Skip to main content
Log in

Effect of triple-tail surfactant on the morphological properties of polyethersulfone-based membrane and its antifouling ability

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study presents a simpler approach to directly synthesize graphene oxide (GO) via electrochemical exfoliation method utilizing customized triple-tail 1-butyl-3-methyl-imidazolium, 1, 4-bis(neopentyoxy)-3-(neopentyloxycarbonyl)-1, 4-dioxobutane-2-sulfonate (BMIM-TC14) and sodium 1,4-bis(neopentyloxy)-3-(neopentylcarbonyl)-1,4-dioxobutane-2-sulfonate (TC14) surfactants. The synthesized GO and titanium dioxide (TiO2) were then used as additives in the fabrication of polyethersulfone (PES)-based nanofiltration (NF) membrane via non-solvent-induced phase separation method. The dye rejection performance and antifouling ability of the fabricated PES/GOBMIM-TC14/TiO2 and PES/GOTC14/TiO2 NF membranes were then investigated by comparing it with pristine PES membrane. It is worth noting that the utilization of triple-tail surfactant obviously enhanced membrane’s morphology in which PES/GOTC14/TiO2 NF membrane showed the highest hydrophilicity as shown by its lowest contact angle (68.98°). According to dead-end cell measurement, higher pure water flux (200.265 L/m2·h) and dye rejection (86.58%) were also obtained by PES/GOTC14/TiO2 NF membrane compared to other fabricated membranes. Higher GO amount in the sample resulted from the utilization of triple-tail surfactants that was believed to improve the dye rejection performance and antifouling abilities. Both GO-based NF membranes also showed a high flux recovery ratio (> 100%) compared to the pristine PES membrane (5.88%), thereby implied their excellent antifouling ability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Van TTT, Kumar SR, Lue SJ (2019) Separation mechanisms of binary dye mixtures using a PVDF ultrafiltration membrane: donnan effect and intermolecular interaction. J Memb Sci 575:38–49. https://doi.org/10.1016/j.memsci.2018.12.070

    Article  CAS  Google Scholar 

  2. Kim BS, Lee J (2016) Macroporous PVDF/TiO2 membranes with three-dimensionally interconnected pore structures produced by directional melt crystallization. Chem Eng J 301:158–165. https://doi.org/10.1016/j.cej.2016.05.003

    Article  CAS  Google Scholar 

  3. Nasrollahi N, Ghalamchi L, Vatanpour V, Khataee A (2021) Photocatalytic-membrane technology: a critical review for membrane fouling mitigation. J Ind Eng Chem 93:101–116. https://doi.org/10.1016/j.jiec.2020.09.031

    Article  CAS  Google Scholar 

  4. Oulad F, Zinadini S, Akbar A, Ashraf A (2020) Fabrication and characterization of a novel tannic acid coated boehmite/PES high performance antifouling NF membrane and application for licorice dye removal. Chem Eng J 397:125105. https://doi.org/10.1016/j.cej.2020.125105

    Article  CAS  Google Scholar 

  5. Xia S, Ni M (2014) Preparation of poly(vinylidene fluoride) membranes with graphene oxide addition for natural organic matter removal. J Memb Sci 473:54–62. https://doi.org/10.1016/j.memsci.2014.09.018

    Article  CAS  Google Scholar 

  6. Wang K, Qin Y, Quan S et al (2019) Development of highly permeable polyelectrolytes (PEs)/UiO-66 nanofiltration membranes for dye removal. Chem Eng Res Des 147:222–231. https://doi.org/10.1016/j.cherd.2019.05.014

    Article  CAS  Google Scholar 

  7. Dehban A, Kargari A, Ashtiani FZ (2020) Preparation and optimization of antifouling PPSU/PES/SiO2 nanocomposite ultrafiltration membranes by VIPS-NIPS technique. J Ind Eng Chem 88:292–311. https://doi.org/10.1016/j.jiec.2020.04.028

    Article  CAS  Google Scholar 

  8. Mahlangu OT, Nackaerts R, Thwala JM et al (2017) Hydrophilic fouling-resistant GO-ZnO/PES membranes for wastewater reclamation. J Memb Sci 524:43–55. https://doi.org/10.1016/j.memsci.2016.11.018

    Article  CAS  Google Scholar 

  9. Ma J, Guo X, Ying Y et al (2017) Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance. Chem Eng J 313:890–898. https://doi.org/10.1016/j.cej.2016.10.127

    Article  CAS  Google Scholar 

  10. Matindi CN, Hu M, Kadanyo S et al (2021) Tailoring the morphology of polyethersulfone/sulfonated polysulfone ultrafiltration membranes for highly efficient separation of oil-in-water emulsions using TiO2 nanoparticles. J Memb Sci 620:118868. https://doi.org/10.1016/j.memsci.2020.118868

    Article  CAS  Google Scholar 

  11. Ahmad AL, Pang WY, Mohd Shafie ZMH, Zaulkiflee ND (2019) PES/PVP/TiO2 mixed matrix hollow fiber membrane with antifouling properties for humic acid removal. J Water Process Eng 31:1–9. https://doi.org/10.1016/j.jwpe.2019.100827

    Article  Google Scholar 

  12. Algamdi MS, Alsohaimi IH, Lawler J et al (2019) Fabrication of graphene oxide incorporated polyethersulfone hybrid ultrafiltration membranes for humic acid removal. Sep Purif Technol 223:17–23. https://doi.org/10.1016/j.seppur.2019.04.057

    Article  CAS  Google Scholar 

  13. Makhetha TA, Moutloali RM (2021) Incorporation of a novel Ag – Cu@ZIF-8@GO nanocomposite into polyethersulfone membrane for fouling and bacterial resistance. J Memb Sci 618:118733. https://doi.org/10.1016/j.memsci.2020.118733

    Article  CAS  Google Scholar 

  14. Shahruddin MZ, Zakaria N, Diana Junaidi NF et al (2017) Study of the effectiveness of Titanium Dioxide (TiO2) nanoparticle in Polyethersulfone (PES) Composite membrane for removal of oil in oily wastewater. J Appl Membr Sci Technol 19:33–42. https://doi.org/10.11113/amst.v19i1.21

    Article  Google Scholar 

  15. Guo J, Kim J (2017) Modifications of polyethersulfone membrane by doping sulfated-TiO2 nanoparticles for improving anti-fouling property in wastewater treatment. RSC Adv 7:33822–33828. https://doi.org/10.1039/c7ra06406c

    Article  CAS  Google Scholar 

  16. Zhao G, Hu R, Zhao X et al (2019) High flux nanofiltration membranes prepared with a graphene oxide homo-structure. J Memb Sci 585:29–37. https://doi.org/10.1016/j.memsci.2019.05.028

    Article  CAS  Google Scholar 

  17. Ray SC (2015) Application and uses of Graphene oxide and reduced Graphene oxide. Appl Graphene Graphene-Oxide Based Nanomater. https://doi.org/10.1016/b978-0-323-37521-4.00002-9

    Article  Google Scholar 

  18. Konstantopoulos G, Fotou E, Ntziouni A et al (2021) A systematic study of electrolyte effect on exfoliation efficiency and green synthesis of graphene oxide. Ceram Int 47:32276–32289. https://doi.org/10.1016/j.ceramint.2021.08.122

    Article  CAS  Google Scholar 

  19. Bagheripour E, Moghadassi AR, Hosseini SM et al (2018) Novel composite graphene oxide/chitosan nanoplates incorporated into PES based nanofiltration membrane: chromium removal and antifouling enhancement. J Ind Eng Chem 62:311–320. https://doi.org/10.1016/j.jiec.2018.01.009

    Article  CAS  Google Scholar 

  20. Chen C, Yang QH, Yang Y et al (2009) Self-assembled free-standing graphite oxide membrane. Adv Mater 21:3007–3011. https://doi.org/10.1002/adma.200803726

    Article  CAS  Google Scholar 

  21. Mohamat R, Suriani AB, Mohamed A et al (2021) Effect of Surfactants’ tail number on the PVDF/GO/TiO2-Based Nanofiltration membrane for dye rejection and antifouling performance improvement. Int J Environ Res 15:149–161. https://doi.org/10.1007/s41742-020-00299-6

    Article  CAS  Google Scholar 

  22. Suriani AB, Muqoyyanah Mohamed A et al (2019) Incorporation of electrochemically exfoliated graphene oxide and TiO2 into polyvinylidene fluoride-based nanofiltration membrane for dye rejection. Water Air Soil Pollut 230:176. https://doi.org/10.1007/s11270-019-4222-x

    Article  CAS  Google Scholar 

  23. Mohamed A, Anas AK, Abu Bakar S et al (2014) Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites. Colloid Polym Sci 292:3013–3023. https://doi.org/10.1007/s00396-014-3354-1

    Article  CAS  Google Scholar 

  24. Suriani AB, Nurhafizah MD, Mohamed A et al (2016) Highly conductive electrodes of graphene oxide/natural rubber latex-based electrodes by using a hyper-branched surfactant. JMADE. https://doi.org/10.1016/j.matdes.2016.03.067

    Article  Google Scholar 

  25. Suriani AB, Muqoyyanah MA et al (2018) Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells. J Mater Sci Mater Electron 29:10723–10743. https://doi.org/10.1007/s10854-018-9139-4

    Article  CAS  Google Scholar 

  26. Rahimpour A, Madaeni SS, Amirinejad M et al (2009) The effect of heat treatment of PES and PVDF ultrafiltration membranes on morphology and performance for milk filtration. J Memb Sci 330:189–204. https://doi.org/10.1016/j.memsci.2008.12.059

    Article  CAS  Google Scholar 

  27. Amiri S, Asghari A, Vatanpour V, Rajabi M (2020) Fabrication and characterization of a novel polyvinyl alcohol-graphene oxide-sodium alginate nanocomposite hydrogel blended PES nano filtration membrane for improved water purification. Sep Purif Technol 250:117216. https://doi.org/10.1016/j.seppur.2020.117216

    Article  CAS  Google Scholar 

  28. Ocakoglu K, Dizge N, Colak SG et al (2021) Polyethersulfone membranes modified with CZTS nanoparticles for protein and dye separation: Improvement of antifouling and self-cleaning performance. Colloids Surfaces A Physicochem Eng Asp 616:126230. https://doi.org/10.1016/j.colsurfa.2021.126230

    Article  CAS  Google Scholar 

  29. Karimipour H, Shahbazi A, Vatanpour V (2021) Fouling decline and retention increase of polyethersulfone membrane by incorporating melamine-based dendrimer amine functionalized graphene oxide nanosheets (GO/MDA). J Environ Chem Eng 9:104849. https://doi.org/10.1016/j.jece.2020.104849

    Article  CAS  Google Scholar 

  30. Safarpour M, Vatanpour V, Khataee A (2016) Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination 393:65–78. https://doi.org/10.1016/j.desal.2015.07.003

    Article  CAS  Google Scholar 

  31. Mohamed A, Ardyani T, Bakar SA et al (2018) Preparation of conductive cellulose paper through electrochemical exfoliation of graphite: the role of anionic surfactant ionic liquids as exfoliating and stabilizing agents. Carbohydr Polym 201:48–59. https://doi.org/10.1016/j.carbpol.2018.08.040

    Article  CAS  Google Scholar 

  32. Wang J, Lang WZ, Xu HP et al (2015) Improved poly(vinyl butyral) hollow fiber membranes by embedding multi-walled carbon nanotube for the ultrafiltrations of bovine serum albumin and humic acid. Chem Eng J 260:90–98. https://doi.org/10.1016/j.cej.2014.08.082

    Article  CAS  Google Scholar 

  33. Yang M, Zhao C, Zhang S et al (2017) Preparation of graphene oxide modified poly(m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property. Appl Surf Sci 394:149–159. https://doi.org/10.1016/j.apsusc.2016.10.069

    Article  CAS  Google Scholar 

  34. Wang J, Wang Y, Zhu J et al (2017) Construction of TiO2@graphene oxide incorporated antifouling nanofiltration membrane with elevated filtration performance. J Memb Sci 533:279–288. https://doi.org/10.1016/j.memsci.2017.03.040

    Article  CAS  Google Scholar 

  35. Wu L, Zhang X, Wang T et al (2019) Enhanced performance of polyvinylidene fluoride ultrafiltration membranes by incorporating TiO2/graphene oxide. Chem Eng Res Des 141:492–501. https://doi.org/10.1016/j.cherd.2018.11.025

    Article  CAS  Google Scholar 

  36. Esmaeili M, Lahti J, Virtanen T et al (2020) The interplay role of vanillin, water, and coagulation bath temperature on formation of antifouling polyethersulfone (PES) membranes: application in wood extract treatment. Sep Purif Technol 235:116225. https://doi.org/10.1016/j.seppur.2019.116225

    Article  CAS  Google Scholar 

  37. Nikooe N, Saljoughi E (2017) Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution. Appl Surf Sci 413:41–49. https://doi.org/10.1016/j.apsusc.2017.04.029

    Article  CAS  Google Scholar 

  38. Vatanpour V, Madaeni SS, Khataee AR et al (2012) TiO2 embedded mixed matrix PES nanocomposite membranes: influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 292:19–29. https://doi.org/10.1016/j.desal.2012.02.006

    Article  CAS  Google Scholar 

  39. Jiang B, Zhang N, Zhang L et al (2018) Enhanced separation performance of PES ultrafiltration membranes by imidazole-based deep eutectic solvents as novel functional additives. J Memb Sci 564:247–258. https://doi.org/10.1016/j.memsci.2018.07.034

    Article  CAS  Google Scholar 

  40. Balkanloo PG, Mahmoudian M, Hosseinzadeh MT (2020) A comparative study between MMT-Fe3O4/PES, MMT-HBE/PES, and MMT-acid activated/PES mixed matrix membranes. Chem Eng J 396:125188. https://doi.org/10.1016/j.cej.2020.125188

    Article  CAS  Google Scholar 

  41. Chu Z, Chen K, Xiao C et al (2020) Performance improvement of polyethersulfone ultrafiltration membrane containing variform inorganic nano-additives. Polymer (Guildf) 188:122160. https://doi.org/10.1016/j.polymer.2020.122160

    Article  CAS  Google Scholar 

  42. Mahmoudi E, Yong L, Lun W et al (2020) Improving membrane bioreactor performance through the synergistic effect of silver-decorated graphene oxide in composite membranes. J Water Process Eng 34:101169. https://doi.org/10.1016/j.jwpe.2020.101169

    Article  Google Scholar 

  43. Ly QV, Matindi C, Kuvarega AT et al (2020) Exploring the novel PES/malachite mixed matrix membrane to remove organic matter for water purification. Chem Eng Res Des 160:63–73. https://doi.org/10.1016/j.cherd.2020.05.022

    Article  CAS  Google Scholar 

  44. Ahmad MW, Dey B, Al Saidi AKA, Choudhury A (2020) Functionalized-graphene reinforced polyethersulfone nanocomposites with improved physical and mechanical properties. Polym Compos 41:4104–4116. https://doi.org/10.1002/pc.25697

    Article  CAS  Google Scholar 

  45. Kumi-Barimah E, Penhale-Jones R, Salimian A et al (2020) Phase evolution, morphological, optical and electrical properties of femtosecond pulsed laser deposited TiO2 thin films. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-67367-x

    Article  CAS  Google Scholar 

  46. Francolini I, Perugini E, Silvestro I et al (2019) Graphene oxide oxygen content affects physical and biological properties of scaffolds based on chitosan/graphene oxide conjugates. Materials (Basel) 12:1142–1158. https://doi.org/10.3390/ma12071142

    Article  CAS  Google Scholar 

  47. Khan U, O’Neill A, Lotya M et al (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871. https://doi.org/10.1002/smll.200902066

    Article  CAS  Google Scholar 

  48. Kazemi M, Peyravi M, Jahanshahi M (2020) Multilayer UF membrane assisted by photocatalytic NZVI@TiO2 nanoparticle for removal and reduction of hexavalent chromium. J Water Process Eng 37:101183. https://doi.org/10.1016/j.jwpe.2020.101183

    Article  Google Scholar 

  49. Abdulkarem E, Ibrahim Y, Naddeo V et al (2020) Development of Polyethersulfone/α-Zirconium phosphate (PES/α-ZrP) flat-sheet nanocomposite ultrafiltration membranes. Chem Eng Res Des 161:206–217. https://doi.org/10.1016/j.cherd.2020.07.006

    Article  CAS  Google Scholar 

  50. Khalid F, Tabish M, Bora KAI (2020) Novel poly(vinyl alcohol) nanofiltration membrane modified with dopamine coated anatase TiO2 core shell nanoparticles. J Water Process Eng 37:101486. https://doi.org/10.1016/j.jwpe.2020.101486

    Article  Google Scholar 

  51. Li C, Sun W, Lu Z et al (2019) Systematic evaluation of TiO2-GO-modified ceramic membranes for water treatment: retention properties and fouling mechanisms. Chem Eng J 378:122138. https://doi.org/10.1016/j.cej.2019.122138

    Article  CAS  Google Scholar 

  52. Kusworo TD, Ariyanti N, Utomo DP (2020) Effect of nano-TiO2 loading in polysulfone membranes on the removal of pollutant following natural-rubber wastewater treatment. J Water Process Eng 35:101190. https://doi.org/10.1016/j.jwpe.2020.101190

    Article  Google Scholar 

  53. Wu G, Gan S, Cui L, Xu Y (2008) Preparation and characterization of PES/TiO2 composite membranes. Appl Surf Sci 254:7080–7086. https://doi.org/10.1016/j.apsusc.2008.05.221

    Article  CAS  Google Scholar 

  54. Jaleh B, Zare E, Azizian S et al (2020) Preparation and characterization of polyvinylpyrrolidone/polysulfone ultrafiltration membrane modified by graphene oxide and titanium dioxide for enhancing hydrophilicity and antifouling properties. J Inorg Organomet Polym Mater 30:2213–2223. https://doi.org/10.1007/s10904-019-01367-x

    Article  CAS  Google Scholar 

  55. Zhang H, Wang X, Li N et al (2018) Synthesis and characterization of TiO2/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate. RSC Adv 8:34241–34251. https://doi.org/10.1039/c8ra06681g

    Article  CAS  Google Scholar 

  56. Farnam M, Mukhtar H, Shariff AM (2016) An investigation of blended polymeric membranes and their gas separation performance. RSC Adv 6:102671–102679. https://doi.org/10.1039/c6ra21574b

    Article  CAS  Google Scholar 

  57. Li YN, Li H, Ye H et al (2019) Preparation and characterization of poly(ether sulfone)/fluorinated silica organic–inorganic composite membrane for sulfur dioxide desulfurization. High Perform Polym 31:72–85. https://doi.org/10.1177/0954008317752072

    Article  CAS  Google Scholar 

  58. Alkindy MB, Naddeo V, Banat F, Hasan SW (2020) Synthesis of polyethersulfone (PES)/GO-SiO2 mixed matrix membranes for oily wastewater treatment. Water Sci Technol 81:1354–1364. https://doi.org/10.2166/wst.2019.347

    Article  CAS  Google Scholar 

  59. Giwa A, Hasan SW (2020) Novel polyethersulfone-functionalized graphene oxide (PES-fGO) mixed matrix membranes for wastewater treatment. Sep Purif Technol 241:116735. https://doi.org/10.1016/j.seppur.2020.116735

    Article  CAS  Google Scholar 

  60. Makhetha TA, Moutloali RM (2018) Antifouling properties of Cu (tpa)@GO/PES composite membranes and selective dye rejection. J Memb Sci 554:195–210. https://doi.org/10.1016/j.memsci.2018.03.003

    Article  CAS  Google Scholar 

  61. Zhu Z, Wang L, Xu Y et al (2017) Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection. J Colloid Interface Sci 504:429–439. https://doi.org/10.1016/j.jcis.2017.05.068

    Article  CAS  Google Scholar 

  62. Ambarita AC, Mulyati S, Arahman N et al (2021) Improvement of properties and performances of polyethersulfone ultrafiltration membrane by blending with bio-based dragonbloodin resin. Polymers (Basel). https://doi.org/10.3390/polym13244436

    Article  Google Scholar 

  63. Marbelia L, Bilad MR, Vankelecom IFJ (2019) Gradual PVP leaching from PVDF/PVP blend membranes and its effects on membrane fouling in membrane bioreactors. Sep Purif Technol 213:276–282. https://doi.org/10.1016/j.seppur.2018.12.045

    Article  CAS  Google Scholar 

  64. Xu H, Xiao K, Wang X et al (2020) Outlining the roles of membrane-Foulant and Foulant-Foulant interactions in organic fouling during microfiltration and ultrafiltration: a mini-review. Front Chem 8:1–14. https://doi.org/10.3389/fchem.2020.00417

    Article  CAS  Google Scholar 

  65. Gao Y, Qin J, Wang Z, Østerhus SW (2019) Backpulsing technology applied in MF and UF processes for membrane fouling mitigation: a review. J Memb Sci 587:117136. https://doi.org/10.1016/j.memsci.2019.05.060

    Article  CAS  Google Scholar 

  66. Zinadini S, Gholami F (2016) Preparation and characterization of high flux PES nanofiltration membrane using hydrophilic nanoparticles by phase inversion method for application in advanced wastewater treatment. J Appl Res Water Wastewater 5:232–235

    Google Scholar 

  67. Cheng J, Shi W, Zhang L, Zhang R (2017) A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC). Appl Surf Sci 416:152–159. https://doi.org/10.1016/j.apsusc.2017.04.173

    Article  CAS  Google Scholar 

  68. Vatanpour V, Dehqan A, Harifi-Mood AR (2020) Ethaline deep eutectic solvent as a hydrophilic additive in modification of polyethersulfone membrane for antifouling and separation improvement. J Memb Sci 614:118528. https://doi.org/10.1016/j.memsci.2020.118528

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Fundamental Research Grand Scheme (grant no. 2020-0254-103-02) and Newton Fund: Use of ISIS Neutron and Muon Source (grant no. 2019-0257-103-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suriani Abu Bakar.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest to declare.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamat, R., Bakar, S.A., Muqoyyanah et al. Effect of triple-tail surfactant on the morphological properties of polyethersulfone-based membrane and its antifouling ability. J Mater Sci 57, 16333–16351 (2022). https://doi.org/10.1007/s10853-022-07646-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07646-2

Navigation