Skip to main content
Log in

Effect of temperature on electrical and thermal conductivities of powder compacts: Ag-C and Ag-WC

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of temperature on electrical and thermal conductivities of two materials from powder metallurgy, Ag-C and Ag-WC, is studied. The increase in conductivities with heating temperature at constant density is showed. The need to consider temperature in addition to density in the conductivity models is highlighted. The coupled mechanisms, of densification and of bonding diffusion, which are at the beginning of the improvement of conductivities, are discussed. A new phenomenological model for electrical and thermal conductivities, taking into account these mechanisms and their interplay, is proposed. The model parameters are estimated. The model makes it possible to correctly predict the increases in conductivity of metal powders during manufacturing stages: cold compaction, annealing, free or load-assisted sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Slavin AJ, Greenhalgh VA, Irvine ER, Marshall DB (2002) Theoretical model for the thermal conductivity of a packed bed of solid spheroids in the presence of a static gas, with no adjustable parameters except at low pressure and temperature. Int J Heat Mass Transf 45:4151–4161

    Article  CAS  Google Scholar 

  2. Bahrami M, Yovanovich M, Culham RJ (2006) Effective thermal conductivity of rough spherical packed beds. Int J Heat Mass Transf 49:3691–3701

    Article  Google Scholar 

  3. M, F (2006) Conductivité thermique apparente des milieux granulaires soumis à des contraintes mécaniques : modélisation et mesures. PhD thesis, Institut National Polytechnique de Toulouse

  4. Tien CL, Vafai K (1978) Statistical upper and lower bounds of effective thermal conductivity of fibrous insulation. 2 AIA/ASME Thermophysics and Heat Transfert Conference, 780–874

  5. Wang J, Carson JK, North MF, Cleland DJ (2006) A new approach to modelling the effective thermal conductivity of heterogeneous materials. Int J Heat Mass Transf 49:3075–3083

    Article  Google Scholar 

  6. Carson JK, Lovatt SJ, Tanner DJ, Cleland DJ (2005) Thermal conductivity bounds for isotropic, porous materials. Int J Heat Mass Transf 48:2150–2158

    Article  Google Scholar 

  7. Liang Y (2015) Expression for effective thermal conductivity of randomly packed granular material. Int J Heat Mass Transf 90:1105–1108

    Article  Google Scholar 

  8. Argento C, Bouvard D (1996) Modeling the effective thermal conductivity of random packing of spheres through densification. Int J Heat Mass Transf 39:1343–1350

    Article  CAS  Google Scholar 

  9. Atabaki N, Baliga BR (2007) Effective thermal conductivity of water-saturated sintered powder-metal plates. Heat Mass Transfer 44:85–99

    Article  CAS  Google Scholar 

  10. Koh JC, Fortini A (1973) Prediction of thermal conductivity and electrical resistivity of porous metallic materials. Int J Heat Mass Transf 16:2013–2022

    Article  Google Scholar 

  11. Aivazov MI, Domashnev IA (1968) Influence of porosity on the conductivity of hot-pressed titanium-nitride specimens. Proshkovaya Metall 8:51–54

    CAS  Google Scholar 

  12. JC, M (1873) Electricity and magnetism. Clarendon Press Series. 1

  13. Bauer TH (1993) A general analytical approach toward the thermal conductivity of porous media. Int J Heat Mass Transf 36:4181–4191

    Article  CAS  Google Scholar 

  14. Agapiou JS, DeVries MF (1989) An experimental determination of the thermal conductivity of a 304l stainless steel powder metallurgy material. J Heat Transfer 111:281–286

    Article  CAS  Google Scholar 

  15. Hadley GR (1986) Thermal conductivity of packed metal powders. Int J Heat Mass Transf 29:909–920

    Article  CAS  Google Scholar 

  16. Gonzo EE (2002) Estimating correlations for the effective thermal conductivity of granular materials. Chem Eng J 90:299–302

    Article  CAS  Google Scholar 

  17. Montes JM, Cuevas FG, Cintas J, Gallardo JM (2016) Electrical conductivity of metal powder aggregates and sintered compacts. J Mater Sci 51:822–835 https://doi.org/10.1007/s10853-015-9405-2

    Article  CAS  Google Scholar 

  18. Montes JM, Cuevas FG, Cintas J (2008) Porosity effect on the electrical conductivity of sintered powder compacts. Appl Phys A 90:375–380

    Article  Google Scholar 

  19. Montes JM, Cuevas FG, Cintas J, Urban P (2011) Electrical conductivity of metal powders under pressure. Appl Phys A 105:935–947

    Article  CAS  Google Scholar 

  20. Ternero F, Caballero ES, Astacio R, Cintas J, Montes JM (2020) Nickel porous compacts obtained by medium-frequency electrical resistance sintering. Materials 13:2131

    Article  CAS  Google Scholar 

  21. Brisson E, Carre P, Desplats H, Rogeon P, Keryvin V, Bonhomme A (2016) Effective thermal and electrical conductivities of agsno2 during sintering. Part i: experimental characterization and mechanisms. Metall Mater Trans A 47:6304–6318

    Article  CAS  Google Scholar 

  22. Brisson E, Carre P, Desplats H, Rogeon P, Keryvin V, Bonhomme A (2016) Effective thermal and electrical conductivities of agsno2 during sintering. Part ii: constitutive modeling and numerical simulation. Metall Mater Trans A 47:6319–6329

    Article  CAS  Google Scholar 

  23. Desplats H, Brisson E, Rogeon P, Carré P, Bonhomme A (2019) (2017) Pressureless sintering behavior and properties of Ag-SnO\(_2\). Rare metals 38:35–41

    Article  CAS  Google Scholar 

  24. Jang B, Matsubara H (2006) Thermophysical properties of eb-pvd coatings and sintered ceramics of 4 mol\(\%\)\(y_2o_3\)-stabilized zirconia. J Allloys Compd 419:243–246

    Article  CAS  Google Scholar 

  25. Zhang X, Huang Y, Liu X, Yang L, Shi C, Wu Y, Tang W (2018) Microstructures and properties of 40cu/ag(invar) composites fabricated by powder metallurgy and subsequent thermo-mechanical treatment. Metall and Mater Trans A 49:1869–1878

    Article  CAS  Google Scholar 

  26. Ryu S-S, Lim J-T, Kim J-C, Kim YD, Moon I-H (1999) Effect of heat-treatment on the nanostructural change of w-cu powder prepared by mechanical alloying. Met Mater 5(2):175–178

    Article  CAS  Google Scholar 

  27. Miao S, Xi ZM, Zhang T, Wang XP, Fang QF, Liu CS, Luo GN, Liu X, Lian YY (2016) Mechanical properties and thermal stability of rolled w-0.5wt%tic alloys. Mater Sci Eng A 671:87–95

    Article  CAS  Google Scholar 

  28. Hu L-F, Gu Q-F, Li Q, Zhang J-Y, Wu G-X (2018) Effect of extrusion temperature on microstructure, thermal conductivity and mechanical properties of a mg-ce-zn-zr alloy. J Alloy Compd 741:1222–1228

    Article  CAS  Google Scholar 

  29. Van Duong L, Anh NN, Trung TB, Chung LD, Huan NQ, Phuong MT, Minh PN, Phuong DD, Van Trinh P, et al (2020) Effect of annealing temperature on electrical and thermal property of cold-rolled multi-walled carbon nanotubes reinforced copper composites. Diam Related Mater. Vol 108

  30. Saboori A, Pavese M, Badini C, Fino P (2018) A novel cu-gnps nanocomposite with improved thermal and mechanical properties. Acta Metall Sin 31(2):148–152 (English Letters)

    Article  CAS  Google Scholar 

  31. Shakibhamedan S, Sheibani S, Ataie A (2021) High performance cu matrix nanocomposite fabricated through spark plasma sintering of cu and cu-coated cnt. Met Mater Int 27(10):4271–4285

    Article  CAS  Google Scholar 

  32. SiDoLo Version 2.5298 - Notice D’utilisation

Download references

Acknowledgements

The authors are grateful to Schneider Electric Industries for their support and material supply and P. Pilvin for access and training to the Sidolo software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elodie Courtois.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courtois, E., Rogeon, P., Keryvin, V. et al. Effect of temperature on electrical and thermal conductivities of powder compacts: Ag-C and Ag-WC. J Mater Sci 57, 18839–18852 (2022). https://doi.org/10.1007/s10853-022-07811-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07811-7

Navigation