Skip to main content

Advertisement

Log in

Toughening effect of poly (arylene ether nitrile) on phthalonitrile resin and fiber reinforced composites

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A strategy for toughening phthalonitrile-based resin containing benzoxazine (BA-Ph) with poly (aryl ether nitrile) (PP-PEN) was proposed. Through kinetic analysis, the underlying influence mechanism of PP-PEN with different molecular weight on the polymerization process and cross-linking structure of BA-Ph was explored. In addition, the glass fiber reinforced composite laminates (BA-Ph/PP-PEN/GF) were fabricated by hot pressing. The effect of the molecular weight of PP-PEN on the mechanical and thermal properties of BA-Ph/PP-PEN/GF was verified. The results indicated that the impact strength of the modified composite laminates increased from 77 kJ/m2 to 106 kJ/m2. The bending strength and modulus improved from 484 to 516 MPa and 21 GPa to 25 GPa, respectively. Besides, all the thermal performances of the modified composite laminates had fairly good thermal stability (358 ~ 382 °C). It is believed that the as-prepared phthalonitrile-based composite material with high temperature resistance and toughness is expected to expand the application of high-performance resin based composites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Park YT, Qian Y, Chan C et al (2015) Epoxy Toughening with Low Graphene Loading. Adv Funct Mater 25:575–585. https://doi.org/10.1002/adfm.201402553

    Article  CAS  Google Scholar 

  2. Kuznetsov AA, Semenova GK (2010) Perspective thermally stable thermoset binders for polymer composite materials. Russ J Gen Chem 80:2170–2180. https://doi.org/10.1134/S1070363210100464

    Article  CAS  Google Scholar 

  3. Li Y, Li N, Gao J (2014) Tooling design and microwave curing technologies for the manufacturing of fiber-reinforced polymer composites in aerospace applications. Int J Adv Manuf Technol 70:591–606. https://doi.org/10.1007/s00170-013-5268-3

    Article  Google Scholar 

  4. Liu J, Shen L, Lin H et al (2022) Preparation of Ni@UiO-66 incorporated polyethersulfone (PES) membrane by magnetic field assisted strategy to improve permeability and photocatalytic self-cleaning ability. J Colloid Interface Sci 618:483–495. https://doi.org/10.1016/j.jcis.2022.03.106

    Article  CAS  Google Scholar 

  5. Dominguez DD (2006) Low-melting phthalonitrile oligomers: preparation, polymerization and polymer properties. High Perform Polym 18:283–304. https://doi.org/10.1177/0954008306060143

    Article  CAS  Google Scholar 

  6. Dominguez DD, Keller TM (2007) Properties of phthalonitrile monomer blends and thermosetting phthalonitrile copolymers. Polymer 48:91–97. https://doi.org/10.1016/j.polymer.2006.11.003

    Article  CAS  Google Scholar 

  7. Sumner MJ, Sankarapandian M, Mcgrath JE et al (2002) Flame retardant novolac–bisphthalonitrile structural thermosets. Polymer 43:5069–5076. https://doi.org/10.1016/S0032-3861(02)00354-3

    Article  CAS  Google Scholar 

  8. Guangxing W, Ying G et al (2019) Enhanced properties of phthalonitrile resins reinforced by novel phthalonitrile-terminated polyaryl ether nitrile containing fluorene group. High Perform Polym 32:3–11. https://doi.org/10.1177/0954008319847259

    Article  CAS  Google Scholar 

  9. Hu J, Liu Y, Jiao Y et al (2015) Self-promoted phthalimide-containing phthalonitrile resins with sluggish curing process and excellent thermal stability. RSC Adv 5:16199–16206. https://doi.org/10.1039/c4ra17306f

    Article  CAS  Google Scholar 

  10. Laskoski M, Schear MB, Neal A et al (2015) Improved synthesis and properties of aryl ether-based oligomeric phthalonitrile resins and polymers. Polymer 67:185–191. https://doi.org/10.1016/j.polymer.2015.04.071

    Article  CAS  Google Scholar 

  11. Xu M, Ren D, Chen L et al (2018) Understanding of the polymerization mechanism of the phthalonitrile-based resins containing benzoxazine and their thermal stability. Polymer 143:28–39. https://doi.org/10.1016/j.polymer.2018.04.004

    Article  CAS  Google Scholar 

  12. Xu M, Liu M, Dong S et al (2013) Design of low temperature self-cured phthalonitrile-based polymers for advanced glass fiber composite laminates. J Mater Sci 48:8108–8116. https://doi.org/10.1007/s10853-013-7623-z

    Article  CAS  Google Scholar 

  13. Zhou S, Hong H, Zhou H et al (2009) Studies on self-promoted cure behaviors of hydroxy-containing phthalonitrile model compounds. Eur Polym J 45:1328–1335. https://doi.org/10.1016/j.eurpolymj.2008.12.036

    Article  CAS  Google Scholar 

  14. Luo YS, Xu MZ, Pan H et al (2016) Effect of ortho-diallyl bisphenol A on the processability of phthalonitrile-based resin and their fiber-reinforced laminates. Polym Eng Sci 56:150–157. https://doi.org/10.1002/pen.24237

    Article  CAS  Google Scholar 

  15. Xu MZ, Yang XL, Zhao R et al (2013) Copolymerizing behavior and processability of benzoxazine/epoxy systems and their applications for glass fiber composite laminates. J Appl Polym Sci 128:1176–1184. https://doi.org/10.1002/app.38422

    Article  CAS  Google Scholar 

  16. Li Z, Zhang W, Tao M et al (2022) In-situ growth of UiO-66-NH2 in porous polymeric substrates at room temperature for fabrication of mixed matrix membranes with fast molecular separation performance. Chem Eng J 435:134804. https://doi.org/10.1016/j.cej.2022.134804

    Article  CAS  Google Scholar 

  17. Chen TK, Jan YH (1992) Fracture mechanism of toughened epoxy resin with bimodal rubber-particle size distribution. J Mater Sci 27:111–121. https://doi.org/10.1007/bf02403652

    Article  CAS  Google Scholar 

  18. Kim DS, Cho K, Kim JK et al (1996) Effects of particle size and rubber content on fracture toughness in rubber-modified epoxies. Polym Eng Sci 36:755–768. https://doi.org/10.1002/pen.10463

    Article  CAS  Google Scholar 

  19. Wang C, Li H, Zhang HL et al (2016) Influence of addition of hydroxyl-terminated liquid nitrile rubber on dielectric properties and relaxation behavior of epoxy resin. IEEE Trans Dielectr Electr Insul 23:2258–2269. https://doi.org/10.1109/tdei.2016.005415

    Article  CAS  Google Scholar 

  20. Inoue T (1995) Reaction-induced phase-decompostion in polymer blends. Prog Polym Sci 20:119–153. https://doi.org/10.1016/0079-6700(94)00032-w

    Article  CAS  Google Scholar 

  21. Kim BS, Chiba T, Inoue T (1995) Morphology development via reaction-induced phase separation in epoxy/poly(ether sulfone) blends: morphology control using poly(ether sulfone) with functional end-groups. Polymer 36:43–47. https://doi.org/10.1016/0032-3861(95)90673-p

    Article  CAS  Google Scholar 

  22. Wu SJ, Lin TK, Shyu SS (2000) Cure behavior, morphology and mechanical properties of the melt blends of epoxy with polyphenylene oxide. J Appl Polym Sci 75:26–34. https://doi.org/10.1002/(sici)1097-4628(20000103)75:1%3c26::Aid-app4%3e3.0.Co;2-3

    Article  CAS  Google Scholar 

  23. Harismendy I, Del Rio M, Eceiza A et al (2000) Morphology and thermal behavior of dicyanate ester-polyetherimide semi-IPNS cured at different conditions. J Appl Polym Sci 76:1037–1047. https://doi.org/10.1002/(sici)1097-4628(20000516)76:7%3c1037::Aid-app7%3e3.0.Co;2-y

    Article  CAS  Google Scholar 

  24. Gu AJ, Liang GZ (2007) Novel high performance copper clad laminates based on bismaleimide/aluminium borate whisker hybrid matrix. J Appl Polym Sci 103:1325–1331. https://doi.org/10.1002/app.25325

    Article  CAS  Google Scholar 

  25. Yan HX, Ning RC, Liang GZ et al (2005) The performances of BMI nanocomposites filled with nanometer SiC. J Appl Polym Sci 95:1246–1250. https://doi.org/10.1002/app.21336

    Article  CAS  Google Scholar 

  26. BalakrishnanSaha AMC (2011) Tensile fracture and thermal conductivity characterization of toughened epoxy/CNT nanocomposites. Mat Sci Eng A-Struct 528:906–913. https://doi.org/10.1016/j.msea.2010.09.064

    Article  CAS  Google Scholar 

  27. XiaoYe KQL (2000) Rate-effect on fracture behavior of core-shell-rubber (CSR)-modified epoxies. Polym Eng Sci 40:70–81. https://doi.org/10.1002/pen.11140

    Article  Google Scholar 

  28. MafiEbrahimi ERM (2008) Role of core-shell rubber particle cavitation resistance on toughenability of epoxy resins. Polym Eng Sci 48:1376–1380. https://doi.org/10.1002/pen.21104

    Article  CAS  Google Scholar 

  29. Augustine D, Mathew D, Reghunadhan Nair C (2015) End-functionalized thermoplastic-toughened phthalonitrile composites: influence on cure reaction and mechanical and thermal properties. Polym Int 64:146–153. https://doi.org/10.1002/pi.4774

    Article  CAS  Google Scholar 

  30. Anuradha GM, Sarojadevi, (2008) Synthesis and characterization of poly(arylene ether) containing cyanate ester networks. J Polym Res 15:507–514. https://doi.org/10.1007/s10965-008-9195-1

    Article  CAS  Google Scholar 

  31. Li C, Gu Y, Liu XB (2006) Synthesis and properties of phenolphthalein-based polyarylene ether nitrile copolymers. Mater Lett 60:137–141. https://doi.org/10.1016/j.matlet.2005.08.004

    Article  CAS  Google Scholar 

  32. Huang YM, Luo YS, Xu MZ et al (2016) Studied on mechanical, thermal and dielectric properties of BPh/PEN-OH copolymer. Compos B Eng 106:294–299. https://doi.org/10.1016/j.compositesb.2016.09.036

    Article  CAS  Google Scholar 

  33. Wang GX, Guo Y, Han Y et al (2020) Enhanced properties of phthalonitrile resins reinforced by novel phthalonitrile-terminated polyaryl ether nitrile containing fluorene group. High Perform Polym 32:3–11. https://doi.org/10.1177/0954008319847259

    Article  CAS  Google Scholar 

  34. Cao GP (2007) Synthesis and characterization of a novel bisphthalonitrile containing benzoxazine. Express Polym Lett 1:512–518. https://doi.org/10.3144/expresspolymlett.2007.73

    Article  CAS  Google Scholar 

  35. Wang Y, You Y, Tu L et al (2019) Mechanical and dielectric properties of crystalline poly(arylene ether nitrile) copolymers. High Perform Polym 31:310–320. https://doi.org/10.1177/0954008318766217

    Article  CAS  Google Scholar 

  36. Lei X, Tong L, Pan H et al (2019) Preparation of polyarylene ether nitriles/fullerene composites with low dielectric constant by cosolvent evaporation. J Mater Sci Mater Electron 30:18297–18305. https://doi.org/10.1007/s10854-019-02145-8

    Article  CAS  Google Scholar 

  37. Zeng B, Pan Z, Shen L et al (2022) Effects of polysaccharides’ molecular structure on membrane fouling and the related mechanisms. Sci Total Environ 836:155579. https://doi.org/10.1016/j.scitotenv.2022.155579

    Article  CAS  Google Scholar 

  38. Stoddart A, Feast WJ, Rannard SP (2012) Synthesis and thermal studies of aliphatic polyurethane dendrimers: a geometric approach to the Flory-Fox equation for dendrimer glass transition temperature. Soft Matter 8:1096–1108. https://doi.org/10.1039/c1sm06725g

    Article  CAS  Google Scholar 

  39. Liang H, Xie F, Wu W et al (2008) Miscibility and melting properties of poly(ethylene 2,6-naphthalate)/poly(trimethylene terephthalate) blends. J Mater Sci 43:2739–2744. https://doi.org/10.1007/s10853-008-2496-2

    Article  CAS  Google Scholar 

  40. Jayan JS, Deeraj BDS, Saritha A et al (2020) Theoretical modelling of kinetics of glass transition temperature of PEG toughened epoxy. Plast Rubber Compos 49:237–244. https://doi.org/10.1080/14658011.2020.1732124

    Article  CAS  Google Scholar 

  41. Ren D, Chen L, Yuan Y et al (2018) Designing and preparation of fiber-reinforced composites with enhanced interface adhesion. Polymers 10:1128. https://doi.org/10.3390/polym10101128

    Article  CAS  Google Scholar 

  42. Moynihan CT, Easteal AJ, Wilder J et al (1974) Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem 78:2673–2677. https://doi.org/10.1021/j100619a008

    Article  CAS  Google Scholar 

  43. Patel AT, Pratap A (2013) Study of glass transition kinetics for Co66Si12B16Fe4Mo2 metallic glass. Series Int J Mod Phys Conf 22:321–326. https://doi.org/10.1142/S2010194513010295

    Article  CAS  Google Scholar 

  44. Khaskov MA (2016) Extension of the time-temperature-transformation diagram taking into account thermal properties of components for optimizing the curing of polymer matrix composites. Russ J Appl Chem 89:622–630. https://doi.org/10.1134/s1070427216040169

    Article  CAS  Google Scholar 

  45. Pan Z, Zeng B, Yu G et al (2022) Mechanistic insights into Ca-alginate gel-associated membrane fouling affected by ethylene diamine tetraacetic acid (EDTA). Sci Total Environ 842:156912. https://doi.org/10.1016/j.scitotenv.2022.156912

    Article  CAS  Google Scholar 

  46. Pan Z, Zeng B, Lin H et al (2022) Fundamental thermodynamic mechanisms of membrane fouling caused by transparent exopolymer particles (TEP) in water treatment. Sci Total Environ 820:153252. https://doi.org/10.1016/j.scitotenv.2022.153252

    Article  CAS  Google Scholar 

  47. Zhang R, Xu Y, Shen L et al (2022) Preparation of nickel@polyvinyl alcohol (PVA) conductive membranes to couple a novel electrocoagulation-membrane separation system for efficient oil-water separation. J Membr Sci 653:120541. https://doi.org/10.1016/j.memsci.2022.120541

    Article  CAS  Google Scholar 

  48. Gupta N, Dalvi A, Bhardwaj S et al (2011) Crystallization and glass transition kinetics in Cu+ ion substituted Cux–Ag1−xI–Ag2O–V2O5 superionic glasses. J Non Cryst Solids 357:1811–1815. https://doi.org/10.1016/j.jnoncrysol.2011.02.021

    Article  CAS  Google Scholar 

  49. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706. https://doi.org/10.1021/ac60131a045

    Article  CAS  Google Scholar 

  50. Blaine RL, Kissinger HE (2012) Homer kissinger and the kissinger equation. Thermochim Acta 540:1–6. https://doi.org/10.1016/j.tca.2012.04.008

    Article  CAS  Google Scholar 

  51. Moynihan CT, Macedo PB, Montrose CJ et al (1976) Structural relaxation in vitreous materials. Ann N Y Acad Sci 279:15–35. https://doi.org/10.1111/j.1749-6632.1976.tb39688.x

    Article  CAS  Google Scholar 

  52. Moynihan CT, Easteal AJ, De Bolt MA et al (1976) Dependence of the fictive temperature of glass on cooling rate. J Am Ceram Soc 59:12–16. https://doi.org/10.1111/j.1151-2916.1976.tb09376.x

    Article  CAS  Google Scholar 

  53. Xiong XH, Zhou L, Ren R et al (2018) The thermal decomposition behavior and kinetics of epoxy resins cured with a novel phthalide-containing aromatic diamine. Polym Test 68:46–52. https://doi.org/10.1016/j.polymertesting.2018.02.012

    Article  CAS  Google Scholar 

  54. Huang WJ, He WT, Long LJ et al (2018) Highly efficient flame-retardant glass-fiber-reinforced polyamide 6T system based on a novel DOPO-based derivative: flame retardancy, thermal decomposition and pyrolysis behavior. Polym Degrad Stab 148:26–41. https://doi.org/10.1016/j.polymdegradstab.2018.01.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 51803020), International Science and Technology Cooperation Project (52011530027), Major Special Projects of Sichuan Province (No. 2020YFG0270, 2020ZDZX0020).

Author information

Authors and Affiliations

Authors

Contributions

T.L.: Conceptualization, Investigation, Validation, Writing—original draft, Writing—review and editing, Formal analysis. M.X., X.L.: Supervision, Conceptualization, Funding acquisition, Methodology, Writing—review and editing. Z.B.: Writing—review and editing, Validation, Investigation, Formal analysis, Resources. D.R.: Resources, Formal analysis. X.X.: Data curation, Formal analysis. W.C.: Resources, Formal analysis.

Corresponding authors

Correspondence to Mingzhen Xu or Xiaobo Liu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 64 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Xu, M., Bai, Z. et al. Toughening effect of poly (arylene ether nitrile) on phthalonitrile resin and fiber reinforced composites. J Mater Sci 57, 18343–18355 (2022). https://doi.org/10.1007/s10853-022-07780-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07780-x

Navigation