Skip to main content

Advertisement

Log in

Enhanced nitrogen doping in porous carbon and its composite with MnO2 as an efficient oxygen reduction catalyst for Mg–air batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The objective of this study is to obtain a highly nitrogen-doped carbon with a developed pore network, which can boost mass transfer and provide a large number of active sites for electrocatalytic oxygen reduction. Herein, we synthesized a series of nitrogen-doped carbons in two steps: high-temperature nitric acid treatment of carbon black that effectively introduced oxygen-containing functional groups (oxidation), followed by its annealing with cyanamide that reduced the oxygen-containing functional groups and simultaneously introduced nitrogen atoms (doping). The nitrogen doping level, which depended on the oxygen concentration of the oxidized carbon black, was significantly increased via increasing the oxidation temperature. Furthermore, the annealing step for nitrogen doping increased the mesoporosity of the resultant nitrogen-doped carbons by the formation of void spaces. The highly nitrogen-doped porous carbon synthesized using carbon black oxidized at 80 °C (NPC-80) with high mesoporosity and large surface area exhibited an excellent catalytic activity for the oxygen reduction reaction. The catalytic performance was further enhanced by adding MnO2, which can reduce and disproportionate hydrogen peroxide. A Mg–air battery fabricated with the MnO2/NPC-80 composite as a catalyst system showed low polarization loss and high maximum power density of 170 mW cm−2.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Yu F, Bai X, Liang M, Ma J (2021) Recent progress on metal-organic framework-derived porous carbon and its composite for pollutant adsorption from liquid phase. Chem Eng J 405:126960. https://doi.org/10.1016/j.cej.2020.126960

    Article  CAS  Google Scholar 

  2. Chen S, Wang Y, Yang L et al (2020) Electron-induced perpendicular graphene sheets embedded porous carbon film for flexible touch sensors. Nano-Micro Lett 12:136. https://doi.org/10.1007/s40820-020-00480-8

    Article  CAS  Google Scholar 

  3. Wei L, Yushin G (2012) Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1:552–565. https://doi.org/10.1016/j.nanoen.2012.05.002

    Article  CAS  Google Scholar 

  4. Jäger R, Kasatkin PE, Härk E, Lust E (2013) Oxygen reduction on molybdenum carbide derived micromesoporous carbon electrode in alkaline solution. Electrochem Commun 35:97–99. https://doi.org/10.1016/j.elecom.2013.08.001

    Article  CAS  Google Scholar 

  5. Terrones M, Ajayan PM, Banhart F et al (2002) N-doping and coalescence of carbon nanotubes: synthesis and electronic properties. Appl Phys A Mater Sci Process 74:355–361. https://doi.org/10.1007/s003390201278

    Article  CAS  Google Scholar 

  6. Shao Y, Zhang S, Engelhard MH et al (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20:7491–7496. https://doi.org/10.1039/c0jm00782j

    Article  CAS  Google Scholar 

  7. Kondo T, Suzuki T, Nakamura J (2011) Nitrogen doping of graphite for enhancement of durability of supported platinum clusters. J Phys Chem Lett 2:577–580. https://doi.org/10.1021/jz200077y

    Article  CAS  Google Scholar 

  8. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794. https://doi.org/10.1021/cs200652y

    Article  CAS  Google Scholar 

  9. Maruyama J, Hasegawa T, Iwasaki S et al (2014) Heat treatment of carbonized hemoglobin with ammonia for enhancement of pore development and oxygen reduction activity. ACS Sustain Chem Eng 2:493–499. https://doi.org/10.1021/sc400402y

    Article  CAS  Google Scholar 

  10. Ilnicka A, Lukaszewicz JP, Shimanoe K, Yuasa M (2018) Urea treatment of nitrogen-doped carbon leads to enhanced performance for the oxygen reduction reaction. J Mater Res 33:1612–1624. https://doi.org/10.1557/jmr.2018.116

    Article  CAS  Google Scholar 

  11. Sheng ZH, Shao L, Chen JJ et al (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358. https://doi.org/10.1021/nn103584t

    Article  CAS  Google Scholar 

  12. Wen Z, Wang X, Mao S et al (2012) Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv Mater 24:5610–5616. https://doi.org/10.1002/adma.201201920

    Article  CAS  Google Scholar 

  13. Shi Q, Zhang R, Lv Y et al (2015) Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor. Carbon 84:335–346. https://doi.org/10.1016/j.carbon.2014.12.013

    Article  CAS  Google Scholar 

  14. Tian GL, Zhao MQ, Yu D et al (2014) Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small 10:2251–2259. https://doi.org/10.1002/smll.201303715

    Article  CAS  Google Scholar 

  15. Gong K, Du F, Xia Z et al (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764. https://doi.org/10.1126/science.1168049

    Article  CAS  Google Scholar 

  16. Li Y, Dai H (2014) Recent advances in zinc–air batteries. Chem Soc Rev 43:5257–5275. https://doi.org/10.1039/C4CS00015C

    Article  CAS  Google Scholar 

  17. Wang M, Li Y, Han J (2020) Mesoporous N-doped carbon nanofibers with surface nanocavities for enhanced catalytic activity toward oxygen reduction reaction. J Mater Sci 55:11177–11187. https://doi.org/10.1007/s10853-020-04772-7

    Article  CAS  Google Scholar 

  18. Chisaka M, Iijima T, Tomita A et al (2010) Oxygen reduction reaction activity of Vulcan XC-72 doped with nitrogen under NH3 gas in acid media. J Electrochem Soc 157:B1701. https://doi.org/10.1149/1.3489365

    Article  CAS  Google Scholar 

  19. Wang W-W, Dang J-S, Zhao X, Nagase S (2016) Formation mechanisms of graphitic-N: oxygen reduction and nitrogen doping of graphene oxides. J Phys Chem C 120:5673–5681. https://doi.org/10.1021/acs.jpcc.5b10607

    Article  CAS  Google Scholar 

  20. Li X, Wang H, Robinson JT et al (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131:15939–15944. https://doi.org/10.1021/ja907098f

    Article  CAS  Google Scholar 

  21. Datsyuk V, Kalyva M, Papagelis K et al (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840. https://doi.org/10.1016/j.carbon.2008.02.012

    Article  CAS  Google Scholar 

  22. Fang H-T, Liu C-G, Liu C et al (2004) Purification of single-wall carbon nanotubes by electrochemical oxidation. Chem Mater 16:5744–5750. https://doi.org/10.1021/cm035263h

    Article  CAS  Google Scholar 

  23. Chen LD, Nørskov JK, Luntz AC (2015) Theoretical limits to the anode potential in aqueous Mg–Air batteries. J Phys Chem C 119:19660–19667. https://doi.org/10.1021/acs.jpcc.5b05677

    Article  CAS  Google Scholar 

  24. Zhang T, Tao Z, Chen J (2014) Magnesium–air batteries: from principle to application. Mater Horizons 1:196–206. https://doi.org/10.1039/c3mh00059a

    Article  CAS  Google Scholar 

  25. Du D, Li P, Ouyang J (2015) Nitrogen-doped reduced graphene oxide prepared by simultaneous thermal reduction and nitrogen doping of graphene oxide in air and its application as an electrocatalyst. ACS Appl Mater Interfaces 7:26952–26958. https://doi.org/10.1021/acsami.5b07757

    Article  CAS  Google Scholar 

  26. Wang Z, Cao C, Zheng Y et al (2014) Abiotic oxygen reduction reaction catalysts used in microbial fuel cells. ChemElectroChem 1:1813–1821. https://doi.org/10.1002/celc.201402093

    Article  CAS  Google Scholar 

  27. Wen Q, Wang S, Yan J et al (2014) Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells. Bioelectrochemistry 95:23–28. https://doi.org/10.1016/j.bioelechem.2013.10.007

    Article  CAS  Google Scholar 

  28. Neburchilov V, Wang H, Martin JJ, Qu W (2010) A review on air cathodes for zinc–air fuel cells. J Power Sources 195:1271–1291. https://doi.org/10.1016/j.jpowsour.2009.08.100

    Article  CAS  Google Scholar 

  29. Mao L, Zhang D, Sotomura T et al (2003) Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim Acta 48:1015–1021. https://doi.org/10.1016/S0013-4686(02)00815-0

    Article  CAS  Google Scholar 

  30. Gopal SA, Poulose AE, Sudakar C, Muthukrishnan A (2021) Kinetic insights into the mechanism of oxygen reduction reaction on Fe2O3/C composites. ACS Appl Mater Interfaces 13:44195–44206. https://doi.org/10.1021/acsami.1c10114

    Article  CAS  Google Scholar 

  31. Poux T, Napolskiy FS, Dintzer T et al (2012) Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction. Catal Today 189:83–92. https://doi.org/10.1016/j.cattod.2012.04.046

    Article  CAS  Google Scholar 

  32. Yuasa M, Tachibana N, Shimanoe K (2013) Oxygen reduction activity of carbon-supported La1–xCaxMn1–yFeyO3 nanoparticles. Chem Mater 25:3072–3079. https://doi.org/10.1021/cm401276y

    Article  CAS  Google Scholar 

  33. Thomas A, Fischer A, Goettmann F et al (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18:4893–4908. https://doi.org/10.1039/b800274f

    Article  CAS  Google Scholar 

  34. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  35. de Boer JH, Lippens BC, Linsen BG et al (1966) The t-curve of multimolecular N2-adsorption. J Colloid Interface Sci 21:405–414. https://doi.org/10.1016/0095-8522(66)90006-7

    Article  Google Scholar 

  36. Sonkar PK, Prakash K, Yadav M et al (2017) Co(II)-porphyrin-decorated carbon nanotubes as catalysts for oxygen reduction reactions: an approach for fuel cell improvement. J Mater Chem A 5:6263–6276. https://doi.org/10.1039/c6ta10482g

    Article  CAS  Google Scholar 

  37. El-Deab MS, Okajima T, Ohsaka T (2003) Electrochemical reduction of oxygen on gold nanoparticle-electrodeposited glassy carbon electrodes. J Electrochem Soc 150:A851. https://doi.org/10.1149/1.1574806

    Article  CAS  Google Scholar 

  38. Kundu S, Wang Y, Xia W, Muhler M (2008) Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study. J Phys Chem C 112:16869–16878. https://doi.org/10.1021/jp804413a

    Article  CAS  Google Scholar 

  39. Toebes ML, Van Heeswijk JMP, Bitter JH et al (2004) The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers. Carbon 42:307–315. https://doi.org/10.1016/j.carbon.2003.10.036

    Article  CAS  Google Scholar 

  40. De La Puente G, Pis JJ, Menéndez JA, Grange P (1997) Thermal stability of oxygenated functions in activated carbons. J Anal Appl Pyrolysis 43:125–138. https://doi.org/10.1016/S0165-2370(97)00060-0

    Article  Google Scholar 

  41. Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM (1999) Modification of the surface chemistry of activated carbons. Carbon 37:1379–1389. https://doi.org/10.1016/S0008-6223(98)00333-9

    Article  CAS  Google Scholar 

  42. Brender P, Gadiou R, Rietsch JC et al (2012) Characterization of carbon surface chemistry by combined temperature programmed desorption with in situ X-ray photoelectron spectrometry and temperature programmed desorption with mass spectrometry analysis. Anal Chem 84:2147–2153. https://doi.org/10.1021/ac102244b

    Article  CAS  Google Scholar 

  43. Hotová G, Slovák V, Soares OSGP et al (2018) Oxygen surface groups analysis of carbonaceous samples pyrolysed at low temperature. Carbon 134:255–263. https://doi.org/10.1016/j.carbon.2018.03.067

    Article  CAS  Google Scholar 

  44. Jürgens B, Irran E, Senker J et al (2003) Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by x-ray powder diffractometry, solid-state NMR, and theoretical studies. J Am Chem Soc 125:10288–10300. https://doi.org/10.1021/ja0357689

    Article  CAS  Google Scholar 

  45. Liang J, Du X, Gibson C et al (2013) N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv Mater 25:6226–6231. https://doi.org/10.1002/adma.201302569

    Article  CAS  Google Scholar 

  46. Soboleva T, Zhao X, Malek K et al (2010) On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Appl Mater Interfaces 2:375–384. https://doi.org/10.1021/am900600y

    Article  CAS  Google Scholar 

  47. Mangun CL, Benak KR, Economy J, Foster KL (2001) Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia. Carbon 39:1809–1820. https://doi.org/10.1016/S0008-6223(00)00319-5

    Article  CAS  Google Scholar 

  48. Yang W, Fellinger TP, Antonietti M (2011) Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J Am Chem Soc 133:206–209. https://doi.org/10.1021/ja108039j

    Article  CAS  Google Scholar 

  49. Noffke BW, Li Q, Raghavachari K, Li L (2016) A model for the pH-dependent selectivity of the oxygen reduction reaction electrocatalyzed by N-doped graphitic carbon. J Am Chem Soc 138:13923–13929. https://doi.org/10.1021/jacs.6b06778

    Article  CAS  Google Scholar 

  50. Wang P, Wang Z, Jia L, Xiao Z (2009) Origin of the catalytic activity of graphite nitride for the electrochemical reduction of oxygen: geometric factors vs. electronic factors. Phys Chem Chem Phys 11:2730. https://doi.org/10.1039/b818408a

    Article  CAS  Google Scholar 

  51. Deng D, Pan X, Yu L et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23:1188–1193. https://doi.org/10.1021/cm102666r

    Article  CAS  Google Scholar 

  52. Liang HW, Zhuang X, Brüller S et al (2014) Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat Commun 5:4973. https://doi.org/10.1038/ncomms5973

    Article  CAS  Google Scholar 

  53. Nagy B, Villar-Rodil S, Tascón JMD et al (2016) Nitrogen doped mesoporous carbon aerogels and implications for electrocatalytic oxygen reduction reactions. Microporous Mesoporous Mater 230:135–144. https://doi.org/10.1016/j.micromeso.2016.05.009

    Article  CAS  Google Scholar 

  54. Su Y, Jiang H, Zhu Y et al (2014) Hierarchical porous iron and nitrogen co-doped carbons as efficient oxygen reduction electrocatalysts in neutral media. J Power Sources 265:246–253. https://doi.org/10.1016/j.jpowsour.2014.04.140

    Article  CAS  Google Scholar 

  55. Su Y, Zhu Y, Yang X et al (2013) A highly efficient catalyst toward oxygen reduction reaction in neutral media for microbial fuel cells. Ind Eng Chem Res 52:6076–6082. https://doi.org/10.1021/ie4003766

    Article  CAS  Google Scholar 

  56. Jiang M, He H, Huang C et al (2016) α-MnO2 nanowires/graphene composites with high electrocatalytic activity for Mg–Air fuel cell. Electrochim Acta 219:492–501. https://doi.org/10.1016/j.electacta.2016.09.004

    Article  CAS  Google Scholar 

  57. Jiang M, He H, Yi WJ et al (2017) ZIF-67 derived Ag-Co3O4@N-doped carbon/carbon nanotubes composite and its application in Mg–air fuel cell. Electrochem Commun 77:5–9. https://doi.org/10.1016/j.elecom.2017.01.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Grant-in-Aid for Scientific Research (KAKENHI), Grant Number JP 20K15223 from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Tachibana.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 886 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tachibana, N., Kanai, M., Kamezaki, Y. et al. Enhanced nitrogen doping in porous carbon and its composite with MnO2 as an efficient oxygen reduction catalyst for Mg–air batteries. J Mater Sci 57, 15929–15942 (2022). https://doi.org/10.1007/s10853-022-07639-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07639-1