Skip to main content
Log in

Research on Nb doping–coating composite modification of LiNiO2 cathode material for lithium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

LiNiO2 (LNO) was synthesized by co-precipitation method and then modified by Nb2O5. Doped material N0 (doping molar ratio is 1%), doped and coated composite modified materials N1 and N2 (doping molar ratio is 1%, coating molar ratio is 0.5% and 1%, respectively) were obtained. XRD results show that Nb modified materials have good layered structure and low Li–Ni mixing. SEM image shows that the surface of the modified materials is more compact and smoother. EDS and TEM diagrams indicate that N1 and N2 samples can be successfully doped and coated with Nb compound. The electrochemical performance test results show that the Nb doping–coating composite modified materials have a significant impact on the cycle performance of LiNiO2, among which N1 has the best cycle performance. In the voltage range of 2.75–4.3 V, the initial discharge specific capacity of N1 at 0.1 C is 221.20 mAh/g, which is about 20 mAh/g higher than that of LiNiO2 material. And the capacity retention rate of N1 is 80.70% after 100 cycles at 1 C, which is also much higher than that of LiNiO2 (67.46%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Blomgren GE (2017) The Development and future of lithium ion batteries. J Electrochem Soc 164:A5019–A5025. https://doi.org/10.1149/2.0251701jes

    Article  CAS  Google Scholar 

  2. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789. https://doi.org/10.1016/0167-2738(81)90077-1

    Article  CAS  Google Scholar 

  3. Chen Z, Lu Z, Dahn JR (2002) Staging phase transitions in LixCoO2. J Electrochem Soc 149:A1604–A1609. https://doi.org/10.1149/1.1519850

    Article  CAS  Google Scholar 

  4. Dahn JR, Fuller EW, Obrovac M, Vonsacken U (1994) Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells. Solid State Ionics 69:265–270. https://doi.org/10.1016/0167-2738(94)90415-4

    Article  CAS  Google Scholar 

  5. Olivetti EA, Ceder G, Gaustad GG, Fu X (2017) Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1:229–243. https://doi.org/10.1016/j.joule.2017.08.019

    Article  Google Scholar 

  6. Dahn JR, Vonsacken U, Juzkow MW, Aljanaby H (1991) Rechargeable LiNiO2/carbon cells. J Electrochem Soc 138:2207–2211. https://doi.org/10.1149/1.2085950

    Article  CAS  Google Scholar 

  7. Liu W, Oh P, Liu X, Lee M, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angewandte Chemie-International Edition 54:4440–4457. https://doi.org/10.1002/anie.201409262

    Article  CAS  Google Scholar 

  8. Manthiram A, Vadivel Murugan A, Sarkar A, Muraliganth T (2008) Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ Sci 1:621–638. https://doi.org/10.1039/b811802g

    Article  CAS  Google Scholar 

  9. Kalyani P, Kalaiselvi N (2005) Various aspects of LiNiO2 chemistry: a review. Sci Technol Adv Mater 6:689–703. https://doi.org/10.1016/j.stam.2005.06.001

    Article  CAS  Google Scholar 

  10. Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiNi1/2Mn1/2O2: a possible alternative to LiCoO2 for advanced lithiumion batteries. Chem Lett 30:744–745. https://doi.org/10.1246/cl.2001.744

    Article  Google Scholar 

  11. Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714. https://doi.org/10.1021/cm902696j

    Article  CAS  Google Scholar 

  12. Li C, Zhang H, Fu L, Liu H, Wu Y, Rahm E, Holze R, Wu H (2006) Cathode materials modified by surface coating for lithium ion batteries. Electrochim Acta 51:3872–3883. https://doi.org/10.1016/j.electacta.2005.11.015

    Article  CAS  Google Scholar 

  13. Dixit M, Markovsky B, Aurbach D, Major DT (2017) Unraveling the effects of Al doping on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 using first principles. J Electrochem Soc 164:A6359–A6365. https://doi.org/10.1149/2.0561701jes

    Article  CAS  Google Scholar 

  14. Guilmard M, Pouillerie C, Croguennec L, Delmas C (2003) Structural and electrochemical properties of LiNi0.70Co0.15Al0.15O2. Solid State Ionics 160:39–50. https://doi.org/10.1016/S0167-2738(03)00106-1

    Article  CAS  Google Scholar 

  15. Lee KK, Yoon WS, Kim KB, Lee KY, Hong ST (2001) Characterization of LiNi0.85Co0.10M0.05O2 (M = Al, Fe) as a cathode material for lithium secondary batteries. J Power Sources 97–98:308–312. https://doi.org/10.1016/S0378-7753(01)00516-X

    Article  Google Scholar 

  16. Majumder SB, Nieto S, Katiyar RS (2006) Synthesis and electrochemical properties of LiNi0.80(Co0.20−xAlx)O2 (x = 0.0 and 0.05) cathodes for Li ion rechargeable batteries. J Power Sources 154:262–267. https://doi.org/10.1016/j.jpowsour.2005.03.186

    Article  CAS  Google Scholar 

  17. Kam KC, Doeff MM (2011) Aliovalent titanium substitution in layered mixed Li–Ni–Mn–Co oxides for lithium battery applications. J Mater Chem 21:9991–9993. https://doi.org/10.1039/c0jm04193a

    Article  CAS  Google Scholar 

  18. Chowdari BVR, Raob GVS, Chowa SY (2001) Cathodic behavior of (Co,Ti,Mg)-doped LiNiO2. Solid State Ionics 140:55–62. https://doi.org/10.1016/S0167-2738(01)00686-5

    Article  CAS  Google Scholar 

  19. Liu H, Li J, Zhang Z, Gong Z, Yang Y (2004) Structural, electrochemical and thermal properties of LiNi0.8−yTiyCo0.2O2 as cathode materials for lithium ion battery. Electrochim Acta 49:1151–1159. https://doi.org/10.1016/j.electacta.2003.11.001

    Article  CAS  Google Scholar 

  20. Sivaprakash S, Majumder SB (2009) Understanding the role of Zr4+ cation in improving the cycleability of LiNi0.8Co0.15Zr0.05O2 cathodes for Li ion rechargeable batteries. J Alloys Compd 479:561–568. https://doi.org/10.1016/j.jallcom.2008.12.129

    Article  CAS  Google Scholar 

  21. Kondo H, Takeuchi Y, Sasaki T, Kawauchi S, Itou Y, Hiruta O, Okuda C, Yonemura M, Kamiyama T, Ukyo Y (2007) Effects of Mg-substitution in Li(Ni,Co,Al)O2 positive electrode materials on the crystal structure and battery performance. J Power Sources 174:1131–1136. https://doi.org/10.1016/j.jpowsour.2007.06.035

    Article  CAS  Google Scholar 

  22. Xiang J, Chang C, Zhang F, Sun J (2008) Rheological phase synthesis and electrochemical properties of Mg-Doped LiNi0.8Co0.2O2 cathode materials for lithium-ion battery. J Electrochem Soc 155:A520–A525. https://doi.org/10.1149/1.2917213jes

    Article  CAS  Google Scholar 

  23. Naghash AR, Lee JY (2001) Lithium nickel oxyfluoride (Li1zNi1+zFyO2y) and lithium magnesium nickel oxide (Li1z(MgxNi1x)1+zO2) cathodes for lithium rechargeable batteries: II. Electrochemical investigations. Electrochim Acta 46:2293–2304. https://doi.org/10.1016/S0013-4686(01)00452-2

    Article  CAS  Google Scholar 

  24. Madhavi S, Rao GVS, Chowdari BVR, Li SFY (2002) Cathodic properties of (Al, Mg) co-doped LiNi0.7Co0.3O2. Solid State Ionics 152–153:199–205. https://doi.org/10.1016/S0167-2738(02)00301-6

    Article  Google Scholar 

  25. Zhang B, Li L, Zheng J (2012) Characterization of multiple metals (Cr, Mg) substituted LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery. J Alloys Compd 520:190–194. https://doi.org/10.1016/j.jallcom.2012.01.004

    Article  CAS  Google Scholar 

  26. Wu J, Liu H, Ye X, Xia J, Lu Y, Lin C, Yu X (2015) Effect of Nb doping on electrochemical properties of LiNi1/3Co1/3Mn1/3O2 at high cutoff voltage for lithium-ion battery. J Alloys Compd 644:223–227. https://doi.org/10.1016/j.jallcom.2015.04.166

    Article  CAS  Google Scholar 

  27. Chen M, Zhao E, Chen D, Wu M, Han S, Huang Q, Yang L, Xiao X, Hu Z (2017) Decreasing Li/Ni disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 by Ca doping. Inorg Chem 56:8355–8362. https://doi.org/10.1021/acs.inorgchem.7b01035

    Article  CAS  Google Scholar 

  28. Li J, Zhang M, Zhang D, Yan Y, Li Z (2020) An effective doping strategy to improve the cyclic stability and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode. Chem Eng J 402:126195. https://doi.org/10.1016/j.cej.2020.126195

    Article  CAS  Google Scholar 

  29. Tian F, Zhang Y, Liu Z, Monteiro RDS, Ribas RM, Gao P, Zhu Y, Yu H, Ben L, Huang X (2021) Investigation of structure and cycling performance of Nb5+ doped highnickel ternary cathode materials. Solid State Ionics 359:115520. https://doi.org/10.1016/j.ssi.2020.115520

    Article  CAS  Google Scholar 

  30. Xin F, Zhou H, Zong Y, Zuba M, Chen Y, Chernova NA, Bai J, Pei B, Goel A, Rana J, Wang F, An K, Piper LFJ, Zhou G, Whittingham MS (2021) What is the role of Nb in nickel-rich layered oxide cathodes for lithium-ion batteries? ACS Energy Lett 6:1377–1382. https://doi.org/10.1021/acsenergylett.1c00190

    Article  CAS  Google Scholar 

  31. Li J, Zhang M, Zhang D, Yan Y, Li Z (2020) An effective doping strategy to improve the cyclic stability and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode. Chem Eng J 402(2020):126195. https://doi.org/10.1016/j.cej.2020.126195

    Article  CAS  Google Scholar 

  32. Han Y, Cheng X, Zhao G, Qiang W, Huang B (2021) Effects of Al doping on the electrochemical performances of LiNi0.83Co0.12Mn0.05O2 prepared by coprecipitation. Ceram Int 47:12104–12110. https://doi.org/10.1016/j.ceramint.2021.01.055

    Article  CAS  Google Scholar 

  33. Jiang Y, Liu Z, Zhang Y, Hu H, Teng X, Wang D, Gao P, Zhu Y (2019) Full-gradient structured LiNi0.8Co0.1Mn0.1O2 cathode material with improved rate and cycle performance for lithium ion batteries. Electrochim Acta 309:74–85. https://doi.org/10.1016/j.electacta.2019.04.058

    Article  CAS  Google Scholar 

  34. Faenza NV, Bruce L, Lebens-Higgins ZW, Plitz I, Pereira N, Piper L, Amatucci GG (2017) Growth of ambient induced surface impurity species on layered positive electrode materials and impact on electrochemical performance. J Electrochem Soc 164(14):A3727–A3741

    Article  CAS  Google Scholar 

  35. Makimura Y, Sasaki T, Nonaka T, Nishimura YF, Uyama T, Okuda C, Itou Y, Takeuchi Y (2016) Factors affecting cycling life of LiNi0.8Co0.15Al0.05O2 for lithium-ion batteries. J Mater Chem A 4:8350–8358. https://doi.org/10.1039/C6TA01251E

    Article  CAS  Google Scholar 

  36. Schipper F, Erickson EM, Erk C, Shin JY, Chesneau FF, Aurbac D (2017) Review-recent advances and remaining challenges for lithium ion battery cathodes. J Electrochem Soc 164:A6341–A6348. https://doi.org/10.1149/2.0461701jes

    Article  CAS  Google Scholar 

  37. Liu A, Zhang N, Li H, Inglis J, Wang Y, Yin S, Wu H, Dahn JR (2019) Investigating the effects of magnesium doping in various Ni-rich positive electrode materials for lithium ion batteries. J Electrochem Soc 166:A4025–A4033. https://doi.org/10.1149/2.1101915jes

    Article  CAS  Google Scholar 

  38. Kim H, Choi A, Doo SW, Lim J, Kim Y, Lee KT (2018) Role of Na+ in the cation disorder of [Li1−xNax]NiO2 as a cathode for lithium-ion batteries. J Electrochem Soc 165:A201–A205. https://doi.org/10.1149/2.0771802jes

    Article  CAS  Google Scholar 

  39. Bianchini M, Roca-Ayats M, Hartmann P, Brezesinski T, Janek J (2019) There and back again—the journey of LiNiO2 as a cathode active material. Angew Chem Int Ed 58:10434–10458. https://doi.org/10.1002/anie.201812472

    Article  CAS  Google Scholar 

  40. Noh HJ, Youn S, Yoon CS, Sun YK (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithiumion batteries. J Power Sources 233:121–130. https://doi.org/10.1016/j.jpowsour.2013.01.063

    Article  CAS  Google Scholar 

  41. Li H, Cormier M, Zhang N, Inglis J, Li J, Dahn JR (2019) Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries? J Electrochem Soc 166:A429–A439. https://doi.org/10.1149/2.1381902jes

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of “The Fundamental Research Funds for the Central Universities” (Grant No. HIT.OCEF.2021038) and the support of CITC-metal/CBMM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Gao.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6658 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhu, Y., Pang, B. et al. Research on Nb doping–coating composite modification of LiNiO2 cathode material for lithium-ion batteries. J Mater Sci 57, 17722–17734 (2022). https://doi.org/10.1007/s10853-022-07777-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07777-6

Navigation