Skip to main content

Advertisement

Log in

Rationally designed N/P dual-doped ordered mesoporous carbon for supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Heteroatom-doped mesoporous carbons have gained significant attention for their high energy density in supercapacitors. In this present study, we report the synthesis of nitrogen (N) and phosphorous (P) co-doped ordered mesoporous carbon (NPMC) by a simple and scalable technique wet impregnation method in one step using an ordered mesoporous silica template (SBA-15). Low-angle XRD patterns, transmission electron micrographs and N2 sorption measurement confirmed the synthesized materials ordered mesoporous nature (interconnected honeycomb 2D hexagonal pores of size ~ 10 nm). The charge storage capacity of NPMC is explored both in aqueous and non-aqueous electrolytes. NPMC exhibited a significant faradaic process in an aqueous medium, whereas it was absent in non-aqueous. NPMC delivered a high specific capacitance of 183 F g−1 with remarkable capacitance retention of 94% even after 10000 charge–discharge cycles at 5 A g−1 current density in the aqueous medium. In a non-aqueous medium, NPMC exhibited an impressive energy density and power density of 41 Wh kg−1 (@1 A g−1) and 14400 W kg−1 (@20 A g−1), respectively. The retention of the ordered mesoporous structure of carbon with doping is the novelty of this work. It paves new ways to generate high-performance materials compared to the undoped ones for supercapacitor and battery applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors scientific fundamentals and technological applications. ISBN 978-1-4757-3058-6.

  2. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652. https://doi.org/10.1126/science.1158736

    Article  CAS  Google Scholar 

  3. Sarangapani S, Tilak BV, Chen CP (1996) Materials for electrochemical capacitors: theoretical and experimental constraints. J Electrochem Soc 143:3791–3799. https://doi.org/10.1149/1.1837291

    Article  CAS  Google Scholar 

  4. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531. https://doi.org/10.1039/B813846J

    Article  CAS  Google Scholar 

  5. Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946. https://doi.org/10.1002/anie.200702505

    Article  CAS  Google Scholar 

  6. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854. https://doi.org/10.1038/nmat2297

    Article  CAS  Google Scholar 

  7. Song Z, Miao L, Li L, Zhu D, Gan L, Liu M (2021) A robust strategy of solvent choice to synthesize optimal nanostructured carbon for efficient energy storage. Carbon 180:135–145. https://doi.org/10.1016/j.carbon.2021.04.078

    Article  CAS  Google Scholar 

  8. Xia X, Zhang Y, Chao D, Guan C, Zhang Y, Li L, Ge X, Bacho IM, Tu J, Fan HJ (2014) Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6:5008–5048. https://doi.org/10.1039/C4NR00024B

    Article  CAS  Google Scholar 

  9. Lota G, Fic K, Frackowiak E (2011) Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci 4:1592–1605. https://doi.org/10.1039/C0EE00470G

    Article  CAS  Google Scholar 

  10. Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131. https://doi.org/10.1016/j.nanoen.2011.11.001

    Article  CAS  Google Scholar 

  11. Bryan AM, Santino LM, Lu Y, Acharya S, D’Arcy JM (2016) Conducting polymers for pseudocapacitive energy storage. Chem Mater 28:5989–5998. https://doi.org/10.1021/acs.chemmater.6b01762

    Article  CAS  Google Scholar 

  12. Yue X, Yang H, Cao Y, Jiang L, Li H, Shi F, Liu J (2022) Nitrogen-doped cornstalk-based biomass porous carbon with uniform hierarchical pores for high-performance symmetric supercapacitors. J Mater Sci 57:3645–3661. https://doi.org/10.1007/s10853-022-06891-9

    Article  CAS  Google Scholar 

  13. Du W, La M, Song Z, Zheng X, Lv Y, Zhu D, Gan L, Liu M (2022) Kinetics-driven design of 3D VN/MXene composite structure for superior zinc storage and charge transfer. J Power Sources 536:231512. https://doi.org/10.1016/j.jpowsour.2022.231512

    Article  CAS  Google Scholar 

  14. Duan H, Song Z, Miao L, Li L, Zhu D, Gan L, Liu M (2022) Unraveling the role of solvent–precursor interaction in fabricating heteroatomic carbon cathode for high-energy-density Zn-ion storage. J Mater Chem A 10:9837–9847. https://doi.org/10.1039/D2TA00754A

    Article  CAS  Google Scholar 

  15. Ghotbi MY, Javanmard A, Soleimani H (2021) Layered nanoreactor assisted to produce B-doped and P-doped 3D carbon nanostructures for supercapacitor electrodes. J Energy Storage 44:103514. https://doi.org/10.1016/j.est.2021.103514

    Article  Google Scholar 

  16. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502. https://doi.org/10.1021/nl802558y

    Article  CAS  Google Scholar 

  17. Baughman RH, Zakhidov AA, Heer WAD (2002) Carbon nanotubes-the route toward applications. Science 297:787–792. https://doi.org/10.1126/science.1060928

    Article  CAS  Google Scholar 

  18. Wang K, Wang Y, Wang Y, Hosono E, Zhou H (2009) Mesoporous carbon nanofibers for supercapacitor application. J Phys Chem C 113:1093–1097. https://doi.org/10.1021/jp807463u

    Article  CAS  Google Scholar 

  19. Kesavan T, Partheeban T, Vivekanantha M, Kundu M, Maduraiveeran G, Sasidharan M (2019) Hierarchical nanoporous activated carbon as potential electrode materials for high performance electrochemical supercapacitor. Microporous Mesoporous Mater 274:236–244. https://doi.org/10.1016/j.micromeso.2018.08.006

    Article  CAS  Google Scholar 

  20. Kesavan T, Sasidharan M (2019) Palm spathe derived N-doped carbon nanosheets as a high performance electrode for Li-ion batteries and supercapacitors. ACS Sustain Chem Eng 7:12160–12169. https://doi.org/10.1021/acssuschemeng.9b01261

    Article  CAS  Google Scholar 

  21. Peng H, Yao B, Wei X, Liu T, Kou T, Xiao P, Zhang Y, Li Y (2019) Pore and heteroatom engineered carbon foams for supercapacitors. Adv Energy Mater 9:1803665. https://doi.org/10.1002/aenm.201803665

    Article  CAS  Google Scholar 

  22. Raja M, Sadhasivam B, Naik RJ, Dhamodharan R, Ramanujam K (2019) A chitosan/poly(ethylene glycol)-ran-poly(propylene glycol) blend as an eco-benign separator and binder for quasi-solid-state supercapacitor applications. Sustain Energy Fuels 3:760–773. https://doi.org/10.1039/C8SE00530C

    Article  CAS  Google Scholar 

  23. Zhou H, Zhu S, Hibino M, Honma I, Ichihara M (2003) Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv Mater 15:2107–2111. https://doi.org/10.1002/adma.200306125

    Article  CAS  Google Scholar 

  24. Stein A, Wang Z, Fierke MA (2009) Functionalization of porous carbon materials with designed pore architecture. Adv Mater 21:265–293. https://doi.org/10.1002/adma.200801492

    Article  CAS  Google Scholar 

  25. Mao Y, Duan H, Xu B, Zhang L, Hu Y, Zhao C, Wang Z, Chen L, Yang Y (2012) Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci 5:7950–7955. https://doi.org/10.1039/C2EE21817H

    Article  CAS  Google Scholar 

  26. Chen W, Wan M, Liu Q, Xiong X, Yu F, Huang Y (2019) Heteroatom-doped carbon materials: synthesis, mechanism, and application for sodium-ion batteries. Small Methods 3:1800323. https://doi.org/10.1002/smtd.201800323

    Article  CAS  Google Scholar 

  27. Abbas Q, Raza R, Shabbir I, Olabide AG (2019) Heteroatom doped high porosity carbon nanomaterials as electrodes for energy storage in electrochemical capacitors: a review. J Sci Adv Mater Devices 4:341–352. https://doi.org/10.1016/j.jsamd.2019.07.007

    Article  Google Scholar 

  28. Vinu A (2008) Two-Dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content. Adv Funct Mater 18:816–827. https://doi.org/10.1002/adfm.200700783

    Article  CAS  Google Scholar 

  29. Shi Q, Zhang R, Lv Y, Deng Y, Elzatahrya AA, Zhao D (2015) Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor. Carbon 84:335–346. https://doi.org/10.1016/j.carbon.2014.12.013

    Article  CAS  Google Scholar 

  30. Wu J, Yang Z, Li X, Sun Q, Jin C, Strasserd P, Yang R (2013) Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction. J Mater Chem A 1:9889–9896. https://doi.org/10.1039/C3TA11849E

    Article  CAS  Google Scholar 

  31. Xu Y, Tomita A, Takashi K (2005) Double coaxial structure and dual physicochemical properties of carbon nanotubes composed of stacked nitrogen-doped and undoped multiwalls. Chem Mater 17:2940–2945. https://doi.org/10.1021/cm047830m

    Article  CAS  Google Scholar 

  32. Cai J, Wu C, Zhu Y, Zhang K, Shen PK (2017) Sulfur impregnated N, P-co-doped hierarchical porous carbon as cathode for high performance Li-S batteries. J Power Sources 341:165–174. https://doi.org/10.1016/j.jpowsour.2016.12.008

    Article  CAS  Google Scholar 

  33. Gao Y, Wang Q, Ji G, Li A, Niu J (2021) Doping strategy, properties and application of heteroatom-doped ordered mesoporous carbon. RSC Adv 11:5361–5383. https://doi.org/10.1039/D0RA08993A

    Article  CAS  Google Scholar 

  34. Xin X, Kang H, Feng J, Sui L, Dong H, Zhao P, Pang B, Chen Y, Sun Q, Ma S, Zhang R, Dong L, Yu L (2020) A novel sol-gel strategy for N, P dual-doped mesoporous carbon with high specific capacitance and energy density for advanced supercapacitors. Chem Eng J 393:124710. https://doi.org/10.1016/j.cej.2020.124710

    Article  CAS  Google Scholar 

  35. Zhang D, Zheng L, Ma Y, Lei L, Li Q, Li Y, Luo H, Feng H, Hao Y (2014) Synthesis of nitrogen- and sulfur-codoped 3d cubic-ordered mesoporous carbon with superior performance in supercapacitors. ACS Appl Mater Interfaces 6:2657–2665. https://doi.org/10.1021/am405128j

    Article  CAS  Google Scholar 

  36. Panja T, Bhattacharjya D, Yu J-S (2015) Nitrogen and phosphorus co-doped cubic ordered mesoporous carbon as a supercapacitor electrode material with extraordinary cyclic stability. J Mater Chem A 3:18001–18009. https://doi.org/10.1039/C5TA04169D

    Article  CAS  Google Scholar 

  37. Liang K, Wang W, Yu Y, Liu L, Lv H, Zhang Y, Chen A (2019) Synthesis of nitrogen-doped mesoporous carbon for high-performance supercapacitors. New J Chem 43:2776–2782. https://doi.org/10.1039/C8NJ05938A

    Article  CAS  Google Scholar 

  38. Zhou J, Ye S, Zeng Q, Yang H, Chen J, Guo Z, Jiang H, Rajan K (2020) Nitrogen and phosphorus co-doped porous carbon for high-performance supercapacitors. Front Chem 8:1–8. https://doi.org/10.3389/fchem.2020.00105

    Article  CAS  Google Scholar 

  39. Yang Q, Huang J, Tu J, Wu K, Huang H, Wang D, Yao J, Li L (2021) A micropore-dominant N, P, S-codoped porous carbon originating from hydrogel for high-performance supercapacitors mediated by phytic acid. Microporous Mesoporous Mater 316:110951. https://doi.org/10.1016/j.micromeso.2021.110951

    Article  CAS  Google Scholar 

  40. Zhou Y, Tang L, Yang G, Zeng G, Deng Y, Huang B, Cai Y, Tang J, Wang J, Wu Y (2016) Phosphorus-doped ordered mesoporous carbons embedded with Pd/Fe bimetal nanoparticles for the dechlorination of 2,4-dichlorophenol. Catal Sci Technol 6:1930–1939. https://doi.org/10.1039/C5CY01514F

    Article  CAS  Google Scholar 

  41. Song W, Kan J, Wang H, Zhao X, Zheng Y, Zhang H, Tao L, Huang M, Liu W, Shi J (2019) Nitrogen and sulfur co-doped mesoporous carbon for sodium ion batteries. ACS Appl Nano Mater 2:5643–5654. https://doi.org/10.1021/acsanm.9b01178

    Article  CAS  Google Scholar 

  42. Xie K, Zhang M, Yang Y, Zhao L, Qi W (2018) Synthesis and supercapacitor performance of polyaniline/nitrogen-doped ordered mesoporous carbon composites. Nanoscale Res Lett 13:163. https://doi.org/10.1186/s11671-018-2577-3

    Article  CAS  Google Scholar 

  43. Subramani K, Shunmugasundaram S, Duraisamy V, Ilavarasi R, Kumar SMS, Sathish M (2022) Dual heteroatoms doped SBA-15 templated porous carbon for symmetric supercapacitor in dual redox additive electrolyte. J Colloid Interface Sci 606:286–297. https://doi.org/10.1016/j.jcis.2021.08.002

    Article  CAS  Google Scholar 

  44. Lin Y, Hu Z, Shao Y, Chen Z, Wei X, Wu Z (2021) Single-precursor design and solvent-free nanocasting synthesis of N/S/O-doped ordered mesoporous carbons with trimodal pores for excellent oxygen reduction. Carbon 183:390–403. https://doi.org/10.1016/j.carbon.2021.07.030

    Article  CAS  Google Scholar 

  45. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122:10712–10713. https://doi.org/10.1021/ja002261e

    Article  CAS  Google Scholar 

  46. Kesavan T, Partheeban T, Vivekanantha M, Prabu N, Kundu M, Premkumar S, Umapathy S, Vinu A, Sasidharan M (2020) Design of P-doped mesoporous carbon nitrides as high performance anode materials for Li ion battery. ACS Appl Mater Interfaces 12:24007–24018. https://doi.org/10.1021/acsami.0c05123

    Article  CAS  Google Scholar 

  47. Chen LF, Huang ZH, Liang HW, Gao HL, Yu SH (2014) Three-Dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater 24:5104–5111. https://doi.org/10.1002/adfm.201400590

    Article  CAS  Google Scholar 

  48. Wei D, Liu Y, Cao L, Fu L, Li X, Wang Y, Yu G, Zhu D (2006) A new method to synthesize complicated multibranched carbon nanotubes with controlled architecture and composition. Nano Lett 6:186–192. https://doi.org/10.1021/nl051955o

    Article  CAS  Google Scholar 

  49. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401–187404. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  Google Scholar 

  50. Kesavan T, Saravanan RSA, Dharaneshwar S, Prabu N, Sasidharan M (2021) N-Doped carbon nanosheets from biomass for ultra long-cycling and high energy density symmetric supercapacitors. ECS J Solid State Sci Technol 10:051004. https://doi.org/10.1149/2162-8777/abfd04

    Article  CAS  Google Scholar 

  51. Cui Y, Zhang J, Zhang G, Huang J, Liu P, Antonietti M, Wang X (2011) Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. J Mater Chem 21:13032–13039. https://doi.org/10.1039/C1JM11961C

    Article  CAS  Google Scholar 

  52. Claeyssens F, Fuge GM, Allan NL, May PW, Ashfold MNR (2004) Phosphorus carbides: theory and experiment. Dalton Trans, 3085–3092. https://doi.org/10.1039/B402740J

  53. Blanchard PER, Grosvenor AP, Cavell RG, Mar A (2008) X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M2P and M3P (M = Cr−Ni). Chem Mater 20:7081–7088. https://doi.org/10.1021/cm802123a

    Article  CAS  Google Scholar 

  54. Chao S, Zou F, Wan F, Dong X, Wang Y, Wang Y, Guan Q, Wang G, Li W (2017) Nitrogen-doped carbon derived from ZIF-8 as a high-performance metal-free catalyst for acetylene hydrochlorination. Sci Rep 7:39789. https://doi.org/10.1038/srep39789

    Article  CAS  Google Scholar 

  55. Cai W, Ding J, He Y, Chen X, Yuan D, Chen C, Cheng L, Du W, Wan H, Guan G (2021) Nitrogen-doped microporous carbon prepared by one-step carbonization: Rational design of a polymer precursor for efficient CO2 capture. Energy Fuels 35:8857–8867. https://doi.org/10.1021/acs.energyfuels.1c00294

    Article  CAS  Google Scholar 

  56. Choi CH, Park SH, Woo SI (2012) Phosphorus–nitrogen dual doped carbon as an effective catalyst for oxygen reduction reaction in acidic media: effects of the amount of P-doping on the physical and electrochemical properties of carbon. J Mater Chem 22:12107–12115. https://doi.org/10.1039/C2JM31079A

    Article  CAS  Google Scholar 

  57. Kumar MP, Kesavan T, Kalita G, Ragupathy P, Narayanan TN, Pattanayak DK (2014) On the large capacitance of nitrogen doped graphene derived by a facile route. RSC Adv 4:38689–38697. https://doi.org/10.1039/C4RA04927FM

    Article  CAS  Google Scholar 

  58. Karnan M, Subramani K, Sudhan N, Ilayaraja N, Sathish M (2016) Aloe vera derived activated high-surface-area carbon for flexible and high-energy supercapacitors. ACS Appl Mater Interfaces 8:35191–35202. https://doi.org/10.1021/acsami.6b10704

    Article  CAS  Google Scholar 

  59. Jiao W, Li N, Wang L, Wen L, Li F, Liu G, Cheng H-M (2013) High-rate lithium storage of anatase TiO2 crystals doped with both nitrogen and sulfur. Chem Comm 49:3461–3463. https://doi.org/10.1039/C3CC40568K

    Article  CAS  Google Scholar 

  60. Senthil C, Kesavan T, Bhaumik A, Yoshio M, Sasidharan M (2017) Nitrogen rich carbon coated TiO2 nanoparticles as anode for high performance lithium-ion battery. Electrochim Acta 255:417–427. https://doi.org/10.1016/j.electacta.2017.10.001

    Article  CAS  Google Scholar 

  61. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614. https://doi.org/10.1039/C3EE44164D

    Article  CAS  Google Scholar 

  62. Stoller MD, Ruoff RS (2010) Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ Sci 3:1294–1301. https://doi.org/10.1039/C0EE00074D

    Article  CAS  Google Scholar 

  63. Stoller MD, Murali S, Quarles N, Zhu Y, Potts JR, Zhu X, Ha H-W, Ruoff RS (2012) Activated graphene as a cathode material for li-ion hybrid supercapacitors. Phys Chem Chem Phys 14:3388–3391. https://doi.org/10.1039/C2CP00017B

    Article  CAS  Google Scholar 

  64. Tian X, Ma H, Li Z, Yan S, Ma L, Yu F, Wang G, Guo X, Ma Y, Wong C (2017) Flute type micropores activated carbon from cotton stalk for high performance supercapacitors. J Power Sources 359:88–96. https://doi.org/10.1016/j.jpowsour.2017.05.054

    Article  CAS  Google Scholar 

  65. Abraham DP, Reynolds EM, Schultz PL, Jansen AN, Dees DW (2006) Temperature dependence of capacity and impedance data from fresh and aged high-power lithium-ion cells. J Electrochem Soc 153:A1610–A1616. https://doi.org/10.1149/1.2210668

    Article  CAS  Google Scholar 

  66. Hou J, Jiang K, Tahir M, Wu X, Idrees F, Shen M, Cao C (2017) Tunable porous structure of carbon nanosheets derived from puffed rice for high energy density supercapacitors. J Power Sources 371:148–155. https://doi.org/10.1016/j.jpowsour.2017.10.045

    Article  CAS  Google Scholar 

  67. Pajkossy T (1994) Impedance of rough capacitive electrodes. J Electroanal Chem 364:111–125. https://doi.org/10.1016/0022-0728(93)02949-I

    Article  CAS  Google Scholar 

  68. Lockett V, Sedev R, Ralston J, Horne M, Rodopoulos T (2008) Differential capacitance of the electrical double layer in imidazolium-based ionic liquids: Influence of potential, cation size, and temperature. J Phys Chem C 112:7486–7495. https://doi.org/10.1021/jp7100732

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Indian Space Research Organization (ISRO), Govt. of India for financial assistance (Project No. SP20210493CYISRO008477), and IITM for the financial support under the institute of eminence scheme for setting up the potential Centre of Excellence (Advanced Centre for Energy Storage and Conversion) (pCOE (11/9/2019-U.3(A)). R. M. acknowledges the IITM-IPDF grant number CY21IPDF01 for fellowship. T. K. likes to dedicate this work to his beloved Prof. M. Sasidharan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kothandaraman Ramanujam.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1374 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesavan, T., Murugan, R. & Ramanujam, K. Rationally designed N/P dual-doped ordered mesoporous carbon for supercapacitors. J Mater Sci 57, 17380–17397 (2022). https://doi.org/10.1007/s10853-022-07733-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07733-4

Navigation