Skip to main content

Advertisement

Log in

A review on microstructural and tribological performance of additively manufactured parts

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) is rapidly growing owing to its high design freedom, better buy-to-fly ratios, and reduced fabrication time. The notable advantages and technological improvements made additive manufacturing employed in several industrial sectors. However, its acceptability in industries primarily depends on developed/improved mechanical properties. In response to this, significant research has been carried out to study the mechanical properties of parts produced by different AM routes, and also, the properties are well correlated with the microstructure, processing routes, and process parameters. Wear is another crucial aspect that limits the system's service life and performance. However, the influence of wear on the failure of additively manufactured parts is not well reported. Therefore, the current review aims to discuss the microstructural and tribological aspects of various additively manufactured parts and their dependence on process parameters, reinforcements, and heat treatment conditions. Also, this paper addresses the influence of fabrication routes on microstructures and the wear behavior of various alloy systems. The study concludes that it is important to understand the wear behavior and wear mechanism of AM parts' to positively control the process parameters and microstructure to reduce wear loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

(Source: Scopus)

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012:208760. https://doi.org/10.5402/2012/208760

    Article  Google Scholar 

  2. Astm I (2010) ASTM F2792–10: Standard terminology for additive manufacturing technologies. ASTM International

    Google Scholar 

  3. Hopkinson N, Hague RJM, Dickens PM et al (2006) Rapid manufacturing an industrial revolution for the digital age Chichister, England. Wiley

    Google Scholar 

  4. Lorusso M (2019) Tribological and Wear Behavior of Metal Alloys Produced by Laser Powder Bed Fusion (LPBF). Friction, Lubrication and Wear. https://doi.org/10.5772/INTECHOPEN.85167

    Article  Google Scholar 

  5. Gebler M, Schoot Uiterkamp AJM, Visser C (2014) A global sustainability perspective on 3D printing technologies. Energy Policy 74:158–167. https://doi.org/10.1016/j.enpol.2014.08.033

    Article  CAS  Google Scholar 

  6. Horn TJ, Harrysson OLA (2012) Overview of current additive manufacturing technologies and selected applications. Sci Prog 95:255–282. https://doi.org/10.3184/003685012X13420984463047

    Article  CAS  Google Scholar 

  7. Astm I (2015) ASTM52900-15 standard terminology for additive manufacturing—general principles—terminology. ASTM International, PA

    Google Scholar 

  8. Ngo TD, Kashani A, Imbalzano G et al (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  9. Milewski JO (2017) Lasers, electron beams, plasma arcs. Springer Ser Mater Sci 258:85–97. https://doi.org/10.1007/978-3-319-58205-4_5

    Article  CAS  Google Scholar 

  10. Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, second edition. 2nd Edn. Additive manufacturing technologies: 3d printing, rapid prototyping, and direct digital manufacturing. https://doi.org/10.1007/978-1-4939-2113-3

  11. DebRoy T, Wei HL, Zuback JS et al (2018) Additive manufacturing of metallic components–{Process}, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  CAS  Google Scholar 

  12. Aboulkhair NT, Simonelli M, Parry L et al (2019) 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci 106:100578. https://doi.org/10.1016/J.PMATSCI.2019.100578

    Article  CAS  Google Scholar 

  13. Joshi SC, Sheikh AA (2015) 3D printing in aerospace and its long-term sustainability. Virtual Phys Prototyping 10:175–185. https://doi.org/10.1080/17452759.2015.1111519

    Article  Google Scholar 

  14. Mohd J, Haleem A (2018) Additive manufacturing applications in medical cases: a literature based review. Alexandria J Med 54:411–422. https://doi.org/10.1016/j.ajme.2017.09.003

    Article  Google Scholar 

  15. Uriondo A, Esperon-Miguez M, Perinpanayagam S (2015) The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proc Inst Mech Eng, Part G: J Aerosp Eng 229(11):2132–2147. https://doi.org/10.1177/0954410014568797

    Article  CAS  Google Scholar 

  16. Dordlofva C, Lindwall A, Törlind P (2016) Opportunities and challenges for additive manufacturing in space applications. Proc NordDesign, NordDesign 2016:1

    Google Scholar 

  17. Kurzynowski T, Pawlak A, Smolina I (2020) The potential of SLM technology for processing magnesium alloys in aerospace industry. Arch Civil Mech Eng 20(1):1–13. https://doi.org/10.1007/S43452-020-00033-1/TABLES/3

    Article  Google Scholar 

  18. Hadadzadeh A, Amirkhiz BS, Mohammadi M (2019) Contribution of Mg2Si precipitates to the strength of direct metal laser sintered AlSi10Mg. Mater Sci Eng, A 739:295–300. https://doi.org/10.1016/J.MSEA.2018.10.055

    Article  CAS  Google Scholar 

  19. Amanov A (2021) Effect of post-additive manufacturing surface modification temperature on the tribological and tribocorrosion properties of Co-Cr-Mo alloy for biomedical applications. Surf Coat Technol 421:127378. https://doi.org/10.1016/J.SURFCOAT.2021.127378

    Article  CAS  Google Scholar 

  20. Jia Q, Gu D (2014) Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. J Alloy Compd 585:713–721. https://doi.org/10.1016/J.JALLCOM.2013.09.171

    Article  CAS  Google Scholar 

  21. Le VT, Mai DS, Hoang QH (2020) Effects of cooling conditions on the shape, microstructures, and material properties of SS308L thin walls built by wire arc additive manufacturing. Mater Lett 280:128580. https://doi.org/10.1016/J.MATLET.2020.128580

    Article  CAS  Google Scholar 

  22. Baufeld B, van der Biest O, Gault R, Ridgway K (2011) Manufacturing Ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties. IOP Conf Series: Mater Sci Eng. https://doi.org/10.1088/1757-899X/26/1/012001

    Article  Google Scholar 

  23. Zhang J, Song B, Wei Q et al (2019) A review of selective laser melting of aluminum alloys: {Processing}, microstructure, property and developing trends. J Mater Sci Technol 35:270–284. https://doi.org/10.1016/j.jmst.2018.09.004

    Article  CAS  Google Scholar 

  24. Tran HC, Lo YL (2019) Systematic approach for determining optimal processing parameters to produce parts with high density in selective laser melting process. Int J Adv Manuf Technol 105:4443–4460. https://doi.org/10.1007/S00170-019-04517-0/TABLES/7

    Article  Google Scholar 

  25. Ravichander BB, Mamidi K, Rajendran V et al (2022) Experimental investigation of laser scan strategy on the microstructure and properties of Inconel 718 parts fabricated by laser powder bed fusion. Mater Charact 186:111765. https://doi.org/10.1016/J.MATCHAR.2022.111765

    Article  CAS  Google Scholar 

  26. Kusuma C, Ahmed SH, Mian A, Srinivasan R (2017) Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti). J Mater Eng Perform 26:3560–3568. https://doi.org/10.1007/S11665-017-2768-6/FIGURES/15

    Article  CAS  Google Scholar 

  27. Greco S, Gutzeit K, Hotz H et al (2020) Selective laser melting (SLM) of AISI 316L—impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density. Int J Adv Manuf Technol 108:1551–1562. https://doi.org/10.1007/S00170-020-05510-8/FIGURES/13

    Article  Google Scholar 

  28. Zhu Y, Lin G, Khonsari MM et al (2018) Material characterization and lubricating behaviors of porous stainless steel fabricated by selective laser melting. J Mater Process Technol 262:41–52. https://doi.org/10.1016/J.JMATPROTEC.2018.06.027

    Article  CAS  Google Scholar 

  29. Suresh KS, Geetha M, Richard C et al (2012) Effect of equal channel angular extrusion on wear and corrosion behavior of the orthopedic Ti–13Nb–13Zr alloy in simulated body fluid. Mater Sci Eng, C 32:763–771. https://doi.org/10.1016/J.MSEC.2012.01.022

    Article  CAS  Google Scholar 

  30. Cvijović-Alagić I, Cvijović Z, Mitrović S et al (2011) Wear and corrosion behaviour of Ti–13Nb–13Zr and Ti–6Al–4V alloys in simulated physiological solution. Corros Sci 53:796–808. https://doi.org/10.1016/J.CORSCI.2010.11.014

    Article  Google Scholar 

  31. Marchese G, Parizia S, Saboori A et al (2020) (2020) The influence of the process parameters on the densification and microstructure development of laser powder bed fused inconel 939. Metals 10:882. https://doi.org/10.3390/MET10070882

    Article  CAS  Google Scholar 

  32. Enneti RK, Morgan R, Atre SV (2018) Effect of process parameters on the selective laser melting (SLM) of tungsten. Int J Refract Metal Hard Mater 71:315–319. https://doi.org/10.1016/J.IJRMHM.2017.11.035

    Article  CAS  Google Scholar 

  33. Fayazfar H, Salarian M, Rogalsky A et al (2018) A critical review of powder-based additive manufacturing of ferrous alloys: process parameters, microstructure and mechanical properties. Mater Des 144:98–128. https://doi.org/10.1016/J.MATDES.2018.02.018

    Article  CAS  Google Scholar 

  34. Azakli Z, Gümrük R (2021) Particle erosion performance of additive manufactured 316L stainless steel materials. Tribol Lett 69:1–16. https://doi.org/10.1007/S11249-021-01503-0/FIGURES/15

    Article  Google Scholar 

  35. Zhu Y, Zou J, Yang H, yong, (2018) Wear performance of metal parts fabricated by selective laser melting: a literature review. J Zhejiang Univ-Sci A 19:95–110. https://doi.org/10.1631/JZUS.A1700328

    Article  CAS  Google Scholar 

  36. Aghababaei R, Warner DH, Molinari JF (2016) Critical length scale controls adhesive wear mechanisms. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms11816

    Article  CAS  Google Scholar 

  37. Wear patterns and laws of wear – a review | Zmitrowicz | Journal of Theoretical and Applied Mechanics. http://www.ptmts.org.pl/jtam/index.php/jtam/article/view/v44n2p219. Accessed 13 Aug 2022

  38. Torrance AA (2005) Modelling abrasive wear. Wear 258:281–293. https://doi.org/10.1016/J.WEAR.2004.09.065

    Article  CAS  Google Scholar 

  39. Dwivedi DK (2010) Adhesive wear behaviour of cast aluminium–silicon alloys: overview. Mater Des 1980–2015(31):2517–2531. https://doi.org/10.1016/J.MATDES.2009.11.038

    Article  Google Scholar 

  40. Khruschov MM (1974) Principles of abrasive wear. Wear 28:69–88. https://doi.org/10.1016/0043-1648(74)90102-1

    Article  Google Scholar 

  41. Deuis RL, Subramanian C, Yellup JM (1996) Abrasive wear of aluminium composites—a review. Wear 201:132–144. https://doi.org/10.1016/S0043-1648(96)07228-6

    Article  CAS  Google Scholar 

  42. Galante R, Figueiredo-Pina CG, Serro AP (2019) Additive manufacturing of ceramics for dental applications: a review. Dent Mater 35:825–846. https://doi.org/10.1016/J.DENTAL.2019.02.026

    Article  CAS  Google Scholar 

  43. Vafadar A, Guzzomi F, Rassau A, Hayward K (2021) Advances in metal additive manufacturing: a review of common processes, industrial applications, and current challenges. Appl Sci 11:1213. https://doi.org/10.3390/APP11031213

    Article  CAS  Google Scholar 

  44. Toptan F, Rego A, Alves AC, Guedes A (2016) Corrosion and tribocorrosion behavior of Ti–B4C composite intended for orthopaedic implants. J Mech Behav Biomed Mater 61:152–163. https://doi.org/10.1016/J.JMBBM.2016.01.024

    Article  CAS  Google Scholar 

  45. Bartolomeu F, Abreu CS, Moura CG et al (2019) Ti6Al4V-PEEK multi-material structures–design, fabrication and tribological characterization focused on orthopedic implants. Tribol Int 131:672–678. https://doi.org/10.1016/J.TRIBOINT.2018.11.017

    Article  CAS  Google Scholar 

  46. Pradeep GVK, Duraiselvam M, Sivaprasad K (2022) Tribological behavior of laser surface melted γ-TiAl fabricated by electron beam additive manufacturing. J Mater Eng Perform 31:1009–1020. https://doi.org/10.1007/S11665-021-06278-Y/FIGURES/12

    Article  CAS  Google Scholar 

  47. Zhou H, Wu C, Tang D-Y et al (2021) Tribological performance of gradient ag-multilayer graphene/TC4 alloy self-lubricating composites prepared by laser additive manufacturing. Tribol Trans 64:819–829. https://doi.org/10.1080/10402004.2021.1922789

    Article  CAS  Google Scholar 

  48. Kc S, Nezhadfar PD, Phillips C et al (2019) Tribological behavior of 17–4 PH stainless steel fabricated by traditional manufacturing and laser-based additive manufacturing methods. Wear 440–441:203100. https://doi.org/10.1016/j.wear.2019.203100

    Article  CAS  Google Scholar 

  49. Kaya G, Yildiz F, Hacisaliho I (2019) Characterization of the structural and tribological properties of medical Ti6Al4V alloy produced in different production parameters using selective laser melting. 3D Printing Additive Manuf 6:253–261

    Article  Google Scholar 

  50. Moshkovith A, Perfiliev V, Gindin D et al (2007) Surface texturing using pulsed air arc treatment. Wear 263:1467–1469. https://doi.org/10.1016/J.WEAR.2006.11.043

    Article  CAS  Google Scholar 

  51. Mishra SP, Polycarpou AA (2011) Tribological studies of unpolished laser surface textures under starved lubrication conditions for use in air-conditioning and refrigeration compressors. Tribol Int 44:1890–1901. https://doi.org/10.1016/J.TRIBOINT.2011.08.005

    Article  CAS  Google Scholar 

  52. Alidokht SA, Abdollah-zadeh A, Soleymani S, Assadi H (2011) Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing. Mater Des 32:2727–2733. https://doi.org/10.1016/J.MATDES.2011.01.021

    Article  CAS  Google Scholar 

  53. Chen M, Alpas AT (2008) Ultra-mild wear of a hypereutectic Al–18.5 wt% Si alloy. Wear 265:186–195. https://doi.org/10.1016/J.WEAR.2007.10.002

    Article  CAS  Google Scholar 

  54. Dai HS, Liu XF (2008) Refinement performance and mechanism of an Al-50Si alloy. Mater Charact 59:1559–1563. https://doi.org/10.1016/J.MATCHAR.2008.01.020

    Article  CAS  Google Scholar 

  55. Kang N, el Mansori M (2020) A new insight on induced-tribological behaviour of hypereutectic Al-Si alloys manufactured by selective laser melting. Tribol Int 149:105751. https://doi.org/10.1016/j.triboint.2019.04.035

    Article  CAS  Google Scholar 

  56. Gode C, Yilmazer H, Ozdemir I, Todaka Y (2014) Microstructural refinement and wear property of Al–Si–Cu composite subjected to extrusion and high-pressure torsion. Mater Sci Eng, A 618:377–384. https://doi.org/10.1016/J.MSEA.2014.09.011

    Article  CAS  Google Scholar 

  57. Liu J, Zhou Y, Fan Y, Chen X (2018) Effect of laser hatch style on densification behavior, microstructure, and tribological performance of aluminum alloys by selective laser melting. J Mater Res 33:1713–1722. https://doi.org/10.1557/jmr.2018.166

    Article  CAS  Google Scholar 

  58. Suryawanshi J, Prashanth KG, Scudino S et al (2016) Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Mater 115:285–294. https://doi.org/10.1016/J.ACTAMAT.2016.06.009

    Article  CAS  Google Scholar 

  59. Arafune K, Hirata A (1999) Thermal and solutal Marangoni convection in In–Ga–Sb system. J Cryst Growth 197:811–817. https://doi.org/10.1016/S0022-0248(98)01071-9

    Article  CAS  Google Scholar 

  60. Rathod HJ, Nagaraju T, Prashanth KG, Ramamurty U (2019) Tribological properties of selective laser melted Al–12Si alloy. Tribol Int 137:94–101. https://doi.org/10.1016/j.triboint.2019.04.038

    Article  CAS  Google Scholar 

  61. Prashanth KG, Debalina B, Wang Z et al (2014) Tribological and corrosion properties of Al-12Si produced by selective laser melting. J Mater Res 29:2044–2054. https://doi.org/10.1557/jmr.2014.133

    Article  CAS  Google Scholar 

  62. Kang N, Coddet P, Liao H et al (2016) Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting. Appl Surf Sci 378:142–149. https://doi.org/10.1016/j.apsusc.2016.03.221

    Article  CAS  Google Scholar 

  63. Torralba JD, Da Costa CE, Velasco F (2003) P/M aluminum matrix composites: an overview. J Mater Process Technol 133:203–206. https://doi.org/10.1016/S0924-0136(02)00234-0

    Article  CAS  Google Scholar 

  64. Chen F, Gupta N, Behera RK, Rohatgi PK (2018) Graphene-reinforced aluminum matrix composites: a review of synthesis methods and properties. JOM 70:837–845. https://doi.org/10.1007/S11837-018-2810-7/FIGURES/5

    Article  CAS  Google Scholar 

  65. Xi L, Wang P, Prashanth KG et al (2019) Effect of TiB2 particles on microstructure and crystallographic texture of Al-12Si fabricated by selective laser melting. J Alloy Compd 786:551–556. https://doi.org/10.1016/J.JALLCOM.2019.01.327

    Article  CAS  Google Scholar 

  66. Singh H, Raina A, Irfan Ul Haq M (2018) Effect of TiB2 on mechanical and tribological properties of aluminium alloys – a review. Mater Today: Proc 5:17982–17988. https://doi.org/10.1016/J.MATPR.2018.06.130

    Article  CAS  Google Scholar 

  67. Li XP, Ji G, Chen Z et al (2017) Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater 129:183–193. https://doi.org/10.1016/J.ACTAMAT.2017.02.062

    Article  CAS  Google Scholar 

  68. Xi L, Guo S, Gu D et al (2020) Microstructure development, tribological property and underlying mechanism of laser additive manufactured submicro-TiB2 reinforced Al-based composites. J Alloy Compd 819:152980. https://doi.org/10.1016/J.JALLCOM.2019.152980

    Article  CAS  Google Scholar 

  69. Yuan L, Ding S, Wen C (2019) Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioactive Mater 4:56–70. https://doi.org/10.1016/J.BIOACTMAT.2018.12.003

    Article  Google Scholar 

  70. Bartolomeu F, Sampaio M, Carvalho O et al (2017) Tribological behavior of Ti6Al4V cellular structures produced by selective laser melting. J Mech Behav Biomed Mater 69:128–134. https://doi.org/10.1016/j.jmbbm.2017.01.004

    Article  CAS  Google Scholar 

  71. Sagbas B, Gencelli G, Sever A (2021) Effect of process parameters on tribological properties of Ti6Al4V surfaces manufactured by selective laser melting. J Mater Eng Perform. https://doi.org/10.1007/s11665-021-05573-y

    Article  Google Scholar 

  72. Yang Y, Zhu Y, Yang H (2020) Enhancing wear resistance of selective laser melted parts: influence of energy density. J Tribol. https://doi.org/10.1115/1.4047297/1083964

    Article  Google Scholar 

  73. Palanisamy C, Bhero S, Abiodun Obadele B, Apata Olubambi P (2018) Effect of build direction on the microhardness and dry sliding wear behaviour of laser additive manufactured Ti-6Al-4V. Mater Today: Proc 5:397–402. https://doi.org/10.1016/j.matpr.2017.11.097

    Article  CAS  Google Scholar 

  74. Hanzl P, Zetek M, Bakša T, Kroupa T (2015) The influence of processing parameters on the mechanical properties of SLM parts. Procedia Eng 100:1405–1413. https://doi.org/10.1016/J.PROENG.2015.01.510

    Article  Google Scholar 

  75. He W, Jia W, Liu H et al (2011) Research on preheating of titanium alloy powder in electron beam melting technology. Rare Metal Mater Eng 40:2072–2075. https://doi.org/10.1016/S1875-5372(12)60014-9

    Article  CAS  Google Scholar 

  76. Toh WQ, Wang P, Tan X et al (2016) Microstructure and wear properties of electron beam melted Ti-6Al-4V parts: A comparison study against as-cast form. Metals (Basel) 6:9–13. https://doi.org/10.3390/met6110284

    Article  Google Scholar 

  77. Toh W, Tan X, Sun Z, et al (2016) Comparative study on tribological behavior of Ti-6Al-4V and Co–Cr–Mo Samples additively manufactured with electron beam melting. dr.ntu.edu.sg 342

  78. Khun NW, Toh WQ, Tan XP et al (2018) Tribological properties of three-dimensionally printed Ti-6Al-4V material via electron beam melting process tested against 100Cr6 steel without and with Hank’s solution. J Tribol 140:1–8. https://doi.org/10.1115/1.4040158

    Article  CAS  Google Scholar 

  79. Chandramohan P, Bhero S, Obadele BA, Olubambi PA (2017) Laser additive manufactured Ti–6Al–4V alloy: tribology and corrosion studies. Int J Adv Manuf Technol 92:3051–3061. https://doi.org/10.1007/s00170-017-0410-2

    Article  Google Scholar 

  80. Roudnicka M, Bayer F, Michalcova A et al (2020) Biomedical titanium alloy prepared by additive manufacturing: effect of pro-cessing on tribology. Manuf Technol 20:809–816

    Google Scholar 

  81. Yetim AF, Celik A, Alsaran A (2010) Improving tribological properties of Ti6Al4V alloy with duplex surface treatment. Surf Coat Technol 205:320–324. https://doi.org/10.1016/J.SURFCOAT.2010.06.048

    Article  CAS  Google Scholar 

  82. Cai C, Radoslaw C, Zhang J et al (2019) In-situ preparation and formation of TiB/Ti-6Al-4V nanocomposite via laser additive manufacturing: Microstructure evolution and tribological behavior. Powder Technol 342:73–84. https://doi.org/10.1016/j.powtec.2018.09.088

    Article  CAS  Google Scholar 

  83. Attar H, Bönisch M, Calin M et al (2014) Selective laser melting of in situ titanium–titanium boride composites: {Processing}, microstructure and mechanical properties. Acta Mater 76:13–22. https://doi.org/10.1016/j.actamat.2014.05.022

    Article  CAS  Google Scholar 

  84. Haghdadi N, Laleh M, Moyle M, Primig S (2021) Additive manufacturing of steels: a review of achievements and challenges. J Mater Sci 56:64–107. https://doi.org/10.1007/s10853-020-05109-0

    Article  CAS  Google Scholar 

  85. Bajaj P, Hariharan A, Kini A et al (2020) Steels in additive manufacturing: A review of their microstructure and properties. Mater Sci Eng, A 772:138633. https://doi.org/10.1016/J.MSEA.2019.138633

    Article  CAS  Google Scholar 

  86. Alvi S, Saeidi K, Akhtar F (2020) High temperature tribology and wear of selective laser melted (SLM) 316L stainless steel. Wear 448–449:203228. https://doi.org/10.1016/J.WEAR.2020.203228

    Article  Google Scholar 

  87. Upadhyay RK, Kumar A (2020) Scratch and wear resistance of additive manufactured 316L stainless steel sample fabricated by laser powder bed fusion technique. Wear 458–459:203437. https://doi.org/10.1016/j.wear.2020.203437

    Article  CAS  Google Scholar 

  88. Chen K, Li H, Lim CH et al (2022) Fine grains within narrow temperature range by tuning strain-induced boundary migration dominated recrystallization for selective laser melted Inconel 718. Scripta Mater 219:114882. https://doi.org/10.1016/J.SCRIPTAMAT.2022.114882

    Article  CAS  Google Scholar 

  89. Bartolomeu F, Buciumeanu M, Pinto E et al (2017) 316L stainless steel mechanical and tribological behavior—A comparison between selective laser melting, hot pressing and conventional casting. Addit Manuf 16:81–89. https://doi.org/10.1016/j.addma.2017.05.007

    Article  CAS  Google Scholar 

  90. Kumar S, Kruth JP (2008) Wear performance of SLS/SLM materials. Adv Eng Mater 10:750–753. https://doi.org/10.1002/adem.200800075

    Article  CAS  Google Scholar 

  91. Bae KC, Ha KS, Kim YH et al (2020) Building direction dependence of wear resistance of selective laser melted AISI 316L stainless steel under high-speed tribological environment. Int J Adv Manuf Technol 108:2385–2396. https://doi.org/10.1007/s00170-020-05572-8

    Article  Google Scholar 

  92. Filleter T, McChesney JL, Bostwick A et al (2009) Friction and dissipation in epitaxial graphene films. Phys Rev Lett 102:086102. https://doi.org/10.1103/PHYSREVLETT.102.086102/FIGURES/3/MEDIUM

    Article  CAS  Google Scholar 

  93. Geim AK, Novoselov KS (2009) The rise of graphene. Nanosci Technol: A Collect Rev Nat J. https://doi.org/10.1142/9789814287005_0002

    Article  Google Scholar 

  94. Mandal A, Tiwari JK, AlMangour B et al (2020) Tribological behavior of graphene-reinforced 316L stainless-steel composite prepared via selective laser melting. Tribol Int 151:106525. https://doi.org/10.1016/j.triboint.2020.106525

    Article  CAS  Google Scholar 

  95. Tascioglu E, Karabulut Y, Kaynak Y (2020) Influence of heat treatment temperature on the microstructural, mechanical, and wear behavior of 316L stainless steel fabricated by laser powder bed additive manufacturing. Int J Adv Manuf Technol 107:1947–1956. https://doi.org/10.1007/s00170-020-04972-0

    Article  Google Scholar 

  96. Walczak M, Szala M (2021) Effect of shot peening on the surface properties, corrosion and wear performance of 17–4PH steel produced by DMLS additive manufacturing. Arch Civil Mech Eng 21:1–20. https://doi.org/10.1007/S43452-021-00306-3/FIGURES/13

    Article  Google Scholar 

  97. Kameyama Y, Komotori J (2009) Effect of micro ploughing during fine particle peening process on the microstructure of metallic materials. J Mater Process Technol 209:6146–6155. https://doi.org/10.1016/J.JMATPROTEC.2009.08.010

    Article  CAS  Google Scholar 

  98. Jelliti S, Richard C, Retraint D et al (2013) Effect of surface nanocrystallization on the corrosion behavior of Ti–6Al–4V titanium alloy. Surf Coat Technol 224:82–87. https://doi.org/10.1016/J.SURFCOAT.2013.02.052

    Article  CAS  Google Scholar 

  99. Thapliyal S (2019) Challenges associated with the wire arc additive manufacturing ({WAAM}) of aluminum alloys. Mater Res Express 6:112006. https://doi.org/10.1088/2053-1591/ab4dd4

    Article  Google Scholar 

  100. Haden CV, Zeng G, Carter FM et al (2017) Wire and arc additive manufactured steel: Tensile and wear properties. Additive Manuf 16:115–123. https://doi.org/10.1016/j.addma.2017.05.010

    Article  CAS  Google Scholar 

  101. Xie B, Xue J, Ren X (2020) Wire arc deposition additive manufacturing and experimental study of 316L stainless steel by CMT + P process. Metals 10:1419. https://doi.org/10.3390/MET10111419

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from the Aerospace Research and Development Board of Government of India under Grant No. ARDB/01/2031958/M/I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hemachandra.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemachandra, M., Thapliyal, S. & Adepu, K. A review on microstructural and tribological performance of additively manufactured parts. J Mater Sci 57, 17139–17161 (2022). https://doi.org/10.1007/s10853-022-07736-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07736-1

Navigation