Skip to main content
Log in

Influence of NIPS on the structure and gas separation performance of asymmetric carbon molecular sieve membranes

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Asymmetric carbon molecular sieve (ACMS) membranes derived from PMDA-ODA polyimide were prepared via nonsolvent-induced phase separation (NIPS) and carbonization. The effects of NIPS parameters on the asymmetric structure and gas separation performance of ACMS membranes and evolution of the asymmetric structure and microstructure during carbonization were investigated systematically with scanning electron microscopy (SEM), X-ray diffraction (XRD), positron annihilation lifetime spectroscopy (PALS) and gas permeation tests. The parameters of the NIPS process significantly influenced the asymmetric structure and gas separation performance of ACMS membranes. The asymmetric structure of ACMS membrane was inherited from the polymeric membrane and could be tuned with parameters of the NIPS process. During carbonization, the pore and carbon structures of the ACMS membrane were well developed and were further regulated with the carbonization temperature and holding time. A dense top layer and more ultramicropores in the ACMS membrane enhanced the gas selectivity, and an abundance of micropores increased the gas permeance. The ACMS membrane prepared under optimized conditions exhibited a high O2 permeance of 49.3 GPU with a reasonable O2/N2 selectivity of 4.5, which showed good O2/N2 permeation property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Koros WJ, Lively RP (2012) Water and beyond: expanding the spectrum of large-scale energy efficient separation processes. AlChE J 58:2624–2633

    Article  CAS  Google Scholar 

  2. Baker RW (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res 41:1393–1411

    Article  CAS  Google Scholar 

  3. Koros WJ (2004) Evolving beyond the thermal age of separation processes: membranes can lead the way. AlChE J 50:2326–2334

    Article  CAS  Google Scholar 

  4. Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185

    Article  CAS  Google Scholar 

  5. Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400

    Article  CAS  Google Scholar 

  6. Qiu W, Xu L, Chen C-C, Paul DR, Koros WJ (2013) Gas separation performance of 6FDA-based polyimides with different chemical structures. Polymer 54:6226–6235

    Article  CAS  Google Scholar 

  7. Xia J, Chung T-S, Paul DR (2014) Physical aging and carbon dioxide plasticization of thin polyimide films in mixed gas permeation. J Membr Sci 450:457–468

    Article  CAS  Google Scholar 

  8. Kim S-J, Lee PS, Chang J-S, Nam S-E, Park Y-I (2018) Preparation of carbon molecular sieve membranes on low-cost alumina hollow fibers for use in C3H6/C3H8 separation. Sep Purif Technol 194:443–450

    Article  CAS  Google Scholar 

  9. Rungta M, Wenz GB, Zhang C, Xu L, Qiu W, Adams JS, Koros WJ (2017) Carbon molecular sieve structure development and membrane performance relationships. Carbon 115:237–248

    Article  CAS  Google Scholar 

  10. Wey M-Y, Chen H-H, Lin Y-T, Tseng H-H (2020) Thin carbon hollow fiber membrane with Knudsen diffusion for hydrogen/alkane separation: effects of hollow fiber module design and gas flow mode. Int J Hydrogen Energy 45:7290–7302

    Article  CAS  Google Scholar 

  11. Briceño K, Montané D, Garcia-Valls R, Iulianelli A, Basile A (2012) Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation. J Membr Sci 415–416:288–297

    Article  Google Scholar 

  12. Fu S, Sanders ES, Kulkarni SS, Koros WJ (2015) Carbon molecular sieve membrane structure–property relationships for four novel 6FDA based polyimide precursors. J Membr Sci 487:60–73

    Article  CAS  Google Scholar 

  13. Rungta M, Xu L, Koros WJ (2012) Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation. Carbon 50:1488–1502

    Article  CAS  Google Scholar 

  14. Tseng H-H, Wang C-T, Zhuang G-L, Uchytil P, Reznickova J, Setnickova K (2016) Enhanced H2/CH4 and H2/CO2 separation by carbon molecular sieve membrane coated on titania modified alumina support: effects of TiO2 intermediate layer preparation variables on interfacial adhesion. J Membr Sci 510:391–404

    Article  CAS  Google Scholar 

  15. Zhang B, Wang T, Wu Y, Liu Q, Liu S, Zhang S, Qiu J (2008) Preparation and gas permeation of composite carbon membranes from poly(phthalazinone ether sulfone ketone). Sep Purif Technol 60:259–263

    Article  Google Scholar 

  16. Vu DQ, Koros WJ (2002) High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Ind Eng Chem Res 41:367–380

    Article  CAS  Google Scholar 

  17. Swaidan R, Ma X, Litwiller E, Pinnau I (2013) High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity. J Membr Sci 447:387–394

    Article  CAS  Google Scholar 

  18. Haider S, Lindbråthen A, Lie JA, Andersen ICT, Hägg M-B (2018) CO2 separation with carbon membranes in high pressure and elevated temperature applications. Sep Purif Technol 190:177–189

    Article  CAS  Google Scholar 

  19. Song C, Wang T, Wang X, Qiu J, Cao Y (2008) Preparation and gas separation properties of poly(furfuryl alcohol)-based C/CMS composite membranes. Sep Purif Technol 58:412–418

    Article  CAS  Google Scholar 

  20. Fu Y-J, Liao K-S, Hu C-C, Lee K-R, Lai J-Y (2011) Development and characterization of micropores in carbon molecular sieve membrane for gas separation. Microporous Mesoporous Mater 143:78–86

    Article  CAS  Google Scholar 

  21. Fu S, Sanders ES, Kulkarni SS, Wenz GB, Koros WJ (2015) Temperature dependence of gas transport and sorption in carbon molecular sieve membranes derived from four 6FDA based polyimides: entropic selectivity evaluation. Carbon 95:995–1006

    Article  CAS  Google Scholar 

  22. Wang T, Zhang B, Qiu J, Wu Y, Zhang S, Cao Y (2009) Effects of sulfone/ketone in poly(phthalazinone ether sulfone ketone) on the gas permeation of their derived carbon membranes. J Membr Sci 330:319–325

    Article  CAS  Google Scholar 

  23. Ning X, Koros WJ (2014) Carbon molecular sieve membranes derived from Matrimid polyimide for nitrogen/methane separation. Carbon 66:511–522

    Article  CAS  Google Scholar 

  24. Zhang C, Koros WJ (2017) Ultraselective carbon molecular sieve membranes with tailored synergistic sorption selective properties. Adv Mater 29:1701631

    Article  Google Scholar 

  25. Bhuwania N, Labreche Y, Achoundong CSK, Baltazar J, Burgess SK, Karwa S, Xu L, Henderson CL, Williams PJ, Koros WJ (2014) Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes. Carbon 76:417–434

    Article  CAS  Google Scholar 

  26. Singh R, Koros WJ (2013) Carbon molecular sieve membrane performance tuning by dual temperature secondary oxygen doping (DTSOD). J Membr Sci 427:472–478

    Article  CAS  Google Scholar 

  27. Favvas EP, Heliopoulos NS, Papageorgiou SK, Mitropoulos AC, Kapantaidakis GC, Kanellopoulos NK (2015) Helium and hydrogen selective carbon hollow fiber membranes: the effect of pyrolysis isothermal time. Sep Purif Technol 142:176–181

    Article  CAS  Google Scholar 

  28. Joglekar M, Itta AK, Kumar R, Wenz GB, Mayne J, Williams PJ, Koros WJ (2019) Carbon molecular sieve membranes for CO2/N2 separations: evaluating subambient temperature performance. J Membr Sci 569:1–6

    Article  CAS  Google Scholar 

  29. Zhang C, Kumar R, Koros WJ (2019) Ultra-thin skin carbon hollow fiber membranes for sustainable molecular separations. AlChE J 65:e16611

    Article  Google Scholar 

  30. Kamath MG, Fu S, Itta AK, Qiu W, Liu G, Swaidan R, Koros WJ (2018) 6FDA-DETDA: DABE polyimide-derived carbon molecular sieve hollow fiber membranes: circumventing unusual aging phenomena. J Membr Sci 546:197–205

    Article  CAS  Google Scholar 

  31. Yang R, Chen MY, Li P (2022) Carbon molecular sieve hollow fiber composite membrane derived from PMDA-ODA polyimide for gas separation. High Perform Polym 34:444–454

    Article  CAS  Google Scholar 

  32. Xu L, Rungta M, Koros WJ (2011) Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation. J Membr Sci 380:138–147

    Article  CAS  Google Scholar 

  33. Sanyal O, Hicks ST, Bhuwania N, Hays S, Kamath MG, Karwa S, Swaidan R, Koros WJ (2018) Cause and effects of hyperskin features on carbon molecular sieve (CMS) membranes. J Membr Sci 551:113–122

    Article  CAS  Google Scholar 

  34. Xu L, Rungta M, Brayden MK, Martinez MV, Stears BA, Barbay GA, Koros WJ (2012) Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations. J Membr Sci 423–424:314–323

    Article  Google Scholar 

  35. Favvas EP, Romanos GE, Papageorgiou SK, Katsaros FK, Mitropoulos AC, Kanellopoulos NK (2011) A methodology for the morphological and physicochemical characterisation of asymmetric carbon hollow fiber membranes. J Membr Sci 375:113–123

    Article  CAS  Google Scholar 

  36. Favvas EP, Kapantaidakis GC, Nolan JW, Mitropoulos AC, Kanellopoulos NK (2007) Preparation, characterization and gas permeation properties of carbon hollow fiber membranes based on Matrimid® 5218 precursor. J Mater Process Technol 186:102–110

    Article  CAS  Google Scholar 

  37. Vriezekolk EJ, Nijmeijer K, de Vos WM (2016) Dry–wet phase inversion block copolymer membranes with a minimum evaporation step from NMP/THF mixtures. J Membr Sci 504:230–239

    Article  CAS  Google Scholar 

  38. Bikel M, Pünt IGM, Lammertink RGH, Wessling M (2010) Shrinkage effects during polymer phase separation on microfabricated molds. J Membr Sci 347:141–149

    Article  CAS  Google Scholar 

  39. Chen M, Yang R, Li P (2022) Preparation of defect-free hollow fiber membranes derived from PMDA-ODA polyimide for gas separation. Chem Eng Res Des 179:154–161

    Article  CAS  Google Scholar 

  40. Akbari A, Hamadanian M, Jabbari V, Lehi AY, Bojaran M (2012) Influence of PVDF concentration on the morphology, surface roughness, crystalline structure, and filtration separation properties of semicrystalline phase inversion polymeric membranes. Desalin Water Treat 46:96–106

    Article  CAS  Google Scholar 

  41. Hołda AK, Aernouts B, Saeys W, Vankelecom IFJ (2013) Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes. J Membr Sci 442:196–205

    Article  Google Scholar 

  42. Hendrix K, Koeckelberghs G, Vankelecom IFJ (2014) Study of phase inversion parameters for PEEK-based nanofiltration membranes. J Membr Sci 452:241–252

    Article  CAS  Google Scholar 

  43. Yuenyao C, Ruangdit S, Chittrakarn T (2017) Tuning of preparational factors affecting the morphological structure and gas separation property of asymmetric polysulfone membranes. J Phys: Conf Ser 901:012165

    Google Scholar 

  44. Ren J, Zhou J, Deng M (2010) Morphology transition of asymmetric flat sheet and thickness-gradient membranes by wet phase-inversion process. Desalination 253:1–8

    Article  CAS  Google Scholar 

  45. Zhou J, Ren J, Lin L, Deng M (2008) Morphology evolution of thickness-gradient membranes prepared by wet phase-inversion process. Sep Purif Technol 63:484–486

    Article  CAS  Google Scholar 

  46. Ren J, Li Z (2012) Development of asymmetric BTDA-TDI/MDI (P84) copolyimide flat sheet and hollow fiber membranes for ultrafiltration: morphology transition and membrane performance. Desalination 285:336–344

    Article  CAS  Google Scholar 

  47. Jin X, Li L, Xu R, Liu Q, Ding L, Pan Y, Wang C, Hung W, Lee K, Wang T (2018) Effects of thermal cross-linking on the structure and property of asymmetric membrane prepared from the polyacrylonitrile. Polymers 10:539

    Article  Google Scholar 

  48. Stern SA, Gareis PJ, Sinclair TF, Mohr PH (1963) Performance of a Versatile Variable-Volume permeability cell. Comparison of gas permeability measurements by the variable-volume and variable-pressure methods. J Appl Polym Sci 7:2035–2051

    Article  CAS  Google Scholar 

  49. Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Wagner EV, Freeman BD, Cookson DJ (2007) Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318:254–258

    Article  CAS  Google Scholar 

  50. Zhang B, Wang T, Zhang S, Qiu J, Jian X (2006) Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone). Carbon 44:2764–2769

    Article  CAS  Google Scholar 

  51. Kato T, Yamada Y, Nishikawa Y, Ishikawa H, Sato S (2021) Carbonization mechanisms of polyimide: methodology to analyze carbon materials with nitrogen, oxygen, pentagons, and heptagons. Carbon 178:58–80

    Article  CAS  Google Scholar 

  52. Bürger A, Fitzer E, Heym M, Terwiesch B (1975) Polyimides as precursors for artificial carbon. Carbon 13:149–157

    Article  Google Scholar 

  53. Hatori H, Yamada Y, Shiraishi M, Yoshihara M, Kimljra T (1996) The mechanism of polyimide pyrolysis in the early stage. Carbon 34:201–208

    Article  CAS  Google Scholar 

  54. Li D, Chung T-S, Ren J, Wang R (2004) Thickness dependence of macrovoid evolution in wet phase-inversion asymmetric membranes. Ind Eng Chem Res 43:1553–1556

    Article  CAS  Google Scholar 

  55. Kiyono M, Williams PJ, Koros WJ (2010) Effect of polymer precursors on carbon molecular sieve structure and separation performance properties. Carbon 48:4432–4441

    Article  CAS  Google Scholar 

  56. Rungta M, Xu L, Koros WJ (2015) Structure–performance characterization for carbon molecular sieve membranes using molecular scale gas probes. Carbon 85:429–442

    Article  CAS  Google Scholar 

  57. Suda H, Haraya K (1997) Gas permeation through micropores of carbon molecular sieve membranes derived from kapton polyimide. J Phys Chem B 101:3988–3994

    Article  CAS  Google Scholar 

  58. Qin G, Cao X, Wen H, Wei W, Diniz da Costa JC (2017) Fine ultra-micropore control using the intrinsic viscosity of precursors for high performance carbon molecular sieve membranes. Sep Purif Technol 177:129–134

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Key R&D Program of China (2021YFB3801200), National Natural Science Foundation of China (21878033, 21978034, 22178044) and Dalian Science and Technology Plan (2018J12GX031) are gratefully acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2578 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jin, X., Li, L. et al. Influence of NIPS on the structure and gas separation performance of asymmetric carbon molecular sieve membranes. J Mater Sci 57, 16554–16567 (2022). https://doi.org/10.1007/s10853-022-07650-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07650-6