang Y, Kainer KU, Hort N (2017) Recent research and developments on wrought magnesium alloys. J Magnes Alloy 5:239–253. https://doi.org/10.1016/j.jma.2017.09.001

    Article  CAS  Google Scholar 

  5. Pollock TM (2010) Weight loss with magnesium alloys. Science 80(328):986–987. https://doi.org/10.1126/science.1182848

    Article  Google Scholar 

  6. Nie JF (2012) Precipitation and hardening in magnesium alloys. Metall Mater Trans A Phys Metall Mater Sci 43:3891–3939. https://doi.org/10.1007/s11661-012-1217-2

    Article  CAS  Google Scholar 

  7. Mondet M, Barraud E, Lemonnier S et al (2017) Optimisation of the mechanical properties of a Spark Plasma Sintered (SPS) magnesium alloy through a post-sintering in-situ precipitation treatment. J Alloys Compd 698:259–266. https://doi.org/10.1016/j.jallcom.2016.12.066

    Article  CAS  Google Scholar 

  8. Tolouie E, Jamaati R (2018) Effect of β–Mg17Al12 phase on microstructure, texture and mechanical properties of AZ91 alloy processed by asymmetric hot rolling. Mater Sci Eng A 738:81–89. https://doi.org/10.1016/j.msea.2018.09.086

    Article  CAS  Google Scholar 

  9. Li J, Xie D, Yu H et al (2020) Microstructure and mechanical property of multi-pass low-strain rolled Mg-Al-Zn-Mn alloy sheet. J Alloys Compd 835:155228. https://doi.org/10.1016/j.jallcom.2020.155228

    Article  CAS  Google Scholar 

  10. Han GM, Han ZQ, Luo AA, Liu BC (2015) Microstructure characteristics and effect of aging process on the mechanical properties of squeeze-cast AZ91 alloy. J Alloys Compd 641:56–63. https://doi.org/10.1016/j.jallcom.2015.04.042

    Article  CAS  Google Scholar 

  11. Xu SW, Matsumoto N, Kamado S et al (2009) Effect of Mg17Al12 precipitates on the microstructural changes and mechanical properties of hot compressed AZ91 magnesium alloy. Mater Sci Eng A 523:47–52. https://doi.org/10.1016/j.msea.2009.05.032

    Article  CAS  Google Scholar 

  12. Zhang H, Shang SL, Wang Y et al (2010) First-principles calculations of the elastic, phonon and thermodynamic properties of Al12Mg17. Acta Mater 58:4012–4018. https://doi.org/10.1016/j.actamat.2010.03.020

    Article  CAS  Google Scholar 

  13. Brennan S, Bermudez K, Kulkarni N, Sohn Y (2011) Growth kinetics of γ-Al12Mg17 and β-Al3Mg2 intermetallic phases in Mg vs. Al diffusion couples. In: Magnesium technology, pp 549–552. https://doi.org/10.1007/978-3-319-48223-1_101

  14. Liu F, Xin R, Wang C et al (2019) Regulating precipitate orientation in Mg-Al alloys by coupling twinning, aging and detwinning processes. Scr Mater 158:131–135. https://doi.org/10.1016/j.scriptamat.2018.08.049

    Article  CAS  Google Scholar 

  15. Zhao Y, Ding Z, Chen Y (2017) Crystallographic orientations of intermetallic compounds of a multi-pass friction stir processed Al/Mg composite materials. Mater Charact 128:156–164. https://doi.org/10.1016/j.matchar.2017.02.005

    Article  CAS  Google Scholar 

  16. Wang L, Liu H (2006) The microstructural evolution of Al12Mg17 alloy during the quenching processes. J Non Cryst Solids 352:2880–2884. https://doi.org/10.1016/j.jnoncrysol.2006.02.090

    Article  CAS  Google Scholar 

  17. Kada SR, Lynch PA, Kimpton JA, Barnett MR (2016) In-situ X-ray diffraction studies of slip and twinning in the presence of precipitates in AZ91 alloy. Acta Mater 119:145–156. https://doi.org/10.1016/j.actamat.2016.08.022

    Article  CAS  Google Scholar 

  18. Guo F, Zhang D, Wu H et al (2017) The role of Al content on deformation behavior and related texture evolution during hot rolling of Mg-Al-Zn alloys. J Alloys Compd 695:396–403. https://doi.org/10.1016/j.jallcom.2016.10.222

    Article  CAS  Google Scholar 

  19. Xu XY, Wang YF, Wang HY et al (2019) Influences of pre-existing Mg17Al12 particles on static recrystallization behavior of Mg-Al-Zn alloys at different annealing temperatures. J Alloys Compd 787:1104–1109. https://doi.org/10.1016/j.jallcom.2019.02.063

    Article  CAS  Google Scholar 

  20. Liss K-D, Bartels A, Schreyer A, Clemens H (2003) High-Energy X-Rays: A tool for Advanced Bulk Investigations in Materials Science and Physics. Textures Microstruct 35:219–252. https://doi.org/10.1080/07303300310001634952

    Article  Google Scholar 

  21. Shobu T, Tozawa K, Shiwaku H et al (2007) Wide band energy beamline using Si (111) crystal monochromators at BL22XU in SPring-8. AIP Conf Proc 879:902–906. https://doi.org/10.1063/1.2436207

    Article  CAS  Google Scholar 

  22. Liss K, Yan K (2010) Thermo-mechanical processing in a synchrotron beam. Mater Sci Eng A 528:11–27. https://doi.org/10.1016/j.msea.2010.06.017

    Article  CAS  Google Scholar 

  23. Liss K-D (2010) Thermo-mechanical processing in a synchrotron beam-from simple metals to multiphase alloys and intermetallics. World J Eng 7:438

    Google Scholar 

  24. Zeng G, Nogita K, Xian JW, et al Solidification of Al 8 Mn 5 in Mg-Al-Zn-Mn Alloys. 259–262

  25. Bae JH, Kim YM, Yim CD, Kim H-S, You BS (2016) Effect of inoculation method of refiner on the grain refinement of AZ91 alloy. In: Hort N, Mathaudhu SN, Neelameggham NR, Alderman M (eds) Magnesium technology 2013. Springer International Publishing, Cham, pp 275–279. https://doi.org/10.1007/978-3-319-48150-0_46

    Chapter  Google Scholar 

  26. Sato S, Irie S, Nagamine Y et al (2020) Antiferromagnetism in perfectly ordered L10-MnAl with stoichiometric composition and its mechanism. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-69538-2

    Article  CAS  Google Scholar 

  27. Maccari F, Aubert A, Ener S et al (2022) Formation of pure τ -phase in Mn–Al–C by fast annealing using spark plasma sintering. J Mater Sci 57:6056–6065. https://doi.org/10.1007/s10853-022-07002-4

    Article  CAS  Google Scholar 

  28. Pérez-Prado MT, Del Valle JA, Contreras JM, Ruano OA (2004) Microstructural evolution during large strain hot rolling of an AM60 Mg alloy. Scr Mater 50:661–665. https://doi.org/10.1016/j.scriptamat.2003.11.014

    Article  CAS  Google Scholar 

  29. Liss KD, Yan K, Reid M (2014) Physical thermo-mechanical simulation of magnesium: An in-situ diffraction study. Mater Sci Eng A 601:78–85. https://doi.org/10.1016/j.msea.2014.02.014

    Article  CAS  Google Scholar 

  30. Zolotoyabko E (2009) Determination of the degree of preferred orientation within the March-Dollase approach. J Appl Crystallogr 42:513–518. https://doi.org/10.1107/S0021889809013727

    Article  CAS  Google Scholar 

  31. Zolotoyabko E (2014) Basic concepts of X-ray diffraction. John Wiley & Sons, Ltd, pp 1–297

  32. Murray J (1982) The Al−Mg (Aluminum−Magnesium) system. J Phase Equilibria 3:60–74

    Article  Google Scholar 

  33. Ghosh P, Medraj M (2013) Thermodynamic calculation of the Mg-Mn-Zn and Mg-Mn-Ce systems and re-optimization of their constitutive binaries. Calphad Comput Coupling Phase Diagrams Thermochem 41:89–107. https://doi.org/10.1016/j.calphad.2013.01.008

    Article  CAS  Google Scholar 

  34. Nakata T, Li ZH, Sasaki TT et al (2022) Role of grain boundary segregation on microstructural development in basal-textured Mg-Al-Zn alloy sheet. Scr Mater. 218:114828. https://doi.org/10.1016/j.scriptamat.2022.114828

    Article  CAS  Google Scholar 

  35. Liss KD, Harjo S, Kawasaki T et al (2021) Anisotropic thermal lattice expansion and crystallographic structure of strontium aluminide within Al-10Sr alloy as measured by in-situ neutron diffraction. J Alloys Compd 869:159232. https://doi.org/10.1016/j.jallcom.2021.159232

    Article  CAS  Google Scholar 

  36. Childs BG (1953) The thermal expansion of Anisotropic metals. Rev Modern Phys 25(3):665–670. https://doi.org/10.1103/RevModPhys.25.665

    Article  CAS  Google Scholar 

  37. Raynor GV, Hume-Rothery W (1939) A technique for the X-ray powder photography of reactive metals and alloys with special reference to the lattice spacing of magnesium at high temperatures Locality. J Inst Met 65:477–485

    Google Scholar 

  38. Liss K-D, Thibault X, Li H, Bendeich P (2011) Synchrotron micro tomography reveals 3D Shape of precipitates in cast magnesium alloy. J Mater Sci Eng A 5:195–199. https://doi.org/10.17265/2161-6213/2011.02.013

    Article  Google Scholar 

  39. Kiełbus A, Rzychoń T (2011) The intermetallic phases in sand casting magnesium alloys for elevated temperature. In: Materials Science Forum, vol 690. Trans Tech Publications, Ltd., June 2011, pp. 214–217. https://doi.org/10.4028/www.scientific.net/msf.690.214

  40. Busk RS (1950) Lattice parameters of magnesium alloys. J Met 2:1460–1464. https://doi.org/10.1007/bf03399173

    Article  Google Scholar 

  41. Li X, Dippenaar R, Shiro A et al (2018) Lattice parameter evolution during heating of Ti-45Al-7.5Nb-0.25/0.5C alloys under atmospheric and high pressures. Intermetallics 102:120–131. https://doi.org/10.1016/j.intermet.2018.08.011

    Article  CAS  Google Scholar 

  42. Suzuki H, Harjo S, Abe J et al (2013) Effects of gauge volume on pseudo-strain induced in strain measurement using time-of-flight neutron diffraction. Nucl Instrument Method Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 715:28–38. https://doi.org/10.1016/j.nima.2013.03.031

    Article  CAS  Google Scholar 

  43. Long TR, Smith CS (1957) Single-crystal elastic constants of magnesium and magnesium alloys. Acta Metall 5:200–207. https://doi.org/10.1016/0001-6160(57)90166-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the Japan Synchrotron Radiation Research Institute (JASRI) and the Japan Atomic Energy Agency (JAEA) for granting beamtime for synchrotron diffraction experiments under proposal number 2013B3721 at beamline BL22XU at SPring-8 in Hyogo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Dieter Liss.

Ethics declarations

Conflict of interest

We have no competing interests

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 558 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xu, P., Shiro, A. et al. Heat-induced structural changes in magnesium alloys AZ91 and AZ31 investigated by in situ synchrotron high-energy X-ray diffraction. J Mater Sci 57, 21446–21459 (2022). https://doi.org/10.1007/s10853-022-07917-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07917-y

Navigation