Skip to main content

Advertisement

Log in

AuNP-composited multilayers with pH-regulated near-infrared photothermal effect for intelligent and synergistic antibacterial performance

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, materials with pH-regulated near-infrared (NIR) photothermal effect are utilized to realize the efficient, safe, and synergistic antibacterial treatment. Polymeric multilayers were prepared through layer-by-layer assembly and ultraviolet (UV) crosslinking, and the key factors affecting the surface charge and isoelectric point (IEP) of the multilayers were discussed. When the pH-responsive multilayers were obtained, gold nanoparticles (AuNPs) having photothermal effect were further assembled into them. The pH responsibility, photothermal effect and antibacterial performance of the multilayers were further studied. The AuNP-composited multilayers can be heated up to 60 °C in 5 min under NIR irradiation, showing a good photothermal property. The multilayers swell and become negatively charged in pH 7.4, whereas they shrink and become positively charged in pH 5.0. Meanwhile, due to the volume shrinkage of multilayers and thereby the aggregation of AuNPs, the photothermal effect is enhanced. Under the synergism effect of pH-regulated photothermal effect and cationic polymer, the bacteria are killed by the multilayer efficiently under NIR and acidic conditions. This study provided a new idea and method for adaptive and intelligent antibacterial treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lu Y, Wu Y, Liang J, Libera MR, Sukhishvili SA (2015) Self-defensive antibacterial layer-by-layer hydrogel coatings with pH-triggered hydrophobicity. Biomaterials 45:64–71. https://doi.org/10.1016/j.biomaterials.2014.12.048

    Article  CAS  Google Scholar 

  2. Zhan W, Wei T, Cao L, Hu C, Qu Y, Yu Q, Chen H (2017) Supramolecular platform with switchable multivalent affinity: photo-reversible capture and release of bacteria. ACS Appl Mater Interf 9(4):3505–3513. https://doi.org/10.1021/acsami.6b15446

    Article  CAS  Google Scholar 

  3. Yu Q, Cho J, Shivapooja P, Ista LK, Lopez GP (2013) Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Appl Mater Interf 5(19):9295–9304. https://doi.org/10.1021/am4022279

    Article  CAS  Google Scholar 

  4. Wang J, Chen Y, An J, Xu K, Chen T, Muller-Buschbaum P, Zhong Q (2017) Intelligent textiles with comfort regulation and inhibition of bacterial adhesion realized by cross-linking Poly(n-isopropylacrylamide-co-ethylene glycol methacrylate) to Cotton Fabrics. ACS Appl Mater Interf 9(15):13647–13656. https://doi.org/10.1021/acsami.7b01922

    Article  CAS  Google Scholar 

  5. Yao Q, Ye Z, Sun L, Jin Y, Xu Q, Yang M, Wang Y, Zhou Y, Ji J, Chen H, Wang B (2017) Bacterial infection microenvironment-responsive enzymatically degradable multilayer films for multifunctional antibacterial properties. J Mater Chem B 5(43):8532–8541. https://doi.org/10.1039/c7tb02114c

    Article  CAS  Google Scholar 

  6. Lu K, Li K, Zhang M, Fang Z, Wu P, Feng L, Deng K, Yu C, Deng Y, Xiao Y, Zhu P, Guo R (2021) Adipose-derived stem cells (ADSCs) and platelet-rich plasma (PRP) loaded gelatin/silk fibroin hydrogels for improving healing in a murine pressure ulcer model. Chem Eng J. https://doi.org/10.1016/j.cej.2021.130429

    Article  Google Scholar 

  7. Wu B, Zhang L, Huang L, Xiao S, Yang Y, Zhong M, Yang J (2017) Salt-induced regenerative surface for bacteria killing and release. Langmuir 33(28):7160–7168. https://doi.org/10.1021/acs.langmuir.7b01333

    Article  CAS  Google Scholar 

  8. Chen J, Shi X, Zhu Y, Chen Y, Gao M, Gao H, Liu L, Wang L, Mao C, Wang Y (2020) On-demand storage and release of antimicrobial peptides using Pandora’s box-like nanotubes gated with a bacterial infection-responsive polymer. Theranostics 10(1):109–122. https://doi.org/10.7150/thno.38388

    Article  CAS  Google Scholar 

  9. Song Y-y, Zhang L-h, Dong L-m, Li H-t, Yu Z-p, Liu Y, Lv G-j, Ma H-l (2021) pH-responsive smart wettability surface with dual bactericidal and releasing properties. ACS Appl Mater Interfaces 13(38):46065–46075. https://doi.org/10.1021/acsami.1c08263

    Article  CAS  Google Scholar 

  10. Martín-Fabiani I, Fortini A, Lesage de la Haye J, Koh ML, Taylor SE, Bourgeat-Lami E, Lansalot M, D’Agosto F, Sear RP, Keddie JL (2016) pH-switchable stratification of colloidal coatings: surfaces “On Demand.” ACS Appl Mater Interfaces 8(50):34755–34761. https://doi.org/10.1021/acsami.6b12015

    Article  CAS  Google Scholar 

  11. Song Z, Wu Y, Cao Q, Wang H, Wang X, Han H (2018) pH-responsive, light-triggered on-demand antibiotic release from functional metal-organic framework for bacterial infection combination therapy. Adv Func Mater 28(23):1800011. https://doi.org/10.1002/adfm.201800011

    Article  CAS  Google Scholar 

  12. Pavlukhina S, Lu Y, Patimetha A, Libera M, Sukhishvili S (2010) Polymer multilayers with pH-triggered release of antibacterial agents. Biomacromol 11(12):3448–3456. https://doi.org/10.1021/bm100975w

    Article  CAS  Google Scholar 

  13. Simmen HP, Blaser J (1993) Analysis of pH and pO2 in abscesses, peritoneal fluid, and drainage fluid in the presence or absence of bacterial infection during and after abdominal surgery. Am J Surg 166(1):24–27. https://doi.org/10.1016/s0002-9610(05)80576-8

    Article  CAS  Google Scholar 

  14. Simmen HP, Blaser J (2016) Self-cleaning pH/thermo-responsive cotton fabric with smart-control and reusable functions for oil/water separation. RSC Adv. 6(29):24076–24082. https://doi.org/10.1039/c6ra02252a

    Article  Google Scholar 

  15. Ayaz P, Xu B, Zhang X, Wang J, Yu D, Wu JJASS (2020) A pH and hyaluronidase dual-responsive multilayer-based drug delivery system for resisting bacterial infection. Appl Surf Sci 527:146806. https://doi.org/10.1016/j.apsusc.2020.146806

    Article  CAS  Google Scholar 

  16. Wu J, Zhao S, Xu S, Pang X, Cai G, Wang J (2018) Acidity-triggered charge-reversible multilayers for construction of adaptive surfaces with switchable bactericidal and bacteria-repelling functions. J Mater Chem B 6(45):7462–7470. https://doi.org/10.1039/c8tb02093k

    Article  CAS  Google Scholar 

  17. Wang Y, Yang Y, Shi Y, Song H, Yu CJAM (2020) Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv Mater 32(18):1904106. https://doi.org/10.1002/adma.201904106

    Article  CAS  Google Scholar 

  18. Wei S, Xu P, Yao Z, Cui X, Lei X, Li L, Dong Y, Zhu W, Guo R, Cheng B (2021) A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes. Acta Biomater 124:205–218. https://doi.org/10.1016/j.actbio.2021.01.046

    Article  CAS  Google Scholar 

  19. Li Y, Chi Y-Q, Yu C-H, Xie Y, Xia M-Y, Zhang C-L, Han X, Peng Q (2020) Drug-free and non-crosslinked chitosan scaffolds with efficient antibacterial activity against both Gram-negative and Gram-positive bacteria. Carbohyd Polym 241:116386. https://doi.org/10.1016/j.carbpol.2020.116386

    Article  CAS  Google Scholar 

  20. Yu C-H, Chen G-Y, Xia M-Y, Xie Y, Chi Y-Q, He Z-Y, Zhang C-L, Zhang T, Chen Q-M, Peng Q (2020) Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms. Colloids Surf, B 191:111009. https://doi.org/10.1016/j.colsurfb.2020.111009

    Article  CAS  Google Scholar 

  21. Huang W, Meng L, Chen Y, Dong Z, Peng Q (2021) Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2021.12.005

    Article  Google Scholar 

  22. Gao Y, Chen Y, Cao Y, Mo A, Peng Q (2021) Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus. Eur J Med Chem 213:113056. https://doi.org/10.1016/j.ejmech.2020.113056

    Article  CAS  Google Scholar 

  23. Wei T, Yu Q, Zhan W, Chen H (2016) A smart antibacterial surface for the on-demand killing and releasing of bacteria. Adv Healthcare Mater 5(4):449–456. https://doi.org/10.1002/adhm.201500700

    Article  CAS  Google Scholar 

  24. Gao Y, Dong Y, Cao Y, Huang W, Yu C, Sui S, Mo A, Peng Q (2021) Graphene oxide nanosheets with efficient antibacterial activity against methicillin-resistant staphylococcus aureus (MRSA). J Biomed Nanotechnol 17(8):1627–1634. https://doi.org/10.1166/jbn.2021.3123

    Article  CAS  Google Scholar 

  25. Wu Y, Liao Q, Wu L, Luo Y, Zhang W, Guan M, Pan H, Tong L, Chu PK, Wang H (2021) ZnL2-BPs integrated bone scaffold under sequential photothermal mediation: A win-win strategy delivering antibacterial therapy and fostering osteogenesis thereafter. ACS nano 15(11):17854–17869. https://doi.org/10.1021/acsnano.1c06062

    Article  CAS  Google Scholar 

  26. Jia Q, Song Q, Li P, Huang W (2019) Rejuvenated photodynamic therapy for bacterial infections. Adv Healthc Mater 8(14):e1900608. https://doi.org/10.1002/adhm.201900608

    Article  CAS  Google Scholar 

  27. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–81. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  Google Scholar 

  28. Zou Y, Zhang Y, Yu Q, Chen H (2021) Photothermal bactericidal surfaces: killing bacteria using light instead of biocides. Biomater Sci 9(1):10–22. https://doi.org/10.1039/D0BM00617C

    Article  CAS  Google Scholar 

  29. Shende P, Kasture P, Gaud RS (2018) Nanoflowers: the future trend of nanotechnology for multi-applications. Artif Cells Nanomed Biotechnol 46(sup1):413–422. https://doi.org/10.1080/21691401.2018.1428812

    Article  CAS  Google Scholar 

  30. Wang Y, Jin Y, Chen W, Wang J, Chen H, Sun L, Li X, Ji J, Yu Q, Shen L, Wang B (2019) Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chem Eng J 358:74–90. https://doi.org/10.1016/j.cej.2018.10.002

    Article  CAS  Google Scholar 

  31. Liu Y, Zhi X, Yang M, Zhang J, Lin L, Zhao X, Hou W, Zhang C, Zhang Q, Pan F, Alfranca G, Yang Y, de la Fuente JM, Ni J, Cui D (2017) Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy. Theranostics 7(6):1650–1662. https://doi.org/10.7150/thno.17602

    Article  CAS  Google Scholar 

  32. Yuan A, Huan W, Liu X, Zhang Z, Zhang Y, Wu J, Hu YJM, p, (2017) NIR light-activated drug release for synergetic chemo–photothermal therapy. Mol Pharm 14(1):242–251. https://doi.org/10.1021/acs.molpharmaceut.6b00820

    Article  CAS  Google Scholar 

  33. Liu H, Zhu X, Guo H, Huang H, Huang S, Huang S, Xue W, Zhu P, Guo R (2020) Nitric oxide released injectable hydrogel combined with synergistic photothermal therapy for antibacterial and accelerated wound healing. Appl Mater Today. https://doi.org/10.1016/j.apmt.2020.100781

    Article  Google Scholar 

  34. Chen Y, Gao Y, Chen Y, Liu L, Mo A, Peng Q (2020) Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J Control Release 328:251–262. https://doi.org/10.1016/j.jconrel.2020.08.055

    Article  CAS  Google Scholar 

  35. Sun J, Song L, Fan Y, Tian L, Luan S, Niu S, Ren L, Ming W, Zhao J (2019) Synergistic photodynamic and photothermal antibacterial nanocomposite membrane triggered by single NIR light source. ACS Appl Mater Interfaces 11(30):26581–26589. https://doi.org/10.1021/acsami.9b07037

    Article  CAS  Google Scholar 

  36. Zhang D, Wu T, Qin X, Qiao Q, Shang L, Song Q, Yang C, Zhang Z (2019) Intracellularly generated immunological gold nanoparticles for combinatorial photothermal therapy and immunotherapy against tumor. Nano Lett 19(9):6635–6646. https://doi.org/10.1021/acs.nanolett.9b02903

    Article  CAS  Google Scholar 

  37. Huang S, Liu H, Liao K, Hu Q, Guo R, Deng K (2020) Functionalized GO nanovehicles with nitric oxide release and photothermal activity-based hydrogels for bacteria-infected wound healing. ACS Appl Mater Interf 12(26):28952–28964. https://doi.org/10.1021/acsami.0c04080

    Article  CAS  Google Scholar 

  38. Lu B-Y, Zhu G-Y, Yu C-H, Chen G-Y, Zhang C-L, Zeng X, Chen Q-M, Peng Q (2021) Functionalized graphene oxide nanosheets with unique three-in-one properties for efficient and tunable antibacterial applications. Nano Res 14(1):185–190. https://doi.org/10.1007/s12274-020-3064-6

    Article  CAS  Google Scholar 

  39. Gao T, Wu X, Owens G, Xu H-LJT (2020) A cobalt oxide@ polydopamine-reduced graphene oxide-based 3D photothermal evaporator for highly efficient solar steam generation. Tungsten 2(4):423–432. https://doi.org/10.1007/s42864-020-00062-6

    Article  Google Scholar 

  40. Wang X, Liu Q, Wu S, Xu B, Xu HJAM (2019) Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar–thermal energy conversion. Adv Mater 31(19):1807716. https://doi.org/10.1002/adma.201807716

    Article  CAS  Google Scholar 

  41. Gao Y, Dong Y, Yang S, Mo A, Zeng X, Chen Q, Peng Q (2022) Size-dependent photothermal antibacterial activity of Ti3C2Tx MXene nanosheets against methicillin-resistant Staphylococcus aureus. J Colloid Interface Sci 617:533–541. https://doi.org/10.1016/j.jcis.2022.03.032

    Article  CAS  Google Scholar 

  42. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102. https://doi.org/10.1021/cr030063a

    Article  CAS  Google Scholar 

  43. Hu D, Li H, Wang B, Ye Z, Lei W, Jia F, Jin Q, Ren KF, Ji J (2017) Surface-adaptive gold nanoparticles with effective adherence and enhanced photothermal ablation of methicillin-resistant staphylococcus aureus biofilm. ACS Nano 11(9):9330–9339. https://doi.org/10.1021/acsnano.7b04731

    Article  CAS  Google Scholar 

  44. Zhang X, Jiang C, Cheng M, Zhou Y, Zhu X, Nie J, Zhang Y, An Q, Shi F (2012) Facile method for the fabrication of robust polyelectrolyte multilayers by post-photo-cross-linking of azido groups. Langmuir 28(18):7096–7100. https://doi.org/10.1021/la300611g

    Article  CAS  Google Scholar 

  45. Mi L, Jiang S (2014) Integrated antimicrobial and nonfouling zwitterionic polymers. Angew Chem Int Ed Engl 53(7):1746–1754. https://doi.org/10.1002/anie.201304060

    Article  CAS  Google Scholar 

  46. Liu X, Chen Y, Li H, Huang N, Jin Q, Ren K, Ji JJA, n, (2013) Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior. ACS Nano 7(7):6244–6257. https://doi.org/10.1021/nn402201w

    Article  CAS  Google Scholar 

  47. Liu X, Cao J, Li H, Li J, Jin Q, Ren K, Ji J (2013) Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nanoparticles in vivo. ACS Nano 7(10):9384–9395. https://doi.org/10.1021/nn404117j

    Article  CAS  Google Scholar 

  48. Li H, Liu X, Huang N, Ren K, Jin Q, Ji JJA, a m, interfaces, (2014) “Mixed-charge self-assembled monolayers” as a facile method to design pH-induced aggregation of large gold nanoparticles for near-infrared photothermal cancer therapy. ACS Appl Mater Interfaces 6(21):18930–18937. https://doi.org/10.1021/am504813f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by Zhejiang Province Welfare Technology Research Project, China (Grant No. LGF20H140007) and Young Talents Project of Zhejiang Provincial Health Department, China (Grant No. 2019RC151) and Zhejiang Provincial Key Research and Development Program (2022C01174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindan Wu.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Xu, B., Chen, G. et al. AuNP-composited multilayers with pH-regulated near-infrared photothermal effect for intelligent and synergistic antibacterial performance. J Mater Sci 57, 15171–15182 (2022). https://doi.org/10.1007/s10853-022-07592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07592-z