Abstract
Radiation damage in the nuclear structural components is a stochastic phenomenon in both length and time scales. In this work, molecular dynamics-based numerical simulations were employed to model and investigate the primary radiation damage within irradiated Cu specimens. Here, a single-crystal Cu specimen and two nanocrystalline specimens: hexagonal columnar grain Cu specimen with ∑3 and ∑9 GBs (CG Cu) and Cu specimen randomly oriented grain boundary (GBs) (RG Cu), were irradiated at 600 K at primary knock-on atom (PKA) energy magnitudes, EPKA = 10 keV, 20 keV, 30 keV, respectively. The equilibrium part of the long-range Finnis–Sinclair (FS)-type interatomic potential was smoothly conjoined with the universal short-range repulsive Ziegler–Biersack–Littmark potential to account for simulations of high-energy collisions. By investigating the evolution of point defects, defect cluster distribution, and dislocation analysis, it was observed that the irradiated nanostructured Cu specimens survived with comparatively lower defects at the end of cascade simulations. GB serves as the effective radiation sink junctions for the generated Frenkel pair defects. Secondly, the population of point defects increases with the increase in PKA energy magnitude and the annihilation rate. Therefore, polycrystalline irradiated Cu specimens can be favoured for potential radiation immune candidate in the next-generation nuclear reactor structural materials.
This is a preview of subscription content, access via your institution.










References
Mansur LK (2003) Materials research and development for the spallation neutron source mercury target. J Nucl Mater 318:14–25. https://doi.org/10.1016/S0022-3115(03)00075-8
Holton JM (2009) A beginner’s guide to radiation damage. J Synchrotron Rad 16:133–142. https://doi.org/10.1107/S0909049509004361
Urban K, Seeger A (1974) Radiation-induced diffusion of point-defects during low-temperature electron irradiation. Philos Mag 30:1395–1418. https://doi.org/10.1080/14786437408207289
Zinkle SJ, Steven J (2012) Radiation-induced effects on microstructure. Compr Nucl Mater 1:65–98
Zinkle SJ, Farrell K (1989) Void swelling and defect cluster formation in reactor-irradiated copper. J Nucl Mater 168:262–267. https://doi.org/10.1016/0022-3115(89)90591-6
Osetsky Y, Bacon D (2015) Atomic-level level dislocation dynamics in irradiated metals, In Reference Module in Materials Science and Materials Engineering, 2016, https://doi.org/10.1016/B978-0-12-803581-8.00662-7
Voskoboinikov RE (2013) Interaction of collision cascades with an isolated edge dislocation in aluminium. Nucl Instrum Methods Phys Res B NUCL INSTRUM METH B 303:125–128. https://doi.org/10.1016/j.nimb.2012.10.022
Purja Pun GP, Mishin Y (2009) A molecular dynamics study of self-diffusion in the cores of screw and edge dislocations in aluminum. Acta Mater 57:5531–5542. https://doi.org/10.1016/j.actamat.2009.07.048
Shan C, Lang L, Yang T et al (2020) Molecular dynamics simulations of radiation damage generation and dislocation loop evolution in Ni and binary Ni-based alloys. Comput Mater Sci 177:109555. https://doi.org/10.1016/j.commatsci.2020.109555
Arjhangmehr A, Feghhi SAH, Esfandiyarpour A, Hatami F (2016) An energetic and kinetic investigation of the role of different atomic grain boundaries in healing radiation damage in nickel. J Mater Sci 51:1017–1031. https://doi.org/10.1007/s10853-015-9432-z
Fikar J, Schäublin R (2009) Molecular dynamics simulation of radiation damage in bcc tungsten. J Nucl Mater 386–388:97–101. https://doi.org/10.1016/j.jnucmat.2008.12.068
Boev AO, Zolnikov KP, Nelasov IV, Lipnitskii AG (2019) Molecular dynamics simulation of primary radiation damage in vanadium and alloy V-4Ti. J Phys Conf Ser 1147:012087. https://doi.org/10.1088/1742-6596/1147/1/012087
Duan J, Wen H, He L et al (2022) Effect of grain size on the irradiation response of grade 91 steel subjected to Fe ion irradiation at 300 °C. J Mater Sci 57:13767–13778. https://doi.org/10.1007/s10853-022-07480-6
Fu J, Chen Y, Fang J et al (2019) Molecular dynamics simulations of high-energy radiation damage in W and W-Re alloys. J Nucl Mater 524:9–20. https://doi.org/10.1016/j.jnucmat.2019.06.027
Terentyev DA, Malerba L, Chakarova R et al (2006) Displacement cascades in Fe–Cr: a molecular dynamics study. J Nucl Mater 349:119–132. https://doi.org/10.1016/j.jnucmat.2005.10.013
Buchan JT, Robinson M, Christie HJ et al (2015) Molecular dynamics simulation of radiation damage cascades in diamond. J Appl Phys 117:245901. https://doi.org/10.1063/1.4922457
Christie HJ, Robinson M, Roach DL et al (2015) Simulating radiation damage cascades in graphite. Carbon 81:105–114. https://doi.org/10.1016/j.carbon.2014.09.031
Hosseini A, Nasrabadi MN, Esfandiarpour A (2020) Effect of carbon nanotube on radiation resistance of CNT-Cu nanocomposite: MD simulation. J Mater Sci 55:4311–4320. https://doi.org/10.1007/s10853-019-04309-7
Wang YF, Li HY, Yang L (2018) Radiation-induced structural evolution in Zr2Cu metallic glass. J Mater Sci 53:10979–10986. https://doi.org/10.1007/s10853-018-2358-5
Cusentino MA, Wood MA, Dingreville R (2020) Compositional and structural origins of radiation damage mitigation in high-entropy alloys. J Appl Phys 128:125904. https://doi.org/10.1063/5.0024014
Lin Y, Yang T, Lang L et al (2020) Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage. Acta Mater 196:133–143. https://doi.org/10.1016/j.actamat.2020.06.027
Shen S, Chen F, Tang X et al (2020) Irradiation damage and swelling of carbon-doped Fe38Mn40Ni11Al4Cr7 high-entropy alloys under heavy ion irradiation at elevated temperature. J Mater Sci 55:17218–17231. https://doi.org/10.1007/s10853-020-05229-7
Khiara N, Onimus F, Dupuy L et al (2020) A novel displacement cascade driven irradiation creep mechanism in α-zirconium: a molecular dynamics study. J Nucl Mater 541:152336. https://doi.org/10.1016/j.jnucmat.2020.152336
Li J-T, Beyerlein IJ, Han W-Z (2022) Helium irradiation-induced ultrahigh hardening in niobium. Acta Mater 226:117656. https://doi.org/10.1016/j.actamat.2022.117656
Brinkman JA (1954) On the nature of radiation damage in metals. J Appl Phys 25:961–970. https://doi.org/10.1063/1.1721810
Todorov IT, Allan NL, Purton JA et al (2007) Use of massively parallel molecular dynamics simulations for radiation damage in pyrochlores. J Mater Sci 42:1920–1930. https://doi.org/10.1007/s10853-006-1323-x
Zarkadoula E, Stoller RE (2020) Primary radiation damage formation in solids. Elsevier, New York, New York, United States of America
Nordlund K, Zinkle SJ, Sand AE et al (2018) Primary radiation damage: a review of current understanding and models. J Nucl Mater 512:450–479. https://doi.org/10.1016/j.jnucmat.2018.10.027
Li K, Kashkarov E, Ma H et al (2022) Irradiation resistance of preceramic paper-derived SiCf/SiC laminated composites. J Mater Sci 57:10153–10166. https://doi.org/10.1007/s10853-022-07294-6
Xu H, He L-L, Pei Y-F et al (2021) Recent progress of radiation response in nanostructured tungsten for nuclear application. Tungsten 3:20–37. https://doi.org/10.1007/s42864-021-00075-9
Bai X-M, Voter AF, Hoagland RG et al (2010) Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327:1631–1634. https://doi.org/10.1126/science.1183723
Samaras M, Derlet PM, Van Swygenhoven H, Victoria M (2002) Computer simulation of displacement cascades in nanocrystalline Ni. Phys Rev Lett 88:125505. https://doi.org/10.1103/PhysRevLett.88.125505
Uberuaga BP, Vernon LJ, Martinez E, Voter AF (2015) The relationship between grain boundary structure, defect mobility and grain boundary sink efficiency. Sci Rep 5:9095. https://doi.org/10.1038/srep09095
Beyerlein IJ, Caro A, Demkowicz MJ et al (2013) Radiation damage tolerant nanomaterials. Mater Today 16:443–449. https://doi.org/10.1016/j.mattod.2013.10.019
El-Atwani O, Hinks JA, Greaves G et al (2017) Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten. Mater Res Lett 5:343–349. https://doi.org/10.1080/21663831.2017.1292326
Han WZ, Demkowicz MJ, Fu EG et al (2012) Effect of grain boundary character on sink efficiency. Acta Mater 60:6341–6351. https://doi.org/10.1016/j.actamat.2012.08.009
Gleiter H (1979) Grain boundaries as point defect sources or sinks—diffusional creep. Acta Metall 27:187–192. https://doi.org/10.1016/0001-6160(79)90095-6
Pal S, Vijay Reddy K, Deng C (2022) Improving thermal stability and Hall-Petch breakdown relationship in nanocrystalline Cu: a molecular dynamics simulation study. Mater Lett 324:132821. https://doi.org/10.1016/j.matlet.2022.132821
El-Atwani O, Nathaniel JE, Leff AC et al (2017) Direct observation of sink-dependent defect evolution in nanocrystalline iron under irradiation. Sci Rep 7:1836. https://doi.org/10.1038/s41598-017-01744-x
El-Atwani O, Esquivel E, Aydogan E et al (2019) Unprecedented irradiation resistance of nanocrystalline tungsten with equiaxed nanocrystalline grains to dislocation loop accumulation. Acta Mater 165:118–128. https://doi.org/10.1016/j.actamat.2018.11.024
Voskoboinikov RE, Osetsky YuN, Bacon DJ (2008) Computer simulation of primary damage creation in displacement cascades in copper. I. defect creation and cluster statistics. J Nucl Mater 377:385–395. https://doi.org/10.1016/j.jnucmat.2008.01.030
Carter K-J (2017) Radiation damage quantification in elemental copper using Wigner energy storage. Thesis, Massachusetts Institute of Technology
Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039
Osetsky YuN, Bacon DJ, Singh BN (2002) Statistical analysis of cluster production efficiency in MD simulations of cascades in copper. J Nucl Mater 307–311:866–870. https://doi.org/10.1016/S0022-3115(02)01001-2
Zhang CG, Zhou WH, Li YG et al (2015) Primary radiation damage near grain boundary in bcc tungsten by molecular dynamics simulations. J Nucl Mater 458:138–145. https://doi.org/10.1016/j.jnucmat.2014.11.135
Zhao H, Zeng X, Yang X et al (2020) Investigation of the temperature effect on the primary radiation damage near the grain boundary in tungsten using Molecular dynamics simulations. Nucl Instrum Methods Phys Res B Nucl Instrum Meth B 476:32–39. https://doi.org/10.1016/j.nimb.2020.04.030
Hirel P (2015) Atomsk: a tool for manipulating and converting atomic data files. Comput Phys Commun 197:212–219. https://doi.org/10.1016/j.cpc.2015.07.012
Biersack JP, Ziegler JF (1982) Refined universal potentials in atomic collisions. Nucl Instrum Methods Phys Res A 194:93–100. https://doi.org/10.1016/0029-554X(82)90496-7
Ackland GJ, Thetford R (1987) An improved N-body semi-empirical model for body-centred cubic transition metals. Philos Mag A 56:15–30. https://doi.org/10.1080/01418618708204464
Becquart CS, Domain C, Legris A, van Duysen JC (2001) Molecular Dynamics simulations of displacement cascades: role of the interatomic potentials and of the potential hardening. MRS Online Proc Libr 650:324. https://doi.org/10.1557/PROC-650-R3.24
Polak E, Ribiere G (1969) Note on convergence of conjugate direction methods. Revue Francaise D Informatique De Recherche Operationnelle 3(16):35
Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268. https://doi.org/10.1080/00268978400101201
Evans DJ, Holian BL (1985) The nose-hoover thermostat. J Chem Phys 83:4069–4074. https://doi.org/10.1063/1.449071
Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18:015012. https://doi.org/10.1088/0965-0393/18/1/015012
Zou PF, Bader RFW (1994) A topological definition of a Wigner-Seitz cell and the atomic scattering factor. Acta Cryst A 50:714–725. https://doi.org/10.1107/S0108767394003740
Stukowski A, Albe K (2010) Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sci Eng 18:085001. https://doi.org/10.1088/0965-0393/18/8/085001
Than YR, Grimes RW (2021) Predicting radiation damage in beryllium. Philos Mag 101:306–325. https://doi.org/10.1080/14786435.2020.1834636
Setyawan W, Nandipati G, Roche KJ et al (2015) Displacement cascades and defects annealing in tungsten, Part I: defect database from molecular dynamics simulations. J Nucl Mater 462:329–337. https://doi.org/10.1016/j.jnucmat.2014.12.056
Sahi Q, Kim Y-S (2018) Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies. Mater Res Express 5:046518. https://doi.org/10.1088/2053-1591/aabb6f
Puigvi MA, Osetsky YuN, Serra A (2004) Interactions between vacancy and glissile interstitial clusters in iron and copper. Mater Sci Eng A 365:101–106. https://doi.org/10.1016/j.msea.2003.09.013
Tipping PG (2010) Understanding and mitigating ageing in nuclear power plants: Materials and operational aspects of plant life management (PLIM). Elsevier, Netherland
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling Editor: Ghanshyam Pilania.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Manna, M., Pal, S. Improvement in radiation resistance of nanocrystalline Cu using grain boundary engineering: an atomistic simulation study. J Mater Sci 57, 19832–19845 (2022). https://doi.org/10.1007/s10853-022-07877-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-022-07877-3