Skip to main content
Log in

Electrodeposition of F-doped hydroxyapatite-TiO2 coating on AZ31 magnesium alloy for enhancing corrosion protection and biocompatibility

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fluorinated hydroxyapatite-titanium dioxide coating (F-doped HA-TiO2) was deposited in situ onto AZ31 Mg alloy using electrodeposition method. XRD and EDS confirmed the crystal structure and composition of the coating. SEM images showed that the F-doped HA-TiO2 coating on the surface of AZ31 Mg alloy was extremely uniform and the thickness of coating was reflected by the cross-sectional image. Corrosion behavior of the coating modified Mg alloy was tested by electrochemical and immersion experiments. Compared to the corrosion current density (Icorr) of the uncoated AZ31 Mg alloy in Hank’s solution, the Icorr of F-doped HA-TiO2 coating was decreased almost 4 orders. The coated AZ31 Mg alloy showed superior biocompatibility, which was strongly demonstrated by the amounts of cells increased in cell culture. The results of hemolysis tests also illustrated that the F-doped HA-TiO2 coating met the requirements of biomedical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Agarwal S, Curtin J, Duffy B, Jaiswal S (2016) Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Mater Sci Eng C 68:948–963. https://doi.org/10.1016/j.msec.2016.06.020

    Article  CAS  Google Scholar 

  2. Yang YW, He C, Dianyu E, Yang WY, Qi FW, Xie DQ, Shen L, Peng S, Shuai CJ (2020) Mg bone implant: Features, developments and perspectives. Mater Des 185:108259–108276. https://doi.org/10.1016/j.matdes.2019.108259

    Article  CAS  Google Scholar 

  3. Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng R 77:1–34. https://doi.org/10.1016/j.mser.2014.01.001

    Article  Google Scholar 

  4. Zhao DW, Witte F, Lu FQ, Wang JL, Li JL, Qin L (2017) Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials 112:287–302. https://doi.org/10.1016/j.biomaterials.2016.10.017

    Article  CAS  Google Scholar 

  5. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003

    Article  CAS  Google Scholar 

  6. Hornberger H, Virtanen S, Boccaccini AR (2012) Biomedical coatings on magnesium alloys—a review. Acta Biomater 8:2442–2455. https://doi.org/10.1016/j.actbio.2012.04.012

    Article  CAS  Google Scholar 

  7. Yang QY, Yuan W, Liu XM, Zheng YF, Cui ZD, Yang XJ, Pan HB, Wu SL (2017) Atomic layer deposited ZrO2 nanofilm on Mg–Sr alloy for enhanced corrosion resistance and biocompatibility. Acta Biomater 58:515–526. https://doi.org/10.1016/j.actbio.2017.06.015

    Article  CAS  Google Scholar 

  8. Wan P, Tan L, Yang K (2016) Surface modification on biodegradable magnesium alloys as orthopedic implant materials to improve the bio-adaptability: a review. J Mater Sci Technol 32:827–834. https://doi.org/10.1016/j.jmst.2016.05.003

    Article  CAS  Google Scholar 

  9. Li B, Chen Y, Huang W, Yang WZ, Yin X, Liu Y (2016) Enhanced corrosion resistance of hydroxyapatite/magnesium–phosphate–composite-coated AZ31 alloy co-deposited by electrodeposition method. Ceram Int 42:13074–13085. https://doi.org/10.1016/j.ceramint.2016.05.090

    Article  CAS  Google Scholar 

  10. Liu B, Yu WI, Xiao GY, Chen CZ, Lu YP (2021) Comparative investigation of hydroxyapatite coatings formed on titanium via phosphate chemical conversion. Surf Coat Technol 413:127093–127102. https://doi.org/10.1016/j.surfcoat.2021.127093

    Article  CAS  Google Scholar 

  11. Dejob L, Attik N, Tadier S, Gaillard C, Toury B, Salles V (2022) Nitrate-free synthesis and electrospinning of carbonated hydroxyapatite coatings on TA6V implants. Adv Mater Interfaces 9:2102342–2102353. https://doi.org/10.1002/admi.202102342

    Article  CAS  Google Scholar 

  12. Kaygili O, Keser S, Ates T, Yakuphanoglu F (2013) Synthesis and characterization of lithium calcium phosphate ceramics. Ceram Int 39:7779–7785. https://doi.org/10.1016/j.ceramint.2013.03.037

    Article  CAS  Google Scholar 

  13. Carano RAD, Filvaroff EH (2003) Angiogenesis and bone repair. Drug Discov Today 8:980–989. https://doi.org/10.1016/S1359-6446(03)02866-6

    Article  CAS  Google Scholar 

  14. Rahman M, Li Y, Wen C (2020) HA coating on Mg alloys for biomedical applications: a review. J Magn Alloys 8:929–943. https://doi.org/10.1016/j.jma.2020.05.003

    Article  CAS  Google Scholar 

  15. Meng EC, Guan SK, Wang HX, Wang LG, Zhu SJ, Hu JH, Ren CX, Gao JH, Feng YS (2011) Effect of electrodeposition modes on surface characteristics and corrosion properties of fluorine-doped hydroxyapatite coatings on Mg–Zn–Ca alloy. Appl Surf Sci 257:4811–4816. https://doi.org/10.1016/j.apsusc.2010.12.073

    Article  CAS  Google Scholar 

  16. Bakhsheshi-Rad HR, Hamzah E, Daroonparvar M, Yajid MAM, Kasiri-Asgarani M, Abdul-Kadir MR, Medraj M (2014) In-vitro degradation behavior of Mg alloy coated by fluorine doped hydroxyapatite and calcium deficient hydroxyapatite. Trans Nonferrous Metals Soc China 24:2516–2528. https://doi.org/10.1016/S1003-6326(14)63378-1

    Article  CAS  Google Scholar 

  17. Ebrahimi-Kahrizsangi R, Nasiri-Tabrizi B, Chami A (2011) Characterization of single-crystal fluorapatite nanoparticles synthesized via mechanochemical method. Particuology 9:537–544. https://doi.org/10.1016/j.partic.2011.07.001

    Article  CAS  Google Scholar 

  18. Song Y, Zhang S, Li J, Zhao C, Zhang X (2010) Electrodeposition of Ca–P coatings on biodegradable Mg alloy: in vitro biomineralization behavior. Acta Biomater 6:1736–1742. https://doi.org/10.1016/j.actbio.2009.12.020

    Article  CAS  Google Scholar 

  19. Moheet IA, Luddin N, Ab Rahman I, Masudi SAM, Kannan TP, Abd Ghani NRN (2018) Evaluation of mechanical properties and bond strength of nano-hydroxyapatite-silica added glass ionomer cement. Ceram Int 44:9899–9906. https://doi.org/10.1016/j.ceramint.2018.03.010

    Article  CAS  Google Scholar 

  20. Kim SJ, Bang H-G, Song J-H, Park S-Y (2009) Effect of fluoride additive on the mechanical properties of hydroxyapatite/alumina composites. Ceram Int 35:1647–1650. https://doi.org/10.1016/j.ceramint.2008.07.016

    Article  CAS  Google Scholar 

  21. Lukić MJ, Veselinović L, Stevanović M, Nunić J, Dražič G, Marković S, Uskoković D (2014) Hydroxyapatite nanopowders prepared in the presence of zirconium ions. Mater Lett 122:296–300. https://doi.org/10.1016/j.matlet.2014.02.072

    Article  CAS  Google Scholar 

  22. Yan YJ, Ding QQ, Huang Y, Han SG, Pang XF (2014) Magnesium substituted hydroxyapatite coating on titanium with nanotublar TiO2 intermediate layer via electrochemical deposition. Appl Surf Sci 305:77–85. https://doi.org/10.1016/j.apsusc.2014.02.163

    Article  CAS  Google Scholar 

  23. Bakhsheshi-Rad HR, Idris MH, Abdul-Kadir MR, Ourdjini A, Medraj M, Daroonparvar M, Hamzah E (2014) Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Mater Des 53:283–292. https://doi.org/10.1016/j.matdes.2013.06.055

    Article  CAS  Google Scholar 

  24. Jiang ST, Zhang J, Shun SZ, Chen MF (2016) The formation of FHA coating on biodegradable Mg–Zn–Zr alloy using a two-step chemical treatment method. Appl Surf Sci 388:424–430. https://doi.org/10.1016/j.apsusc.2015.12.087

    Article  CAS  Google Scholar 

  25. Jung O, Smeets R, Porchetta D, Kopp A, Ptock C, Müller U, Heiland M, Schwade M, Behr B, Kröger N, Kluwe L, Hanken H, Hartjen P (2015) Optimized in vitro procedure for assessing the cytocompatibility of magnesium-based biomaterials. Acta Biomater 23:354–363. https://doi.org/10.1016/j.actbio.2015.06.005

    Article  CAS  Google Scholar 

  26. Li Nb, Xu Wh, Zhao Jh, Xiao Gy, Lu Yp (2018) The significant influence of ionic concentrations and immersion temperatures on deposition behaviors of hydroxyapatite on alkali- and heat-treated titanium in simulated body fluid. Thin Solid Films 646:163–172. https://doi.org/10.1016/j.tsf.2017.12.005

    Article  CAS  Google Scholar 

  27. Huang W, Xu B, Yang WZ, Zhang K, Chen Y, Yin X, Liu Y, Ni Z, Pei F (2017) Corrosion behavior and biocompatibility of hydroxyapatite/magnesium phosphate/zinc phosphate composite coating deposited on AZ31 alloy. Surf Coat Technol 326:270–280. https://doi.org/10.1016/j.surfcoat.2017.07.066

    Article  CAS  Google Scholar 

  28. Tsai S, Spikings E, Kuo FW, Lin NC, Lin C (2010) Use of an adenosine triphosphate assay, and simultaneous staining with fluorescein diacetate and propidium iodide, to evaluate the effects of cryoprotectants on hard coral (Echinopora spp.) oocytes. Theriogenology 73:605–611. https://doi.org/10.1016/j.theriogenology.2009.10.016

    Article  CAS  Google Scholar 

  29. Li A, Zhu A (2021) Preparation of Fe3O4/PANI nanocomposite and its metal anticorrosive activity. Prog Org Coat 161:106477–106485. https://doi.org/10.1016/j.porgcoat.2021.106477

    Article  CAS  Google Scholar 

  30. Wang Q, Tan L, Yang K (2015) Cytocompatibility and hemolysis of AZ31B magnesium alloy with Si-containing coating. J Mater Sci Technol 31:845–851. https://doi.org/10.1016/j.jmst.2015.07.008

    Article  CAS  Google Scholar 

  31. Bakhsheshi-Rad HR, Hamzah E, Daroonparvar M, Saud SN, Abdul-kadir MR (2014) Bi-layer nano-TiO2/FHA composite coatings on Mg–Zn–Ce alloy prepared by combined physical vapour deposition and electrochemical deposition methods. Vacuum 110:127–135. https://doi.org/10.1016/j.vacuum.2014.08.013

    Article  CAS  Google Scholar 

  32. Wang J, Huang CP, Wan QB, Chen YF, Chao YL (2010) Characterization of fluoridated hydroxyapatite/zirconia nano-composite coating deposited by a modified electrocodeposition technique. Surf Coat Technol 204:2576–2582. https://doi.org/10.1016/j.surfcoat.2010.01.042

    Article  CAS  Google Scholar 

  33. Sankara-Narayanan TSN, Seshadri SK (2013) Electro- and electroless composite coatings. In: Wang QJ, Chung YW (eds) Encyclopedia of tribology. Springer, Boston. https://doi.org/10.1007/978-0-387-92897-5_1160

    Chapter  Google Scholar 

  34. Bakhsheshi-Rad HR, Idris MH, Kadir MRA, Daroonparvar M (2013) Effect of fluoride treatment on corrosion behavior of Mg–Ca binary alloy for implant application. Trans Nonferrous Metals Soc China 23:699–710. https://doi.org/10.1016/S1003-6326(13)62519-4

    Article  CAS  Google Scholar 

  35. Croll SG (2020) Surface roughness profile and its effect on coating adhesion and corrosion protection: a review. Progr Organ Coat 148:105847–105860. https://doi.org/10.1016/j.porgcoat.2020.105847

    Article  CAS  Google Scholar 

  36. Saber-Samandari S, Berndt CC, Gross KA (2011) Selection of the implant and coating materials for optimized performance by means of nanoindentation. Acta Biomater 7:874–881. https://doi.org/10.1016/j.actbio.2010.09.023

    Article  CAS  Google Scholar 

  37. Li B, Chen Y, Huang W, Yang WZ, Yin X, Liu Y (2016) In vitro degradation, cytocompatibility and hemolysis tests of CaF2 doped TiO2-SiO2 composite coating on AZ31 alloy. Appl Surf Sci 382:268–279. https://doi.org/10.1016/j.apsusc.2016.04.141

    Article  CAS  Google Scholar 

  38. Vladescu A, Braic M, Azem FA, Titorencu I, Braic V, Pruna V, Kiss A, Parau AC, Birlik I (2015) Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings. Appl Surf Sci 354:373–379. https://doi.org/10.1016/j.apsusc.2015.05.059

    Article  CAS  Google Scholar 

  39. Bao Y, Yan Y, Chen Y, Ma JZ, Zhang WB, Liu C (2019) Facile fabrication of BTA@ZnO microcapsules and their corrosion protective application in waterborne polyacrylate coatings. Prog Org Coat 136:105233–105239. https://doi.org/10.1016/j.porgcoat.2019.105233

    Article  CAS  Google Scholar 

  40. Ma YC, Talha M, Wang Q, Zhou NT, Li ZH, Lin YH (2022) A multifunctional coating with modified calcium phosphate/chitosan for biodegradable magnesium alloys of implants. N J Chem 46:4436–4448. https://doi.org/10.1039/D2NJ00147K

    Article  CAS  Google Scholar 

  41. Huan ZG, Leeflang MA, Zhou J, Fratila-Apachitei LE, Duszczyk J (2010) In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys. J Mater Sci Mater Med 21:2623–2635. https://doi.org/10.1080/02670844.2016.1194511

    Article  CAS  Google Scholar 

  42. Ren BH, Chen YN, Li YQ et al (2020) Rational design of metallic anti-corrosion coatings based on zinc gluconate@ZIF-8. Chem Eng J 384:123389–123398. https://doi.org/10.1016/j.cej.2019.123389

    Article  CAS  Google Scholar 

  43. Sun RX, Liu P, Zhang RX, Lv YP, Chen KZ (2016) Chen, Hydrothermal synthesis of microstructured fluoridated hydroxyapatite coating on magnesium alloy. Surf Eng 32(11):879–884. https://doi.org/10.1080/02670844.2016.1194511

    Article  CAS  Google Scholar 

  44. Huang L, Su K, Zheng Y-F, Yeung KW-K, Liu X-M (2019) Construction of TiO2/silane nanofilm on AZ31 magnesium alloy for controlled degradability and enhanced biocompatibility. Rare Met 38(6):588–600. https://doi.org/10.1007/s12598-018-1187-7

    Article  CAS  Google Scholar 

  45. Ouyang YY, Chen ZH, Jiang CY et al (2021) Design of the double-layer biocompatible coating on AZ31 magnesium alloy for highly effective corrosion resistance. Surf Coat Technol 428:127897–127908. https://doi.org/10.1016/j.surfcoat.2021.127897

    Article  CAS  Google Scholar 

  46. Dimitrievska S, Bureau MN, Antoniou J, Mwale F, Petit A, Lima RS, Marple BR (2011) Titania-hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation. J Biomed Mater Res Part A 98A:576–588. https://doi.org/10.1002/jbm.a.32964

    Article  CAS  Google Scholar 

  47. Barinov SM, Tumanov SV, Fadeeva IV, Bibikov VY (2003) Environment effect on the strength of hydroxy- and fluorohydroxyapatite ceramics. Inorg Mater 39:877–880. https://doi.org/10.1023/A:1025041817017

    Article  CAS  Google Scholar 

  48. Wang J, Chao YL, Wan QB, Zhu ZM, Yu H (2009) Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition. Acta Biomater 5:1798–1807. https://doi.org/10.1016/j.actbio.2009.01.005

    Article  CAS  Google Scholar 

  49. Yajing Y, Qiongqiong D, Yong H, Han S (2014) X Pang Magnesium substituted hydroxyapatite coating on titanium with nanotublar TiO2 intermediate layer via electrochemical deposition. Appl Surf Sci 305:77–85. https://doi.org/10.1016/j.apsusc.2014.02.163

    Article  CAS  Google Scholar 

  50. Amaravathy P, Rose C, Sathiyanarayanan S, Rajendran N (2012) Evaluation of in vitro bioactivity and MG63 Oesteoblast cell response for TiO2 coated magnesium alloys. J Sol–Gel Sci Technol 64:694–703. https://doi.org/10.1007/s10971-012-2904-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Key R&D Plan (2017YFC0404100), the National Natural Science Foundation of China (Grant No. 21605084) and the Jiangsu Province Natural Science Foundation for Young Scholars of China (Grant Nos. BK20160983 and BK20170111).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenzhong Yang, Chuanlai Shen or Yun Chen.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, Y., Zhang, Z., Huang, W. et al. Electrodeposition of F-doped hydroxyapatite-TiO2 coating on AZ31 magnesium alloy for enhancing corrosion protection and biocompatibility. J Mater Sci 57, 17188–17202 (2022). https://doi.org/10.1007/s10853-022-07732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07732-5

Navigation