Skip to main content

Improvement in radiation resistance of nanocrystalline Cu using grain boundary engineering: an atomistic simulation study

Abstract

Radiation damage in the nuclear structural components is a stochastic phenomenon in both length and time scales. In this work, molecular dynamics-based numerical simulations were employed to model and investigate the primary radiation damage within irradiated Cu specimens. Here, a single-crystal Cu specimen and two nanocrystalline specimens: hexagonal columnar grain Cu specimen with ∑3 and ∑9 GBs (CG Cu) and Cu specimen randomly oriented grain boundary (GBs) (RG Cu), were irradiated at 600 K at primary knock-on atom (PKA) energy magnitudes, EPKA = 10 keV, 20 keV, 30 keV, respectively. The equilibrium part of the long-range Finnis–Sinclair (FS)-type interatomic potential was smoothly conjoined with the universal short-range repulsive Ziegler–Biersack–Littmark potential to account for simulations of high-energy collisions. By investigating the evolution of point defects, defect cluster distribution, and dislocation analysis, it was observed that the irradiated nanostructured Cu specimens survived with comparatively lower defects at the end of cascade simulations. GB serves as the effective radiation sink junctions for the generated Frenkel pair defects. Secondly, the population of point defects increases with the increase in PKA energy magnitude and the annihilation rate. Therefore, polycrystalline irradiated Cu specimens can be favoured for potential radiation immune candidate in the next-generation nuclear reactor structural materials.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. Mansur LK (2003) Materials research and development for the spallation neutron source mercury target. J Nucl Mater 318:14–25. https://doi.org/10.1016/S0022-3115(03)00075-8

    Article  CAS  Google Scholar 

  2. Holton JM (2009) A beginner’s guide to radiation damage. J Synchrotron Rad 16:133–142. https://doi.org/10.1107/S0909049509004361

    Article  CAS  Google Scholar 

  3. Urban K, Seeger A (1974) Radiation-induced diffusion of point-defects during low-temperature electron irradiation. Philos Mag 30:1395–1418. https://doi.org/10.1080/14786437408207289

    Article  CAS  Google Scholar 

  4. Zinkle SJ, Steven J (2012) Radiation-induced effects on microstructure. Compr Nucl Mater 1:65–98

    Article  CAS  Google Scholar 

  5. Zinkle SJ, Farrell K (1989) Void swelling and defect cluster formation in reactor-irradiated copper. J Nucl Mater 168:262–267. https://doi.org/10.1016/0022-3115(89)90591-6

    Article  CAS  Google Scholar 

  6. Osetsky Y, Bacon D (2015) Atomic-level level dislocation dynamics in irradiated metals, In Reference Module in Materials Science and Materials Engineering, 2016, https://doi.org/10.1016/B978-0-12-803581-8.00662-7

  7. Voskoboinikov RE (2013) Interaction of collision cascades with an isolated edge dislocation in aluminium. Nucl Instrum Methods Phys Res B NUCL INSTRUM METH B 303:125–128. https://doi.org/10.1016/j.nimb.2012.10.022

    Article  CAS  Google Scholar 

  8. Purja Pun GP, Mishin Y (2009) A molecular dynamics study of self-diffusion in the cores of screw and edge dislocations in aluminum. Acta Mater 57:5531–5542. https://doi.org/10.1016/j.actamat.2009.07.048

    Article  CAS  Google Scholar 

  9. Shan C, Lang L, Yang T et al (2020) Molecular dynamics simulations of radiation damage generation and dislocation loop evolution in Ni and binary Ni-based alloys. Comput Mater Sci 177:109555. https://doi.org/10.1016/j.commatsci.2020.109555

    Article  CAS  Google Scholar 

  10. Arjhangmehr A, Feghhi SAH, Esfandiyarpour A, Hatami F (2016) An energetic and kinetic investigation of the role of different atomic grain boundaries in healing radiation damage in nickel. J Mater Sci 51:1017–1031. https://doi.org/10.1007/s10853-015-9432-z

    Article  CAS  Google Scholar 

  11. Fikar J, Schäublin R (2009) Molecular dynamics simulation of radiation damage in bcc tungsten. J Nucl Mater 386–388:97–101. https://doi.org/10.1016/j.jnucmat.2008.12.068

    Article  CAS  Google Scholar 

  12. Boev AO, Zolnikov KP, Nelasov IV, Lipnitskii AG (2019) Molecular dynamics simulation of primary radiation damage in vanadium and alloy V-4Ti. J Phys Conf Ser 1147:012087. https://doi.org/10.1088/1742-6596/1147/1/012087

    Article  CAS  Google Scholar 

  13. Duan J, Wen H, He L et al (2022) Effect of grain size on the irradiation response of grade 91 steel subjected to Fe ion irradiation at 300 °C. J Mater Sci 57:13767–13778. https://doi.org/10.1007/s10853-022-07480-6

    Article  CAS  Google Scholar 

  14. Fu J, Chen Y, Fang J et al (2019) Molecular dynamics simulations of high-energy radiation damage in W and W-Re alloys. J Nucl Mater 524:9–20. https://doi.org/10.1016/j.jnucmat.2019.06.027

    Article  CAS  Google Scholar 

  15. Terentyev DA, Malerba L, Chakarova R et al (2006) Displacement cascades in Fe–Cr: a molecular dynamics study. J Nucl Mater 349:119–132. https://doi.org/10.1016/j.jnucmat.2005.10.013

    Article  CAS  Google Scholar 

  16. Buchan JT, Robinson M, Christie HJ et al (2015) Molecular dynamics simulation of radiation damage cascades in diamond. J Appl Phys 117:245901. https://doi.org/10.1063/1.4922457

    Article  CAS  Google Scholar 

  17. Christie HJ, Robinson M, Roach DL et al (2015) Simulating radiation damage cascades in graphite. Carbon 81:105–114. https://doi.org/10.1016/j.carbon.2014.09.031

    Article  CAS  Google Scholar 

  18. Hosseini A, Nasrabadi MN, Esfandiarpour A (2020) Effect of carbon nanotube on radiation resistance of CNT-Cu nanocomposite: MD simulation. J Mater Sci 55:4311–4320. https://doi.org/10.1007/s10853-019-04309-7

    Article  CAS  Google Scholar 

  19. Wang YF, Li HY, Yang L (2018) Radiation-induced structural evolution in Zr2Cu metallic glass. J Mater Sci 53:10979–10986. https://doi.org/10.1007/s10853-018-2358-5

    Article  CAS  Google Scholar 

  20. Cusentino MA, Wood MA, Dingreville R (2020) Compositional and structural origins of radiation damage mitigation in high-entropy alloys. J Appl Phys 128:125904. https://doi.org/10.1063/5.0024014

    Article  CAS  Google Scholar 

  21. Lin Y, Yang T, Lang L et al (2020) Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage. Acta Mater 196:133–143. https://doi.org/10.1016/j.actamat.2020.06.027

    Article  CAS  Google Scholar 

  22. Shen S, Chen F, Tang X et al (2020) Irradiation damage and swelling of carbon-doped Fe38Mn40Ni11Al4Cr7 high-entropy alloys under heavy ion irradiation at elevated temperature. J Mater Sci 55:17218–17231. https://doi.org/10.1007/s10853-020-05229-7

    Article  CAS  Google Scholar 

  23. Khiara N, Onimus F, Dupuy L et al (2020) A novel displacement cascade driven irradiation creep mechanism in α-zirconium: a molecular dynamics study. J Nucl Mater 541:152336. https://doi.org/10.1016/j.jnucmat.2020.152336

    Article  CAS  Google Scholar 

  24. Li J-T, Beyerlein IJ, Han W-Z (2022) Helium irradiation-induced ultrahigh hardening in niobium. Acta Mater 226:117656. https://doi.org/10.1016/j.actamat.2022.117656

    Article  CAS  Google Scholar 

  25. Brinkman JA (1954) On the nature of radiation damage in metals. J Appl Phys 25:961–970. https://doi.org/10.1063/1.1721810

    Article  CAS  Google Scholar 

  26. Todorov IT, Allan NL, Purton JA et al (2007) Use of massively parallel molecular dynamics simulations for radiation damage in pyrochlores. J Mater Sci 42:1920–1930. https://doi.org/10.1007/s10853-006-1323-x

    Article  CAS  Google Scholar 

  27. Zarkadoula E, Stoller RE (2020) Primary radiation damage formation in solids. Elsevier, New York, New York, United States of America

    Google Scholar 

  28. Nordlund K, Zinkle SJ, Sand AE et al (2018) Primary radiation damage: a review of current understanding and models. J Nucl Mater 512:450–479. https://doi.org/10.1016/j.jnucmat.2018.10.027

    Article  CAS  Google Scholar 

  29. Li K, Kashkarov E, Ma H et al (2022) Irradiation resistance of preceramic paper-derived SiCf/SiC laminated composites. J Mater Sci 57:10153–10166. https://doi.org/10.1007/s10853-022-07294-6

    Article  CAS  Google Scholar 

  30. Xu H, He L-L, Pei Y-F et al (2021) Recent progress of radiation response in nanostructured tungsten for nuclear application. Tungsten 3:20–37. https://doi.org/10.1007/s42864-021-00075-9

    Article  Google Scholar 

  31. Bai X-M, Voter AF, Hoagland RG et al (2010) Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327:1631–1634. https://doi.org/10.1126/science.1183723

    Article  CAS  Google Scholar 

  32. Samaras M, Derlet PM, Van Swygenhoven H, Victoria M (2002) Computer simulation of displacement cascades in nanocrystalline Ni. Phys Rev Lett 88:125505. https://doi.org/10.1103/PhysRevLett.88.125505

    Article  CAS  Google Scholar 

  33. Uberuaga BP, Vernon LJ, Martinez E, Voter AF (2015) The relationship between grain boundary structure, defect mobility and grain boundary sink efficiency. Sci Rep 5:9095. https://doi.org/10.1038/srep09095

    Article  CAS  Google Scholar 

  34. Beyerlein IJ, Caro A, Demkowicz MJ et al (2013) Radiation damage tolerant nanomaterials. Mater Today 16:443–449. https://doi.org/10.1016/j.mattod.2013.10.019

    Article  CAS  Google Scholar 

  35. El-Atwani O, Hinks JA, Greaves G et al (2017) Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten. Mater Res Lett 5:343–349. https://doi.org/10.1080/21663831.2017.1292326

    Article  CAS  Google Scholar 

  36. Han WZ, Demkowicz MJ, Fu EG et al (2012) Effect of grain boundary character on sink efficiency. Acta Mater 60:6341–6351. https://doi.org/10.1016/j.actamat.2012.08.009

    Article  CAS  Google Scholar 

  37. Gleiter H (1979) Grain boundaries as point defect sources or sinks—diffusional creep. Acta Metall 27:187–192. https://doi.org/10.1016/0001-6160(79)90095-6

    Article  Google Scholar 

  38. Pal S, Vijay Reddy K, Deng C (2022) Improving thermal stability and Hall-Petch breakdown relationship in nanocrystalline Cu: a molecular dynamics simulation study. Mater Lett 324:132821. https://doi.org/10.1016/j.matlet.2022.132821

    Article  CAS  Google Scholar 

  39. El-Atwani O, Nathaniel JE, Leff AC et al (2017) Direct observation of sink-dependent defect evolution in nanocrystalline iron under irradiation. Sci Rep 7:1836. https://doi.org/10.1038/s41598-017-01744-x

    Article  CAS  Google Scholar 

  40. El-Atwani O, Esquivel E, Aydogan E et al (2019) Unprecedented irradiation resistance of nanocrystalline tungsten with equiaxed nanocrystalline grains to dislocation loop accumulation. Acta Mater 165:118–128. https://doi.org/10.1016/j.actamat.2018.11.024

    Article  CAS  Google Scholar 

  41. Voskoboinikov RE, Osetsky YuN, Bacon DJ (2008) Computer simulation of primary damage creation in displacement cascades in copper. I. defect creation and cluster statistics. J Nucl Mater 377:385–395. https://doi.org/10.1016/j.jnucmat.2008.01.030

    Article  CAS  Google Scholar 

  42. Carter K-J (2017) Radiation damage quantification in elemental copper using Wigner energy storage. Thesis, Massachusetts Institute of Technology

  43. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  44. Osetsky YuN, Bacon DJ, Singh BN (2002) Statistical analysis of cluster production efficiency in MD simulations of cascades in copper. J Nucl Mater 307–311:866–870. https://doi.org/10.1016/S0022-3115(02)01001-2

    Article  Google Scholar 

  45. Zhang CG, Zhou WH, Li YG et al (2015) Primary radiation damage near grain boundary in bcc tungsten by molecular dynamics simulations. J Nucl Mater 458:138–145. https://doi.org/10.1016/j.jnucmat.2014.11.135

    Article  CAS  Google Scholar 

  46. Zhao H, Zeng X, Yang X et al (2020) Investigation of the temperature effect on the primary radiation damage near the grain boundary in tungsten using Molecular dynamics simulations. Nucl Instrum Methods Phys Res B Nucl Instrum Meth B 476:32–39. https://doi.org/10.1016/j.nimb.2020.04.030

    Article  CAS  Google Scholar 

  47. Hirel P (2015) Atomsk: a tool for manipulating and converting atomic data files. Comput Phys Commun 197:212–219. https://doi.org/10.1016/j.cpc.2015.07.012

    Article  CAS  Google Scholar 

  48. Biersack JP, Ziegler JF (1982) Refined universal potentials in atomic collisions. Nucl Instrum Methods Phys Res A 194:93–100. https://doi.org/10.1016/0029-554X(82)90496-7

    Article  CAS  Google Scholar 

  49. Ackland GJ, Thetford R (1987) An improved N-body semi-empirical model for body-centred cubic transition metals. Philos Mag A 56:15–30. https://doi.org/10.1080/01418618708204464

    Article  CAS  Google Scholar 

  50. Becquart CS, Domain C, Legris A, van Duysen JC (2001) Molecular Dynamics simulations of displacement cascades: role of the interatomic potentials and of the potential hardening. MRS Online Proc Libr 650:324. https://doi.org/10.1557/PROC-650-R3.24

    Article  Google Scholar 

  51. Polak E, Ribiere G (1969) Note on convergence of conjugate direction methods. Revue Francaise D Informatique De Recherche Operationnelle 3(16):35

    Google Scholar 

  52. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268. https://doi.org/10.1080/00268978400101201

    Article  Google Scholar 

  53. Evans DJ, Holian BL (1985) The nose-hoover thermostat. J Chem Phys 83:4069–4074. https://doi.org/10.1063/1.449071

    Article  CAS  Google Scholar 

  54. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18:015012. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  55. Zou PF, Bader RFW (1994) A topological definition of a Wigner-Seitz cell and the atomic scattering factor. Acta Cryst A 50:714–725. https://doi.org/10.1107/S0108767394003740

    Article  Google Scholar 

  56. Stukowski A, Albe K (2010) Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sci Eng 18:085001. https://doi.org/10.1088/0965-0393/18/8/085001

    Article  CAS  Google Scholar 

  57. Than YR, Grimes RW (2021) Predicting radiation damage in beryllium. Philos Mag 101:306–325. https://doi.org/10.1080/14786435.2020.1834636

    Article  CAS  Google Scholar 

  58. Setyawan W, Nandipati G, Roche KJ et al (2015) Displacement cascades and defects annealing in tungsten, Part I: defect database from molecular dynamics simulations. J Nucl Mater 462:329–337. https://doi.org/10.1016/j.jnucmat.2014.12.056

    Article  CAS  Google Scholar 

  59. Sahi Q, Kim Y-S (2018) Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies. Mater Res Express 5:046518. https://doi.org/10.1088/2053-1591/aabb6f

    Article  CAS  Google Scholar 

  60. Puigvi MA, Osetsky YuN, Serra A (2004) Interactions between vacancy and glissile interstitial clusters in iron and copper. Mater Sci Eng A 365:101–106. https://doi.org/10.1016/j.msea.2003.09.013

    Article  CAS  Google Scholar 

  61. Tipping PG (2010) Understanding and mitigating ageing in nuclear power plants: Materials and operational aspects of plant life management (PLIM). Elsevier, Netherland

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehanshu Pal.

Additional information

Handling Editor: Ghanshyam Pilania.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, M., Pal, S. Improvement in radiation resistance of nanocrystalline Cu using grain boundary engineering: an atomistic simulation study. J Mater Sci 57, 19832–19845 (2022). https://doi.org/10.1007/s10853-022-07877-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07877-3