Skip to main content

Advertisement

Log in

Reusable cubic porous light-storing assisted photodegradation composite Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4 device with adsorption-photocatalysis effects for dark degradation

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sr2MgSi2O7:Eu2+, Dy3+(SMSED) is a common persistent luminescence (PersL) material with excellent performance. In this work, the cubic SMSED phosphor with porous structure was prepared by employing a template-assisted high temperature solid-phase(THT) method. THT method can lower the calcination temperature, improve the performance, and form a good pore structure. This is conducive to the subsequent recombination with the photocatalyst. Then, Ag3PO4(APO) is compounded in situ in the pore structure of SMSED PersL material. And the cubic porous SMSED/APO composite device possesses an obvious catalytic function regardless of the presence of light or not. The good adsorption of porous materials and photocatalysis can synergistically adsorb organic pollutants to obtain faster degradation efficiency. Moreover, the SMSED PersL material with porous structure can be reused, reducing secondary pollution. This work will help reduce the energy consumption of industrial production of PersL material and promote the further application of photocatalytic technology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Khabbaz S, Kocjan A, Samardija Z et al (2020) Effect of sintering and boron content on rare earth dopant distribution in long afterglow strontium aluminate. J Eur Ceram Soc 40(12):4129–4139

    Article  CAS  Google Scholar 

  2. Cheng Y, Sun K (2020) Up-conversion persistent luminescence of a 980nm laser activated Zn3Ga2(GexSn1-x)O8:Yb, Er, Cr phosphors. J Fluoresc 30(5):1251–1259

    Article  CAS  Google Scholar 

  3. Pei P, Duanmu P, Wang B et al (2021) An advanced color tunable persistent luminescent NaCa2GeO4F:Tb3+ phosphor for multicolor anti-counterfeiting. Dalton Trans 50(9):3193–200

    Article  CAS  Google Scholar 

  4. Sato Y, Miyake R, Tanigaki A et al (2021) A novel Eu2+-activated calcium zirconium silicate phosphor: Ca3ZrSi2O9:Eu2+[J]. J Lumin 231:117752

    Article  CAS  Google Scholar 

  5. Hk A, Mj A, Mks A et al (2020) Synthesis of orange emitting Sm3+ doped sodium calcium silicate phosphor by sol-gel method for photonic device applications - sciencedirect[J]. Ceram Int 46(16):26434–26439

    Article  CAS  Google Scholar 

  6. Jaiswal VV, Mishra S, Haranath D (2021) Crystal structure induced enhanced afterglow luminescence from rare-earth ion doped strontium silicate phosphors. Chemistry Select 6(17):4047–4055

    CAS  Google Scholar 

  7. Yp A, Nb A, Dpb A et al (2020) Study of Photoluminescence, Thermoluminescence, and Afterglow properties of Dy3+ doped Ba2ZnSi2O7 phosphor. Optik 226:165869

    Google Scholar 

  8. Dai WB, Huang K, Fan YM et al (2020) Structure, valence change, and optical properties of BaMgSiO4: Eu phosphor. J Lumin 222:117137

    Article  CAS  Google Scholar 

  9. Sahu IP, Bisen DP, Brahme N (2014) Luminescence properties of Eu2+, Dy3+ doped Sr2MgSi2O7 and Ca2MgSi2O7 phosphors by solid state reaction method. Res Chem Intermed 41(9):1–16

    Google Scholar 

  10. Fernández-Rodríguez L, Levy D, Zayat M et al (2020) Processing and luminescence of Eu/Dy-doped Sr2MgSi2O7 glass-ceramics. J Eur Ceram Soc 41(1):811–822

    Article  CAS  Google Scholar 

  11. Zheng L, Zhu Y, Pang Z et al (2020) Luminescence properties of composite material Sr2MgSi2O7:Eu2+, Dy3+/light conversion agent with multilayer structure. J Rare Earths 40(1):31–40

    Google Scholar 

  12. Yang X, Tang B, Cao X et al (2021) Light-storing assisted photocatalytic composite g-C3N4/Sr2MgSi2O7:(Eu, Dy) with sustained activity. J Photochem Photobiol, A 411:113202

    Article  CAS  Google Scholar 

  13. Wei X, Shen Y, Zuo G, Hou L, Meng YZ, Li F (2015) Preparation of porous Sr2MgSi2O7: Eu2+, Dy3+energy storage carriers via sol-hydrothermal synthesis. Ceram Int 41(10):13872–13877

    Article  CAS  Google Scholar 

  14. Hai O, Zhang Z, Ren Q et al (2018) The preparation and functional studies of the porous long afterglow luminescent materials. Dyes Pigm 156:160–166

    Article  CAS  Google Scholar 

  15. Remyamol T, Gopi R, Ajith MR et al (2021) Porous silicon carbide structures with anisotropic open porosity for high- temperature cycling applications. J Eur Ceram Soc 41(3):1828–1833

    Article  CAS  Google Scholar 

  16. Choi S, Jeon J, Chae J et al (2021) Single-Step fabrication of a multiscale porous catalyst layer by the emulsion template method for low Pt-loaded proton exchange membrane fuel cells. ACS Appl Energy Mater 4(4):4012–4020

    Article  CAS  Google Scholar 

  17. Xue H, Zhu Y, Pang Z et al (2021) Research on a persistent red tone fluorescent polyacrylonitrile fiber with coaxial structure based on Sr2MgSi2O7:Eu2+, Dy3+ and Y2O2S:Eu3+, Mg2+, Ti4+. J Lumin 235(7):118047

    Article  CAS  Google Scholar 

  18. Gao D (2013) Optimization of synthetic technology of Sr2MgSi2O7:Eu2+, Dy3+ by orthogonal design method[J]. New Chem Mater 41(8):30–32

    Google Scholar 

  19. Ali BM, Alsabah YA, Siddig MA et al (2020) Influenced of Cu2+ doped on structural, morphological and optical properties of Zn-Mg-Fe2O4 ferrite prepared by Sol-Gel method. Adv Nanoparticles 09(2):49–58

    Article  CAS  Google Scholar 

  20. Guangqing XU, Zhu R, Zheng Z et al (2010) Synthesis and luminescence properties of plate-like cerium ions doped Sr2MgSi2O7[J]. J Chin Ceram Soc 38(3):495–498

    Google Scholar 

  21. Lester Y, Avisar D, Gnayem H et al (2014) Demonstrating a new BiOCl0.875Br 0.125 photocatalyst to degrade pharmaceuticals under solar irradiation. Water Air Soil Pollut 225(9):1–11

    Article  CAS  Google Scholar 

  22. Nguyen VC, Nimbalkar DB, Le DN et al (2021) Photocatalytic cellulose reforming for H2 and formate production by using graphene oxide-dot catalysts. ACS Catal 11:4955–4967

    Article  CAS  Google Scholar 

  23. Ouyang L, Zhang Y, Wang Y et al (2021) Insights into the adsorption and photocatalytic oxidation behaviors of boron-doped TiO 2 /g-C 3 N 4 nanocomposites toward As(III) in aqueous solution[J]. Ind Eng Chem Res 60(19):7003–7013

    Article  CAS  Google Scholar 

  24. Bi Y, Ouyang S, Umezawa N et al (2011) Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. J Am Chem Soc 133(17):6490–6492

    Article  CAS  Google Scholar 

  25. Xiu Z, Zhang D, Wang J (2021) Direct Z-scheme photocatalytic system: Ag2CO3/g-C3N4 organic-inorganic hybrid with superior activity through built-in electric field transfer mechanism. Russ J Phys Chem 95(6):1255–1268

    Article  CAS  Google Scholar 

  26. Priyanka RN, Joseph S, Abraham T et al (2020) Novel La(OH)3-integrated sGO-Ag3VO4/Ag nanocomposite as a heterogeneous photocatalyst for fast degradation of agricultural and industrial pollutants. Catal Sci Technol 10(9):2916–2930

    Article  CAS  Google Scholar 

  27. Bhatt DK, Patel UD (2021) Photocatalytic degradation of Reactive Black 5 using Ag3PO4 under visible light. J Phys Chem Solids 149(1):109768

    Article  CAS  Google Scholar 

  28. Samal A, Baral A, Das DP (2018) Silver phosphate based photocatalysis: a brief review from fundamentals to applications. Photocatal Nanomater Environ Appl 27:276–315

    Article  CAS  Google Scholar 

  29. Du J, Xu Z, Li H et al (2020) Ag3PO4/g-C3N4 Z-scheme composites with enhanced visible-light-driven disinfection and organic pollutants degradation: uncovering the mechanism. Appl Surf Sci 541:148487

    Article  CAS  Google Scholar 

  30. Li J, Yang X, Ma C et al (2021) Selectively recombining the photoinduced charges in bandgap-broken Ag3PO4/GdCrO3 with a plasmonic Ag bridge for efficient photothermocatalytic VOCs degradation and CO2 reduction. Appl Catal B 291:120053

    Article  CAS  Google Scholar 

  31. Du C, Song J, Tan S et al (2021) Facile synthesis of Z-scheme ZnO/Ag/Ag3PO4 composite photocatalysts with enhanced performance for the degradation of ciprofloxacin. Mater Chem Phys 260:124136

    Article  CAS  Google Scholar 

  32. Hai O, Pei M, Yang E et al (2021) Exploration of long afterglow luminescence materials work as round-the-clock photocatalysts. J Alloy Compd 866:158752

    Article  CAS  Google Scholar 

  33. Huang J, Qin M, Yu J et al (2019) La2MgTiO6:Eu2+/TiO2-based composite for methyl orange (MO) decomposition. Appl Phys A 125(12):1–9

    Article  CAS  Google Scholar 

  34. Liu J, Li G, Yu Y et al (2020) Hierarchically porous covalent organic framework for adsorption and removal of triphenylmethane dyes. Microporous Mesoporous Mater 312(1–3):110703

    Google Scholar 

  35. Guan H, Li W, Han J et al (2021) General molten-salt route to three-dimensional porous transition metal nitrides as sensitive and stable Raman substrates. Nat Commun 12(1):1–11

    Article  CAS  Google Scholar 

  36. Loh TW, Ladani RB, Orifici A et al (2020) Ultra-tough and in-situ repairable carbon/epoxy composite with EMAA[J]. Compos A Appl Sci Manuf 143(7):106206

    Google Scholar 

  37. Wang X, Jian J, Yuan Z et al (2020) In situ loading of polyurethane/negative ion powder composite film with visible-light-responsive Ag3PO4@AgBr particles for photocatalytic and antibacterial applications. Eur Polymer J 125:109515

    Article  CAS  Google Scholar 

  38. Zhang M, Du H, Ji J et al (2021) Highly efficient Ag3PO4/g-C3N4 Z-scheme photocatalyst for its enhanced photocatalytic performance in degradation of rhodamine B and phenol. Molecules 26(7):2062

    Article  CAS  Google Scholar 

  39. Hassinen J, Hölsä J, Laamanen T, Lastusaari M, Novák P (2010) Electronic structure of defects in Sr2MgSi2O7: Eu2+, La3+ persistent luminescence material. J Non Cryst Solid 356(37–40):2015–2019

    Article  CAS  Google Scholar 

  40. Furusho H, Hölsä J, Laamanen T, Lastusaari M, Niittykoski J, Okajima Y et al (2008) Probing lattice defects in Sr2MgSi2O7:Eu2+, Dy3+. J Lumin 128(s5–6):881–884

    Article  CAS  Google Scholar 

  41. Hai O, Jiang H, Xu D, Li M (2016) The effect of grain surface on the long afterglow properties of Sr2MgSi2O7:Eu2+, Dy3+. Mater Res Bull 76:358–364

    Article  CAS  Google Scholar 

  42. Pang R, Li C, Jiang L, Su Q (2009) Blue long lasting phosphorescence of Tm3+ in zinc pyrophosphate phosphor. J Alloy Compd 471:364–367

    Article  CAS  Google Scholar 

  43. Sunta CM, Kulkarni RN, Yoshimura EM et al (1996) Randall-wilkins model and its validity[J]. Radiat Protect Dosim 65(1–4):21–24

    Article  CAS  Google Scholar 

  44. Sulaeman U, Wu X, Liu B et al (2015) Synthesis of Ag3PO4-polyvinyl alcohol hybrid microcrystal with enhanced visible light photocatalytic activity[J]. Appl Surf Sci 356(30):226–231

    Article  CAS  Google Scholar 

  45. Bohui LU, Pang Z, Zhu Y et al (2021) Study on optical performance of red-emitting phosphor: SrAl2O4: Eu2+, Dy3+/Sr2MgSi2O7: Eu2+, Dy3+ /light conversion agent for long-lasting luminous fibers[J]. J Mater Sci Mater Electron 32(13):17382–17394

    Article  CAS  Google Scholar 

  46. Ma J, Zou J, Li L et al (2013) Synthesis and characterization of Ag3PO4 immobilized in bentonite for the sunlight-driven degradation of Orange II[J]. Appl Catal B Environ 134(17):1–6

    Article  CAS  Google Scholar 

  47. Hao Y, Wang YH (2007) Synthesis and photoluminescence of new phosphors M2(Mg, Zn)Si2O7: Mn2+ (M = Ca, Sr, Ba). Mater Res Bull 42:2219–2223

    Article  CAS  Google Scholar 

  48. Sulaeman U, Permadi RD, Ningsih DR et al (2020) Data of XPS in incorporating the platinum complexes dopant on the surface of Ag3PO4 photocatalyst[J]. Data in Brief 28:104988

    Article  Google Scholar 

  49. Jiao Z, Zhang Y, Yu H et al (2013) Concave trisoctahedral Ag3PO4 microcrystals with high-index facets and enhanced photocatalytic properties[J]. Chen Comm 49(6):636–638

    Article  CAS  Google Scholar 

  50. Hai O, Yang E, Ren Q et al (2020) Enhancement of the persistent luminescence of Sr2MgSi2O7:Eu2+, Dy3+ by Cu nanoparticles[J]. J Lumin 220:116965

    Article  CAS  Google Scholar 

  51. Zhang D, Wang J (2017) In Situ photoactivated plasmonic Ag3PO4@silver as a stable catalyst With enhanced photocatalytic activity under visible light[J]. Mat Res 20(3):702–711

    Article  CAS  Google Scholar 

  52. Chi-Shun T, Wu T, Lin YW (2018) Facile synthesis and characterization of Ag3PO4 microparticles for degradation of organic dyestuffs under white-light light-emitting-diode irradiation[J]. Materials 11(5):708

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the National Natural Science Foundation of China (No. 51572069 and No. 51772099) for their financial support and thank DL from Shiyanjia Laboratory (www.shiyanjia.com) and Yantu studio for the XPS analysis.

Author information

Authors and Affiliations

Corresponding authors

Correspondence to Yi Shen or Fengfeng Li.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1467 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, S., Li, D. et al. Reusable cubic porous light-storing assisted photodegradation composite Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4 device with adsorption-photocatalysis effects for dark degradation. J Mater Sci 57, 14877–14889 (2022). https://doi.org/10.1007/s10853-022-07566-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07566-1