Skip to main content
Log in

Innovatively-synthesized CeO2/ZnO photocatalysts by sono-photochemical deposition: catalyst characterization and effect of operational parameters on high efficient dye removal

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

CeO2/ZnO with varied Ce4+ mass ratios was synthesized as a stable and reusable photocatalyst using a sono-photochemical process in which CeO2 crystals were formed and precipitated on the porous surface of ZnO nanosheets that had been pre-synthesized using the urea hydrolysis method. The synthesized photocatalysts were characterized through XRD, FTIR, BET, FE-SEM, and TEM techniques. The effects of light and ultrasonic irradiation on the removal of methylene blue (MB) as a contaminant component from deionized (DI) water were examined and the concentration of MB residue was measured using an UV–Vis spectroscopy after the treatment operation. The performance of the photocatalytic degradation was evaluated using a variety of operating parameters including catalyst composition (0–0.70 wt% Ce), initial dye concentration (10–30 ppm), catalyst loading (0.20–1.50 gr L−1), aeration by air flow (0–3.50 L min−1), pH (3–9.70), and also ultrasonic irradiation (80 kHz and 60 W). Results demonstrate that when the CeO2/ZnO with Ce/Zn mass ratio of 3 was employed instead of ZnO alone, the time of complete photocatalytic degradation lowered by almost 20%. Additionally, when the real water collected from Doroodzan dam, Fars, Iran with a total TDS of 540 ppm polluted with 20 ppm MB was treated with CeO2/ZnO (0.30 wt% Ce) nanosheets, MB was completely degraded after 8 min of the photocatalytic reaction. Furthermore, the ZCe3 could be used for the degradation process at least for 5 cycles with only a 12% reduction in MB degradation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Fauzi M, Esmaeilzadeh F, Mowla D, Sahraeian N (2021) The effect of various capping agents on V2O5 morphology and photocatalytic degradation of dye. J Mater Sci Mater Electron 32(8):10473–10490. https://doi.org/10.1007/s10854-021-05703-1

    Article  CAS  Google Scholar 

  2. Ai L, Zeng Y (2013) Hierarchical porous NiO architectures as highly recyclable adsorbents for effective removal of organic dye from aqueous solution. Chem Eng J 215:269–278

    Google Scholar 

  3. Singh S, Srivastava VC, Mall ID (2013) Mechanism of dye degradation during electrochemical treatment. J Phys Chem C 117(29):15229–15240

    CAS  Google Scholar 

  4. Atchudan R, Edison TNJI, Perumal S, Karthik N, Karthikeyan D, Shanmugam M, Lee YR (2018) Concurrent synthesis of nitrogen-doped carbon dots for cell imaging and ZnO@ nitrogen-doped carbon sheets for photocatalytic degradation of methylene blue. J Photochem Photobiol A Chem 350:75–85

    CAS  Google Scholar 

  5. Ivanets A, Roshchina M, Srivastava V, Prozorovich V, Dontsova T, Nahirniak S, Pankov V, Hosseini-Bandegharaei A, Tran HN, Sillanpää M (2019) Effect of metal ions adsorption on the efficiency of methylene blue degradation onto MgFe2O4 as Fenton-like catalysts. Colloids Surf A Physicochem Eng Asp 571:17–26

    CAS  Google Scholar 

  6. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322

    CAS  Google Scholar 

  7. Sirajudheen P, Meenakshi S (2019) Facile synthesis of chitosan-La3+-graphite composite and its influence in photocatalytic degradation of methylene blue. Int J Biol Macromol 133:253–261

    CAS  Google Scholar 

  8. Şayan E, Edecan ME (2008) An optimization study using response surface methods on the decolorization of Reactive Blue 19 from aqueous solution by ultrasound. Ultrason Sonochem 15(4):530–538

    Google Scholar 

  9. Tang WZ, An H (1995) UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 31(9):4157–4170

    CAS  Google Scholar 

  10. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ 31(2):145–157

    CAS  Google Scholar 

  11. Meshko V, Markovska L, Mincheva M, Rodrigues A (2001) Adsorption of basic dyes on granular acivated carbon and natural zeolite. Water Res 35(14):3357–3366

    CAS  Google Scholar 

  12. Saquib M, Muneer M (2003) Titanium dioxide mediated photocatalyzed degradation of a textile dye derivative, acid orange 8, in aqueous suspensions. Desalination 155(3):255–263

    CAS  Google Scholar 

  13. Akyol A, Yatmaz H, Bayramoglu M (2004) Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Appl Catal B Environ 54(1):19–24

    CAS  Google Scholar 

  14. Raza W, Faisal SM, Owais M, Bahnemann D, Muneer M (2016) Facile fabrication of highly efficient modified ZnO photocatalyst with enhanced photocatalytic, antibacterial and anticancer activity. RSC Adv 6(82):78335–78350

    CAS  Google Scholar 

  15. Dao MU, Nguyen TTT, Le VT, Hoang HY, Le TTN, Pham TN, Nguyen TT, Akhmadullin RM, Le HS, Tran HV, Tran DL (2021) Non-woven polyester fabric-supported cuprous oxide/reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue. J Mater Sci 56(17):10353–10366. https://doi.org/10.1007/s10853-021-05965-4

    Article  CAS  Google Scholar 

  16. Kuo W, Ho P (2001) Solar photocatalytic decolorization of methylene blue in water. Chemosphere 45(1):77–83

    CAS  Google Scholar 

  17. Khataee A, Darvishi Cheshmeh Soltani R, Hanifehpour Y, Safarpour M, Gholipour Ranjbar H, Joo SW (2014) Synthesis and characterization of dysprosium-doped ZnO nanoparticles for photocatalysis of a textile dye under visible light irradiation. Ind Eng Chem Res 53(5):1924–1932

    CAS  Google Scholar 

  18. Xie J, Wang H, Duan M, Zhang L (2011) Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method. Appl Surf Sci 257(15):6358–6363

    CAS  Google Scholar 

  19. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255

    CAS  Google Scholar 

  20. Rezaee A, Masoumbeigi H, Soltani RDC, Khataee AR, Hashemiyan S (2012) Photocatalytic decolorization of methylene blue using immobilized ZnO nanoparticles prepared by solution combustion method. Desalin Water Treat 44(1–3):174–179

    CAS  Google Scholar 

  21. Bomila R, Srinivasan S, Gunasekaran S, Manikandan A (2018) Enhanced photocatalytic degradation of methylene blue dye, opto-magnetic and antibacterial behaviour of pure and La-doped ZnO nanoparticles. J Supercond Novel Magn 31(3):855–864

    CAS  Google Scholar 

  22. Dou T, Zang L, Zhang Y, Sun Z, Sun L, Wang C (2019) Hybrid g-C3N4 nanosheet/carbon paper membranes for the photocatalytic degradation of methylene blue. Mater Lett 244:151–154

    CAS  Google Scholar 

  23. Ranjith R, Renganathan V, Chen S-M, Selvan NS, Rajam PS (2019) Green synthesis of reduced graphene oxide supported TiO2/Co3O4 nanocomposite for photocatalytic degradation of methylene blue and crystal violet. Ceram Int 45(10):12926–12933

    CAS  Google Scholar 

  24. Lam S-M, Sin J-C, Abdullah AZ, Mohamed AR (2014) Transition metal oxide loaded ZnO nanorods: preparation, characterization and their UV–Vis photocatalytic activities. Sep Purif Technol 132:378–387

    CAS  Google Scholar 

  25. Katsumata H, Oda Y, Kaneco S, Suzuki T (2013) Photocatalytic activity of Ag/CuO/WO 3 under visible-light irradiation. RSC Adv 3(15):5028–5035

    CAS  Google Scholar 

  26. Cao B, Cai W (2008) From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. J Phys Chem C 112(3):680–685

    CAS  Google Scholar 

  27. Navarro S, Fenoll J, Vela N, Ruiz E, Navarro G (2009) Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight. J Hazard Mater 172(2–3):1303–1310

    CAS  Google Scholar 

  28. Mclaren A, Valdes-Solis T, Li G, Tsang SC (2009) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131(35):12540–12541

    CAS  Google Scholar 

  29. Gomathisankar P, Hachisuka K, Katsumata H, Suzuki T, Funasaka K, Kaneco S (2013) Photocatalytic hydrogen production from aqueous Na2S+ Na2SO3 solution with B-doped ZnO. ACS Sustain Chem Eng 1(8):982–988

    CAS  Google Scholar 

  30. Adeleke J, Theivasanthi T, Thiruppathi M, Swaminathan M, Akomolafe T, Alabi A (2018) Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles. Appl Surf Sci 455:195–200

    CAS  Google Scholar 

  31. Han W, Ren L, Qi X, Liu Y, Wei X, Huang Z, Zhong J (2014) Synthesis of CdS/ZnO/graphene composite with high-efficiency photoelectrochemical activities under solar radiation. Appl Surf Sci 299:12–18

    CAS  Google Scholar 

  32. Subash B, Krishnakumar B, Swaminathan M, Shanthi M (2013) Highly efficient, solar active, and reusable photocatalyst: Zr-loaded Ag–ZnO for reactive red 120 dye degradation with synergistic effect and dye-sensitized mechanism. Langmuir 29(3):939–949

    CAS  Google Scholar 

  33. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100(31):13226–13239

    CAS  Google Scholar 

  34. Zhang K, Oh W-C (2010) Kinetic study of the visible light-induced sonophotocatalytic degradation of MB solution in the presence of Fe/TiO 2-MWCNT catalyst. Bull Korean Chem Soc 31(6):1589–1595

    CAS  Google Scholar 

  35. Yu B, Li Y, Wang Y, Li H, Zhang R (2021) Facile hydrothermal synthesis of SnO2 quantum dots with enhanced photocatalytic degradation activity: role of surface modification with chloroacetic acid. J Environ Chem Eng 9(4):105618

    CAS  Google Scholar 

  36. Mu Y, Yang S, Li Y, Zhang J, Ma M, Wang J, Yu Z, Ren Z, Liu J (2021) Highly efficient adsorptive and photocatalytic degradation of dye pollutants over biomass-derived carbon-supported Ag composites under visible light. J Environ Chem Eng 9(6):106580. https://doi.org/10.1016/j.jece.2021.106580

    Article  CAS  Google Scholar 

  37. Berlan J, Trabelsi F, Delmas H, Wilhelm A, Petrignani J (1994) Oxidative degradation of phenol in aqueous media using ultrasound. Ultrason Sonochem 1(2):S97–S102

    CAS  Google Scholar 

  38. Gogate PR (2002) Cavitation: an auxiliary technique in wastewater treatment schemes. Adv Environ Res 6(3):335–358

    CAS  Google Scholar 

  39. Suslick KS (1989) The chemical effects of ultrasound. Sci Am 260(2):80–87

    CAS  Google Scholar 

  40. Serpone N, Colarusso P (1994) Sonochemistry I. Effects of ultrasounds on heterogeneous chemical reactions: a useful tool to generate radicals and to examine reaction mechanisms. Res Chem Intermed 20(6):635–679. https://doi.org/10.1163/156856794X00261

    Article  CAS  Google Scholar 

  41. Shirgaonkar IZ, Pandit AB (1998) Sonophotochemical destruction of aqueous solution of 2,4,6-trichlorophenol. Ultrason Sonochem 5(2):53–61. https://doi.org/10.1016/S1350-4177(98)00013-3

    Article  CAS  Google Scholar 

  42. Davydov L, Reddy EP, France P, Smirniotis PG (2001) Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO2 powders. Appl Catal B Environ 32(1):95–105. https://doi.org/10.1016/S0926-3373(01)00126-6

    Article  CAS  Google Scholar 

  43. Yadav S, Jindal J, Mittal A, Sharma S, Kumari K, Kumar N (2021) Facile solution combustion synthesized, Li doped ZnO nanostructures for removal of abiotic contaminants. J Phys Chem Solids 157:110217. https://doi.org/10.1016/j.jpcs.2021.110217

    Article  CAS  Google Scholar 

  44. Yadav S, Mittal A, Sharma S, Sharma A, Kumari K, Kumar N (2021) Ag sensitized ZnO/SnO2 heterostructures for photocatalytic decontamination of water. Appl Nanosci 11(10):2537–2547. https://doi.org/10.1007/s13204-021-02102-0

    Article  CAS  Google Scholar 

  45. Yadav S, Kumar N, Kumari V, Mittal A, Sharma S (2019) Photocatalytic degradation of Triclopyr, a persistent pesticide by ZnO/SnO2 nano-composities. Mater Today Proc 19:642–645. https://doi.org/10.1016/j.matpr.2019.07.746

    Article  CAS  Google Scholar 

  46. Yadav S, Kumar N, Mari B, Mittal A, Jangra V, Sharma A, Kumari K (2021) Ag/ZnO nano-structures synthesized by single-step solution combustion approach for the photodegradation of Cibacron Red and Triclopyr. Appl Nanosci 11(7):1977–1991. https://doi.org/10.1007/s13204-021-01943-z

    Article  CAS  Google Scholar 

  47. Kumari V, Kumar N, Yadav S, Mittal A, Sharma S (2019) Novel mixed metal oxide (ZnO.La2O3.CeO2) synthesized via hydrothermal and solution combustion process: a comparative study and their photocatalytic properties. Mater Today Proc 19:650–657. https://doi.org/10.1016/j.matpr.2019.07.748

    Article  CAS  Google Scholar 

  48. Kumari V, Yadav S, Mittal A, Sharma S, Kumari K, Kumar N (2020) Hydrothermally synthesized nano-carrots ZnO with CeO2 heterojunctions and their photocatalytic activity towards different organic pollutants. J Mater Sci Mater Electron 31(7):5227–5240. https://doi.org/10.1007/s10854-020-03083-6

    Article  CAS  Google Scholar 

  49. Kumari V, Mphahlele-Makgwane MM, Makgwane PR, Sharma A, Parmar D, Kumari K, Kumar N (2022) Ultrasonically Pd functionalized, surface plasmon enhanced ZnO/CeO2 heterostructure for degradation of organic pollutants in water. Eur Phys J Plus 137(5):565. https://doi.org/10.1140/epjp/s13360-022-02762-z

    Article  CAS  Google Scholar 

  50. Aravind M, Ahmad A, Ahmad I, Amalanathan M, Naseem K, Mary SMM, Parvathiraja C, Hussain S, Algarni TS, Pervaiz M, Zuber M (2021) Critical green routing synthesis of silver NPs using jasmine flower extract for biological activities and photocatalytical degradation of methylene blue. J Environ Chem Eng 9(1):104877. https://doi.org/10.1016/j.jece.2020.104877

    Article  CAS  Google Scholar 

  51. Yanti DD, Maryanti E (2021) Green synthesis ZnO nanoparticles using rinds extract of sapindus rarak DC. J Sci Appl Technol 5(1):198–201

    Google Scholar 

  52. Tsiotsias AI, Charisiou ND, AlKhoori A, Gaber S, Stolojan V, Sebastian V, van der Linden B, Bansode A, Hinder SJ, Baker MA (2022) Optimizing the oxide support composition in Pr-doped CeO2 towards highly active and selective Ni-based CO2 methanation catalysts. J Energy Chem 71:547–561

    Google Scholar 

  53. Mohamed RM, Kadi MW, Ismail AA (2020) A Facile synthesis of mesoporous α-Fe2O3/TiO2 nanocomposites for hydrogen evolution under visible light. Ceram Int 46(10, Part A):15604–15612. https://doi.org/10.1016/j.ceramint.2020.03.107

    Article  CAS  Google Scholar 

  54. Yu Z, Chouchene B, Liu M, Moussa H, Schneider R, Moliere M, Liao H, Chen Y, Sun L (2020) Influence of laminated architectures of heterostructured CeO2-ZnO and Fe2O3-ZnO films on photodegradation performances. Surf Coat Technol 403:126367. https://doi.org/10.1016/j.surfcoat.2020.126367

    Article  CAS  Google Scholar 

  55. Vergés MA, Mifsud A, Serna C (1990) Formation of rod-like zinc oxide microcrystals in homogeneous solutions. J Chem Soc Faraday Trans 86(6):959–963

    Google Scholar 

  56. Faisal M, Khan SB, Rahman MM, Jamal A, Akhtar K, Abdullah M (2011) Role of ZnO-CeO2 nanostructures as a photo-catalyst and chemi-sensor. J Mater Sci Technol 27(7):594–600

    CAS  Google Scholar 

  57. Sivakumar A, Murugesan B, Loganathan A, Sivakumar P (2017) Synthesis of ZnO nanowire and ZnO/CeO2 solid solution nanowire by bio-morphing and its characterization. J Taiwan Inst Chem Eng 78:462–470

    CAS  Google Scholar 

  58. Palanisamy B, Babu CM, Sundaravel B, Anandan S, Murugesan V (2013) Sol–gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: application for degradation of 4-chlorophenol. J Hazard Mater 252–253:233–242. https://doi.org/10.1016/j.jhazmat.2013.02.060

    Article  CAS  Google Scholar 

  59. Bitenc M, Marinšek M, Orel ZC (2008) Preparation and characterization of zinc hydroxide carbonate and porous zinc oxide particles. J Eur Ceram Soc 28(15):2915–2921

    CAS  Google Scholar 

  60. Song X, Wang M, Liu W, Li X, Zhu Z, Huo P, Yan Y (2022) Thickness regulation of graphitic carbon nitride and its influence on the photocatalytic performance towards CO2 reduction. Appl Surf Sci 577:151810. https://doi.org/10.1016/j.apsusc.2021.151810

    Article  CAS  Google Scholar 

  61. Sakthivel S, Neppolian B, Shankar M, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Mater Solar Cells 77(1):65–82

    CAS  Google Scholar 

  62. Khasawneh OFS, Palaniandy P, Ahmadipour M, Mohammadi H, Bin Hamdan MR (2021) Removal of acetaminophen using Fe2O3-TiO2 nanocomposites by photocatalysis under simulated solar irradiation: optimization study. J Environ Chem Eng 9(1):104921. https://doi.org/10.1016/j.jece.2020.104921

    Article  CAS  Google Scholar 

  63. Ahmadi S, Ganjidoust H (2021) Using banana peel waste to synthesize BPAC/ZnO nanocomposite for photocatalytic degradation of Acid Blue 25: Influential parameters, mineralization, biodegradability studies. J Environ Chem Eng 9(5):106010. https://doi.org/10.1016/j.jece.2021.106010

    Article  CAS  Google Scholar 

  64. Tasaki T, Wada T, Fujimoto K, Kai S, Ohe K, Oshima T, Baba Y, Kukizaki M (2009) Degradation of methyl orange using short-wavelength UV irradiation with oxygen microbubbles. J Hazard Mater 162(2–3):1103–1110

    CAS  Google Scholar 

  65. Zhang X, Yang H, Zhang F, Chan K-Y (2007) Preparation and characterization of Pt–TiO2–SiO2 mesoporous materials and visible-light photocatalytic performance. Mater Lett 61(11):2231–2234. https://doi.org/10.1016/j.matlet.2006.08.053

    Article  CAS  Google Scholar 

  66. Shirayama H, Tohezo Y, Taguchi S (2001) Photodegradation of chlorinated hydrocarbons in the presence and absence of dissolved oxygen in water. Water Res 35(8):1941–1950. https://doi.org/10.1016/S0043-1354(00)00480-2

    Article  CAS  Google Scholar 

  67. Gupta S, Gomaa H, Ray MB (2021) A novel submerged photocatalytic oscillatory membrane reactor for water polishing. J Environ Chem Eng 9(4):105562

    CAS  Google Scholar 

  68. Kee W-C, Wong Y-S, Ong S-A, Lutpi NA, Sam S-T, Chai A, Eng K-M (2022) Photocatalytic degradation of sugarcane vinasse using ZnO photocatalyst: operating parameters, kinetic studies, phytotoxicity assessments, and reusability. Int J Environ Res 16(1):1–13

    Google Scholar 

  69. Comparelli R, Fanizza E, Curri M, Cozzoli P, Mascolo G, Agostiano A (2005) UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates. Appl Catal B Environ 60(1–2):1–11

    CAS  Google Scholar 

  70. Grčić I, Vujević D, Žižek K, Koprivanac N (2013) Treatment of organic pollutants in water using TiO2 powders: photocatalysis versus sonocatalysis. React Kinet Mech Catal 109(2):335–354

    Google Scholar 

  71. Chakma S, Moholkar VS (2015) Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts. Ultrason Sonochem 22:287–299. https://doi.org/10.1016/j.ultsonch.2014.06.008

    Article  CAS  Google Scholar 

  72. Nekouei F, Nekouei S (2017) Comparative evaluation of BiOCl–NPls–AC composite performance for methylene blue dye removal from solution in the presence/absence of UV irradiation: kinetic and isotherm studies. J Alloys Compd 701:950–966

    CAS  Google Scholar 

  73. Chen M, Bao C, Hu D, Jin X, Huang Q (2019) Facile and low-cost fabrication of ZnO/biochar nanocomposites from jute fibers for efficient and stable photodegradation of methylene blue dye. J Anal Appl Pyrolysis 139:319–332

    CAS  Google Scholar 

  74. Lin J, Luo Z, Liu J, Li P (2018) Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites. Mater Sci Semicond Process 87:24–31

    CAS  Google Scholar 

  75. Selvaraj S, Mohan MK, Navaneethan M, Ponnusamy S, Muthamizhchelvan C (2019) Synthesis and photocatalytic activity of Gd doped ZnO nanoparticles for enhanced degradation of methylene blue under visible light. Mater Sci Semicond Proc 103:104622

    CAS  Google Scholar 

  76. Das A, Patra M, Kumar P M, Bhagavathiachari M, Nair RG (2021) Defect-induced visible-light-driven photocatalytic and photoelectrochemical performance of ZnO–CeO2 nanoheterojunctions. J Alloys Compd 858:157730. https://doi.org/10.1016/j.jallcom.2020.157730

    Article  CAS  Google Scholar 

  77. Saravanan M, Vigneshwar S, Jegadeesan GB, Venkatachalam P (2021) Photocatalytic degradation of reactive black dye using ZnO–CeO2 nanocomposites

  78. Li C, Chen R, Zhang X, Shu S, Xiong J, Zheng Y, Dong W (2011) Electrospinning of CeO2–ZnO composite nanofibers and their photocatalytic property. Mater Lett 65(9):1327–1330

    CAS  Google Scholar 

  79. Meenakshi G, Sivasamy A (2022) Enhanced photocatalytic activities of CeO2@ZnO core-shell nanostar particles through delayed electron hole recombination process. Colloids Surf A Physicochem Eng Asp 645:128920. https://doi.org/10.1016/j.colsurfa.2022.128920

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Shiraz University for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feridun Esmaeilzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fereidooni, M., Esmaeilzadeh, F. & Zandifar, A. Innovatively-synthesized CeO2/ZnO photocatalysts by sono-photochemical deposition: catalyst characterization and effect of operational parameters on high efficient dye removal. J Mater Sci 57, 16228–16244 (2022). https://doi.org/10.1007/s10853-022-07666-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07666-y