Skip to main content

Advertisement

Log in

Review of advanced techniques for manufacturing biocomposites: non-destructive evaluation and artificial intelligence-assisted modeling

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Natural fiber-reinforced polymer composites (NFRPCs) are being widely used in aerospace, marine, automotive and healthcare applications due to their sustainability, low cost and ecofriendly nature. The NFRPCs manufactured through conventional and computer-controlled intelligent manufacturing techniques may contain internal and external defects. Traditionally, the microstructure of NFRPCs at different stages of manufacturing was obtained using destructive techniques which have stringent sample size restrictions and may cause a decrease in residual properties of composites due to destructive scanning. However, these complications can be overcome by using non-destructive evaluation (NDE) and artificial intelligence (AI) techniques. This review highlights the impact of NDE and AI on the improvement of emerging manufacturing systems. We have discussed the classification of biocomposites, their manufacturing techniques, recyclability and strategies to improve mechanical properties. Further, the use of different types of contact and non-contact NDE techniques in understanding the microstructural variations during manufacturing, machining and the parameters that affect the mechanical performance of NFRPCs are discussed. The use of NDE images in developing the geometrical and computational models of NFRPCs is presented. We have highlighted the importance of AI technology in enhancing the quality of NDE images, improving the microstructural information before post-processing the data, and minimizing the analysis time and identifying the defects and damages in NFRPCs. In the end, we presented the application of NDE techniques and AI technology in efficient generation of digital material twins of NFRPCs, which will be useful to design next-generation biocomposites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Mahmud S, Hasan KMF, Jahid MA, Mohiuddin K, Zhang R, Zhu J (2021) Comprehensive review on plant fiber-reinforced polymeric biocomposites. J Mater Sci 56:7231–7264. https://doi.org/10.1007/s10853-021-05774-9

    Article  CAS  Google Scholar 

  2. Gholampour A, Ozbakkaloglu T (2019) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 55:829–892. https://doi.org/10.1007/s10853-019-03990-y

    Article  CAS  Google Scholar 

  3. Wu Y, Wang Y, Yang F, Wang J, Wang X (2020) Study on the properties of transparent bamboo prepared by epoxy resin impregnation. Polymers 12:1–12. https://doi.org/10.3390/polym12040863

    Article  CAS  Google Scholar 

  4. Bhagat D, Bhalla S, West RP (2021) Fabrication and structural evaluation of fibre reinforced bamboo composite beams as green structural elements. Compos Part C: Open Access 5:100150. https://doi.org/10.1016/j.jcomc.2021.100150

    Article  Google Scholar 

  5. Vigneshwaran S, Uthayakumar M, Arumugaprabu V (2019) Development and sustainability of industrial waste-based red mud hybrid composites. J Clean Prod 230:862–868. https://doi.org/10.1016/j.jclepro.2019.05.131

    Article  CAS  Google Scholar 

  6. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A Appl Sci 35:371–376

    Article  Google Scholar 

  7. Chandgude S, Salunkhe S (2021) In state of art: Mechanical behavior of natural fiber-based hybrid polymeric composites for application of automobile components. Polym Compos 42:2678–2703. https://doi.org/10.1002/pc.26045

    Article  CAS  Google Scholar 

  8. Chauhan V, Kärki T, Varis J (2021) Design of tooling system and identifying crucial processing parameters for NFPC in automotive applications. J Compos Sci 5:169. https://doi.org/10.3390/jcs5070169

    Article  CAS  Google Scholar 

  9. Amiri A, Burkart V, Yu A, Webster D, Ulven C (2018) Chapter 13, The potential of natural composite materials in structural design. Sustainable composites for aerospace applications. Elsevier, Amsterdam, pp 269–291

    Chapter  Google Scholar 

  10. Grand View Research Natural fiber composites (NFC) market size, share & trends analysis report by raw material, by matrix, by technology (injection molding, compression molding, pultrusion), by application, and segment forecasts 2018–2014 Report ID: 978–1–68038–890–9.

  11. Balla VK, Kate KH, Satyavolu J, Singh P, Tadimeti JGD (2019) Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Compos B Eng 174:106956. https://doi.org/10.1016/j.compositesb.2019.106956

    Article  CAS  Google Scholar 

  12. Gomez-Campos A, Vialle C, Rouilly A, Sablayrolles C, Hamelin L (2021) Flax fiber for technical textile: a life cycle inventory. J Clean Prod 281:125177. https://doi.org/10.1016/j.jclepro.2020.125177

    Article  Google Scholar 

  13. Azman MA, Asyraf MRM, Khalina A, Petru M, Ruzaidi CM, Sapuan SM, Wan Nik WB, Ishak MR, Ilyas RA, Suriani MJ (2021) Natural fiber reinforced composite material for product design: a short review. Polymers. https://doi.org/10.3390/polym13121917

    Article  Google Scholar 

  14. Dhar Malingam S, Ng LF, Chan KH, Subramaniam K, Selamat MZ, Zakaria KA (2018) The static and dynamic mechanical properties of kenaf/glass fibre reinforced hybrid composites. Mater Res Exp. https://doi.org/10.1088/2053-1591/aad58e

    Article  Google Scholar 

  15. Vigneshwaran S, Sundarakannan R, John KM, Joel Johnson RD, Prasath KA, Ajith S, Arumugaprabu V, Uthayakumar M (2020) Recent advancement in the natural fiber polymer composites: a comprehensive review. J Clean Prod 277:124109. https://doi.org/10.1016/j.jclepro.2020.124109

    Article  CAS  Google Scholar 

  16. Rafiee M, Abidnejad R, Ranta A, Ojha K, Karakoç A, Paltakari J (2021) Exploring the possibilities of FDM filaments comprising natural fiber-reinforced biocomposites for additive manufacturing. AIMS Mater Sci 8:524–537. https://doi.org/10.3934/matersci.2021032

    Article  CAS  Google Scholar 

  17. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  CAS  Google Scholar 

  18. Moonart U, Utara S (2019) Effect of surface treatments and filler loading on the properties of hemp fiber/natural rubber composites. Cellulose 26:7271–7295. https://doi.org/10.1007/s10570-019-02611-w

    Article  CAS  Google Scholar 

  19. Zhang X, Fan X, Han C, Li Y, Price E, Wnek G, Liao Y-TT, Yu X (2021) Novel strategies to grow natural fibers with improved thermal stability and fire resistance. J Clean Prod 320:128729. https://doi.org/10.1016/j.jclepro.2021.128729

    Article  CAS  Google Scholar 

  20. Prabhakar MN, Naga Kumar C, Woo LD, Jung-IL S (2021) Hybrid approach to improve the flame-retardant and thermal properties of sustainable biocomposites used in outdoor engineering applications. Compos A Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2021.106674

    Article  Google Scholar 

  21. Manral A, Kumar Bajpai P, Ahmad F, Joshi R (2021) Processing of sustainable thermoplastic based biocomposites: a comprehensive review on performance enhancement. J Clean Prod 316:128068. https://doi.org/10.1016/j.jclepro.2021.128068

    Article  CAS  Google Scholar 

  22. Thor M, Sause MGR, Hinterhölzl RM (2020) Mechanisms of origin and classification of out-of-plane fiber waviness in composite materials—a review. J Compos Sci 4:1–39. https://doi.org/10.3390/jcs4030130

    Article  CAS  Google Scholar 

  23. Thomas S, Balakrishnan P (2021) Green composites. Springer Nat. https://doi.org/10.1007/978-981-15-9643-8

    Article  Google Scholar 

  24. Vasudevan A, Senthil Kumaran S, Naresh K, Velmurugan R (2019) Layer-wise damage prediction in carbon/Kevlar/S-glass/E-glass fibre reinforced epoxy hybrid composites under low-velocity impact loading using advanced 3D computed tomography. Int J Crashworthiness. https://doi.org/10.1080/13588265.2018.1511234

    Article  Google Scholar 

  25. Ziolkowski G, Pach J, Pyka D, Kurzynowski T, Jamroziak K (2020) X-ray computed tomography for the development of ballistic composite. Materials 13:1–19. https://doi.org/10.3390/ma13235566

    Article  CAS  Google Scholar 

  26. Tiwari KA, Raisutis R, Tumsys O, Ostreika A, Jankauskas K, Jakutavicius J (2019) Defect estimation in non-destructive testing of composites by ultrasonic guided waves and image processing. Electronics 8:315. https://doi.org/10.3390/electronics8030315

    Article  Google Scholar 

  27. Loganathan TM, Sultan MTH, Muhammad Amir SM, Jamil J, Yusof MR, Md Shah AU (2021) Infrared thermographic and ultrasonic inspection of randomly-oriented short-natural fiber-reinforced polymeric composites. Front Mater 7:1–10. https://doi.org/10.3389/fmats.2020.604459

    Article  Google Scholar 

  28. Fracz W, Janowski G, Pruchniak M, Walek L (2021) The use of computed tomography in the study of microstructure of molded pieces made of Poly(3-hydroxybutyric-co-3-hydroxyvaleric acid) (PHBV) biocomposites with natural fiber. Polymers 13:1–13. https://doi.org/10.3390/polym13172942

    Article  CAS  Google Scholar 

  29. Suriani MJ, Rapi HZ, Ilyas RA, Petru M, Sapuan SM (2021) Delamination and manufacturing defects in natural fiber-reinforced hybrid composite: a review. Polymers (Basel). https://doi.org/10.3390/polym13081323

    Article  Google Scholar 

  30. Melelli A, Durand S, Arnould O, Richely E, Guessasma S, Jamme F, Beaugrand J, Bourmaud A (2021) Extensive investigation of the ultrastructure of kink-bands in flax fibres. Ind Crops Prod 164:113368. https://doi.org/10.1016/j.indcrop.2021.113368

    Article  CAS  Google Scholar 

  31. Ravikumar P, Rajeshkumar G, Manimegalai P, Sumesh KR, Sanjay MR, Siengchin S (2022) Delamination and surface roughness analysis of jute/polyester composites using response surface methodology: consequence of sodium bicarbonate treatment. J Ind Text. https://doi.org/10.1177/15280837221077040

    Article  Google Scholar 

  32. Patel K, Gohil PP, Chaudhary V, Patel K (2015) Investigation on drilling of banana fibre reinforced composites. International Conference on Civil, Materials and Environmental Sciences (CMES 2015): 201–5.

  33. Nassar MMA, Arunachalam R, Alzebdeh KI (2016) Machinability of natural fiber reinforced composites: a review. Int J Adv Manuf Syst 88:2985–3004. https://doi.org/10.1007/s00170-016-9010-9

    Article  Google Scholar 

  34. Barouni AK, Rekatsinas CS (2021) Study on the propagation of stress waves in natural fiber composite strips. J Compos Sci 5:34. https://doi.org/10.3390/jcs5010034

    Article  CAS  Google Scholar 

  35. Naresh K, Khan KA, Umer R, Cantwell WJ (2020) The use of X-ray computed tomography for design and process modeling of aerospace composites: a review. Mater Des 190:108553. https://doi.org/10.1016/j.matdes.2020.108553

    Article  CAS  Google Scholar 

  36. Palombini FL, Lautert EL, Mariath JEdA, de Oliveira BF (2019) Combining numerical models and discretizing methods in the analysis of bamboo parenchyma using finite element analysis based on X-ray microtomography. Wood Sci Technol 54:161–186. https://doi.org/10.1007/s00226-019-01146-4

    Article  CAS  Google Scholar 

  37. Jespersen KM, Glud JA, Zangenberg J, Hosoi A, Kawada H, Mikkelsen LP (2018) Ex-situ X-ray computed tomography, tension clamp and in-situ transilluminated white light imaging data of non-crimp fabric based fibre composite under fatigue loading. Data Brief 21:228–233. https://doi.org/10.1016/j.dib.2018.09.109

    Article  Google Scholar 

  38. Wei Z, Fernandes H, Herrmann HG, Tarpani JR, Osman A (2021) A deep learning method for the impact damage segmentation of curve-shaped CFRP specimens inspected by infrared thermography. Sensors. https://doi.org/10.3390/s21020395

    Article  Google Scholar 

  39. Duan Y, Liu S, Hu C, Hu J, Zhang H, Yan Y, Tao N, Zhang C, Maldague X, Fang Q, Ibarra-Castanedo C, Chen D, Li X, Meng J (2019) Automated defect classification in infrared thermography based on a neural network. NDT and E Int 107:102147. https://doi.org/10.1016/j.ndteint.2019.102147

    Article  Google Scholar 

  40. Ramkumar G, Sahoo S, Anitha G, Ramesh S, Nirmala P, Tamilselvi M, Subbiah R, Rajkumar S (2021) An unconventional approach for analyzing the mechanical properties of natural fiber composite using convolutional neural network. Adv Mater Sci Eng 2021:1–15. https://doi.org/10.1155/2021/5450935

    Article  CAS  Google Scholar 

  41. Caglar B, Broggi G, Ali MA, Orgéas L, Michaud V (2022) Deep learning accelerated prediction of the permeability of fibrous microstructures. Compos Part A Appl Sci. https://doi.org/10.1016/j.compositesa.2022.106973

    Article  Google Scholar 

  42. Alhijazi M, Zeeshan Q, Qin Z, Safaei B, Asmael M (2020) Finite element analysis of natural fibers composites: a review. Nanotechnol Rev 9:853–875. https://doi.org/10.1515/ntrev-2020-0069

    Article  Google Scholar 

  43. Richely E, Bourmaud A, Placet V, Guessasma S, Beaugrand J (2022) A critical review of the ultrastructure, mechanics and modelling of flax fibres and their defects. Prog Mater Sci. https://doi.org/10.1016/j.pmatsci.2021.100851

    Article  Google Scholar 

  44. Kern WT, Kim W, Argento A, Lee EC, Mielewski DF (2016) Finite element analysis and microscopy of natural fiber composites containing microcellular voids. Mater Des 106:285–294. https://doi.org/10.1016/j.matdes.2016.05.094

    Article  Google Scholar 

  45. Joffre T, Isaksson P, Dumont PJJ, Roscoat SRd, Sticko S, Orgéas L, Gamstedt EK (2016) A Method to measure moisture induced swelling properties of a single wood cell. Exp Mech 56:723–733. https://doi.org/10.1007/s11340-015-0119-9

    Article  Google Scholar 

  46. Ciano MP, Pozzi R, Rossi T, Strozzi F (2020) Digital twin-enabled smart industrial systems: a bibliometric review. Int J Comput Integr Manuf 34:690–708. https://doi.org/10.1080/0951192x.2020.1852600

    Article  Google Scholar 

  47. Guessasma S, Beaugrand J (2019) Damage kinetics at the sub-micrometric scale in bast fibers using finite element simulation and high-resolution X-ray micro-tomography. Front Plant Sci 10:194. https://doi.org/10.3389/fpls.2019.00194

    Article  Google Scholar 

  48. Strohrmann K, Hajek M (2018) Bilinear approach to tensile properties of flax composites in finite element analyses. J Mater Sci 54:1409–1421. https://doi.org/10.1007/s10853-018-2912-1

    Article  CAS  Google Scholar 

  49. Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos A Appl Sci Manuf 56:280–289. https://doi.org/10.1016/j.compositesa.2013.10.014

    Article  CAS  Google Scholar 

  50. Mitra B (2014) Environment friendly composite materials: biocomposites and green composites. Def Sci J 64:244–261. https://doi.org/10.14429/dsj.64.7323

    Article  Google Scholar 

  51. Yan L, Kasal B, Huang L (2016) A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos B Eng 92:94–132. https://doi.org/10.1016/j.compositesb.2016.02.002

    Article  CAS  Google Scholar 

  52. Nurazzi NM, Asyraf MRM, Khalina A, Abdullah N, Aisyah HA, Rafiqah SA, Sabaruddin FA, Kamarudin SH, Norrrahim MNF, Ilyas RA, Sapuan SM (2021) A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers (Basel). https://doi.org/10.3390/polym13040646

    Article  Google Scholar 

  53. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos A Appl Sci Manuf 77:1–25. https://doi.org/10.1016/j.compositesa.2015.06.007

    Article  CAS  Google Scholar 

  54. Khalid MY, Al Rashid A, Arif ZU, Ahmed W, Arshad H, Zaidi AA (2021) Natural fiber reinforced composites: sustainable materials for emerging applications. Res Eng 11:100263. https://doi.org/10.1016/j.rineng.2021.100263

    Article  CAS  Google Scholar 

  55. Bhagia S, Dunlap JR, Khuraishi MZA, Lowden RR, Muchero W, Vaidya UK, Pu Y, Ragauskas AJ (2021) Fabrication of lignocellulosic biomass paper containing nanofibrillated biomass. BioResources 16:209–222

    Article  CAS  Google Scholar 

  56. Bhagia S, Bornani K, Agrawal R, Satlewal A, Ďurkovič J, Lagaňa R, Bhagia M, Yoo CG, Zhao X, Kunc V, Pu Y, Ozcan S, Ragauskas AJ (2021) Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Appl Mater Today. https://doi.org/10.1016/j.apmt.2021.101078

    Article  Google Scholar 

  57. Rana AS, Vamshi MK, Naresh K, Velmurugan R, Sarathi R (2019) Mechanical, thermal, electrical and crystallographic behaviour of EPDM rubber/clay nanocomposites for out-door insulation applications. Adv Mater Process Technol 6:54–74. https://doi.org/10.1080/2374068x.2019.1703339

    Article  Google Scholar 

  58. Rana AS, Vamshi MK, Naresh K, Velmurugan R, Sarathi R (2020) Effect of nanoclay on mechanical, thermal and morphological properties of silicone rubber and EPDM/silicone rubber hybrid composites. Adv Mater Process Technol 7:109–116. https://doi.org/10.1080/2374068x.2020.1754720

    Article  Google Scholar 

  59. Pecas P, Carvalho H, Salman H, Leite M (2018) Natural fibre composites and their applications: a review. J Compos Sci 2:66. https://doi.org/10.3390/jcs2040066

    Article  CAS  Google Scholar 

  60. Huang S, Fu Q, Yan L, Kasal B (2021) Characterization of interfacial properties between fibre and polymer matrix in composite materials – a critical review. J Market Res 13:1441–1484. https://doi.org/10.1016/j.jmrt.2021.05.076

    Article  CAS  Google Scholar 

  61. Ha NS, Lu G (2020) A review of recent research on bio-inspired structures and materials for energy absorption applications. Compos B Eng. https://doi.org/10.1016/j.compositesb.2019.107496

    Article  Google Scholar 

  62. Pandey JK, Nagarajan V, Mohanty AK, Misra M (2015) Commercial potential and competitiveness of natural fiber composites. Biocomposites. Elsevier, Amsterdam, pp 1–15

    Google Scholar 

  63. Meereboer KW, Misra M, Mohanty AK (2020) Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem 22:5519–5558. https://doi.org/10.1039/d0gc01647k

    Article  CAS  Google Scholar 

  64. Gironi F, Piemonte V (2011) Bioplastics and petroleum-based plastics: strengths and weaknesses. Energy Sour Part A: Recover Utilization Environ Effects 33:1949–1959. https://doi.org/10.1080/15567030903436830

    Article  CAS  Google Scholar 

  65. Gumede TP, Luyt AS, Muller AJ (2018) Review on PCL, PBS, and PCL/PBS blends containing carbon nanotubes. Express Polym Lett 12:505–529. https://doi.org/10.3144/expresspolymlett.2018.43

    Article  CAS  Google Scholar 

  66. Karthick SA, Ragavi T, Naresh K, Sreekanth PR (2022) A study on collagen-PVA and chitosan-PVA nanofibrous matrix for wound dressing application. Mater Today: Proc 56:1347–1350

    Google Scholar 

  67. Averous L, Boquillon N (2004) Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohyd Polym 56:111–122. https://doi.org/10.1016/j.carbpol.2003.11.015

    Article  CAS  Google Scholar 

  68. Rajeshkumar G, Arvindh Seshadri S, Devnani GL, Sanjay MR, Siengchin S, Prakash Maran J, Al-Dhabi NA, Karuppiah P, Mariadhas VA, Sivarajasekar N, Ronaldo Anuf A (2021) Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – a comprehensive review. J Clean Prod 310:127483. https://doi.org/10.1016/j.jclepro.2021.127483

    Article  CAS  Google Scholar 

  69. Faruk O, Bledzki AK, Fink H-P, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26. https://doi.org/10.1002/mame.201300008

    Article  CAS  Google Scholar 

  70. Muneer Ahmed M, Dhakal HN, Zhang ZY, Barouni A, Zahari R (2021) Enhancement of impact toughness and damage behaviour of natural fibre reinforced composites and their hybrids through novel improvement techniques: a critical review. Compos Struct 259:113496. https://doi.org/10.1016/j.compstruct.2020.113496

    Article  CAS  Google Scholar 

  71. Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300:10–24. https://doi.org/10.1002/mame.201400089

    Article  CAS  Google Scholar 

  72. Keerthi Gowda BS, Naresh K, Ilangovan S, Sanjay MR, Siengchin S (2021) Effect of fiber volume fraction on mechanical and fire resistance properties of basalt/polyester and pineapple/polyester composites. J Nat Fibers. https://doi.org/10.1080/15440478.2021.1904479

    Article  Google Scholar 

  73. Fiore V, Scalici T, Di Bella G, Valenza A (2015) A review on basalt fibre and its composites. Compos B Eng 74:74–94. https://doi.org/10.1016/j.compositesb.2014.12.034

    Article  CAS  Google Scholar 

  74. Ilangovan S, Kumaran SS, Vasudevan A, Naresh K (2019) Effect of silica nanoparticles on mechanical and thermal properties of neat epoxy and filament wounded E-glass/epoxy and basalt/epoxy composite tubes. Mater Res Express. https://doi.org/10.1088/2053-1591/ab2601

    Article  Google Scholar 

  75. Li Z, Ma J, Ma H, Xu X (2018) Properties and Applications of Basalt Fiber and Its Composites. IOP Conf Series: Earth Environ Sci 186:012052

    Article  Google Scholar 

  76. Ilangovan S, Senthil Kumaran S, Naresh K (2020) Effect of nanoparticles loading on free vibration response of epoxy and filament winding basalt/epoxy and E-glass/epoxy composite tubes: experimental, analytical and numerical investigations. Mater Res Express. https://doi.org/10.1088/2053-1591/ab6e36

    Article  Google Scholar 

  77. Bouvier M, Guiheneuf V, Jean-marie A (2019) Modeling and simulation of a composite high-pressure vessel made of sustainable and renewable alternative fibers. Int J Hydrogen Energy 44:11970–11978. https://doi.org/10.1016/j.ijhydene.2019.03.088

    Article  CAS  Google Scholar 

  78. Arun Prasath KA, Amuthakkannan P, Naresh K, Muthugopal MS, Jeganathan M, Pragadeesh R (2020) Quasi static and flexural mechanical property evaluation of basalt/flax reinforced composites. Mater Phys Mech 46:132–138. https://doi.org/10.18149/MPM.4612020_13

    Article  Google Scholar 

  79. Gomez-Campos A, Vialle C, Rouilly A, Hamelin L, Rogeon A, Hardy D, Sablayrolles C (2021) Natural fibre polymer composites - a game changer for the aviation sector? J Clean Prod 286:124986. https://doi.org/10.1016/j.jclepro.2020.124986

    Article  CAS  Google Scholar 

  80. Ead AS, Appel R, Alex N, Ayranci C, Carey JP (2021) Life cycle analysis for green composites: a review of literature including considerations for local and global agricultural use. J Eng Fibers Fabr. https://doi.org/10.1177/15589250211026940

    Article  Google Scholar 

  81. Naresh K, Khan KA, Umer R (2021) Experimental characterization and modeling multifunctional properties of epoxy/graphene oxide nanocomposites. Polymers (Basel). https://doi.org/10.3390/polym13162831

    Article  Google Scholar 

  82. Murugan P, Naresh K, Shankar K, Velmurugan R, Balaganesan G (2018) High velocity impact damage investigation of carbon/epoxy/clay nanocomposites using 3D Computed Tomography. Mater Today: Proc 5:16946–16955. https://doi.org/10.1016/j.matpr.2018.04.098

    Article  CAS  Google Scholar 

  83. Sundarakannan R, Arumugaprabu V, Manikandan V, Arun Prasath K, Vigneshwaran S, Naresh K (2022) Effect of polyethylene terephthalate char on impact and erosion properties of polyester matrix composites. Adv Mater Proc Technol. https://doi.org/10.1080/2374068x.2022.2036589

    Article  Google Scholar 

  84. Bazli L, Eskandarinezhad S, Kakur N, Ramachandran V, Bacigalupe A, Mansilla M, Escobar M (2021) Electrical properties of polymer blend composites based on Silicone rubber/EPDM/clay for high voltage insulators. J Compos Comp 2:18–24. https://doi.org/10.52547/jcc.3.1.3

    Article  Google Scholar 

  85. Gupta MK, Ramesh M, Thomas S (2021) Effect of hybridization on properties of natural and synthetic fiber-reinforced polymer composites (2001–2020): a review. Polym Compos 42:4981–5010. https://doi.org/10.1002/pc.26244

    Article  CAS  Google Scholar 

  86. Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf 43:1419–1429. https://doi.org/10.1016/j.compositesa.2011.11.019

    Article  Google Scholar 

  87. Kumar S, Prasad L, Patel VK, Kumar V, Kumar A, Yadav A, Winczek J (2021) Physical and mechanical properties of natural leaf fiber-reinforced epoxy polyester composites. Polymers (Basel). https://doi.org/10.3390/polym13091369

    Article  Google Scholar 

  88. Khalid MY, Imran R, Arif ZU, Akram N, Arshad H, Al Rashid A, García Márquez FP (2021) Developments in chemical treatments, manufacturing techniques and potential applications of natural-fibers-based biodegradable composites. Coatings. https://doi.org/10.3390/coatings11030293

    Article  Google Scholar 

  89. da Luz FS, Garcia Filho FDC, Del-Rio MTG, Nascimento LFC, Pinheiro WA, Monteiro SN (2020) Graphene-incorporated natural fiber polymer composites: a first overview. Polymers (Basel). https://doi.org/10.3390/polym12071601

    Article  Google Scholar 

  90. Rosenstock Voltz L, Di Guiseppe I, Geng S, Oksman K (2020) The effect of recycling on wood-fiber thermoplastic composites. Polymers 12:1750. https://doi.org/10.3390/polym12081750

    Article  CAS  Google Scholar 

  91. Beg MDH, Pickering KL (2008) Reprocessing of wood fibre reinforced polypropylene composites. Part I: effects on physical and mechanical properties. Compos Part A Appl Sci 39:1091. https://doi.org/10.1016/j.compositesa.2008.04.013

    Article  CAS  Google Scholar 

  92. Srebrenkoska V, Gaceva GB, Avella M, Errico ME, Gentile G (2008) Recycling of polypropylene-based eco-composites. Polym Int 57:1252–1257. https://doi.org/10.1002/pi.2470

    Article  CAS  Google Scholar 

  93. Zhao X, Copenhaver K, Wang L, Korey M, Gardner DJ, Li K, Lamm ME, Kishore V, Bhagia S, Tajvidi M, Tekinalp H, Oyedeji O, Wasti S, Webb E, Ragauskas AJ, Zhu H, Peter WH, Ozcan S (2022) Recycling of natural fiber composites: challenges and opportunities. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2021.105962

    Article  Google Scholar 

  94. Uitterhaegen E, Parinet J, Labonne L, Mérian T, Ballas S, Véronèse T, Merah O, Talou T, Stevens CV, Chabert F, Evon P (2018) Performance, durability and recycling of thermoplastic biocomposites reinforced with coriander straw. Compos Part A Appl Sci 113:254–263. https://doi.org/10.1016/j.compositesa.2018.07.038

    Article  CAS  Google Scholar 

  95. Fonseca-Valero C, Ochoa-Mendoza A, Arranz-Andrés J, González-Sánchez C (2015) Mechanical recycling and composition effects on the properties and structure of hardwood cellulose-reinforced high density polyethylene eco-composites. Compos Part A Appl Sci 69:94–104. https://doi.org/10.1016/j.compositesa.2014.11.009

    Article  CAS  Google Scholar 

  96. Rs M, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A (2019) A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohydr Polym 207:108–121. https://doi.org/10.1016/j.carbpol.2018.11.083

    Article  CAS  Google Scholar 

  97. Nurazzi NM, Harussani MM, Aisyah HA, Ilyas RA, Norrrahim MNF, Khalina A, Abdullah N (2021) Treatments of natural fiber as reinforcement in polymer composites—a short review. Funct Compos Struct 3:024002. https://doi.org/10.1088/2631-6331/abff36

    Article  CAS  Google Scholar 

  98. Begum S, Fawzia S, Hashmi MSJ (2020) Polymer matrix composite with natural and synthetic fibres. Adv Mater Process Technol 6:547–564. https://doi.org/10.1080/2374068x.2020.1728645

    Article  Google Scholar 

  99. Karthi N, Kumaresan K, Rajeshkumar G, Gokulkumar S, Sathish S (2021) Tribological and thermo-mechanical performance of chemically modified musa acuminata / corchorus capsularis reinforced hybrid composites. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1870614

    Article  Google Scholar 

  100. Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234. https://doi.org/10.1002/app.10460

    Article  CAS  Google Scholar 

  101. Thyavihalli Girijappa YG, Mavinkere Rangappa S, Parameswaranpillai J, Siengchin S (2019) Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Front Mater. https://doi.org/10.3389/fmats.2019.00226

    Article  Google Scholar 

  102. Rahman M, Das S, Hasan M (2018) Mechanical properties of chemically treated banana and pineapple leaf fiber reinforced hybrid polypropylene composites. Adv Mater Process Technol 4:527–537. https://doi.org/10.1080/2374068x.2018.1468972

    Article  Google Scholar 

  103. Ighalo JO, Adeyanju CA, Ogunniyi S, Adeniyi AG, Abdulkareem SA (2020) An empirical review of the recent advances in treatment of natural fibers for reinforced plastic composites. Compos Interfaces 28:925–960. https://doi.org/10.1080/09276440.2020.1826274

    Article  CAS  Google Scholar 

  104. Mohanty AK, Vivekanandhan S, Pin J-M, Misra M (2018) Composites from renewable and sustainable resources: challenges and innovations. Science 362:536–542

    Article  CAS  Google Scholar 

  105. Rastogi V, Samyn P (2015) Bio-based coatings for paper applications. Coatings 5:887. https://doi.org/10.3390/coatings5040887

    Article  CAS  Google Scholar 

  106. Santhosh Kumar S, Hiremath SS (2020) Natural fiber reinforced composites in the context of biodegradability: a review. 160–78. Doi:https://doi.org/10.1016/b978-0-12-803581-8.11418-3

  107. Srinivas K, Lakshumu Naidu A, Raju Bahubalendruni MVA (2017) A review on chemical and mechanical properties of natural fiber reinforced polymer composites. Int J Performability Eng 13:189–200. https://doi.org/10.23940/ijpe.17.02.p8.189200

    Article  Google Scholar 

  108. Lukaszewicz DHJA, Ward C, Potter KD (2012) The engineering aspects of automated prepreg layup: History, present and future. Compos B Eng 43:997–1009. https://doi.org/10.1016/j.compositesb.2011.12.003

    Article  CAS  Google Scholar 

  109. Parmar H, Khan T, Tucci F, Umer R (2021) Advanced robotics and additive manufacturing of composites: towards a new era in Industry 4.0. Mater Manuf Process. https://doi.org/10.1080/10426914.2020.1866195

    Article  Google Scholar 

  110. Selva Priya M, Naresh K, Jayaganthan R, Velmurugan R (2019) A comparative study between in-house 3D printed and injection molded ABS and PLA polymers for low-frequency applications. Mater Res Express 6:085345. https://doi.org/10.1088/2053-1591/ab2776

    Article  CAS  Google Scholar 

  111. Sekar V, Fouladi MH, Namasivayam SN, Sivanesan S (2019) Additive manufacturing: a novel method for developing an acoustic panel made of natural fiber-reinforced composites with enhanced mechanical and acoustical properties. J Eng 2019:1–19. https://doi.org/10.1155/2019/4546863

    Article  CAS  Google Scholar 

  112. Naresh K, Salem A, Khan KA, Cantwell WJ, Umer R (2021) Thermo-mechanical compaction-creep and void analysis of prepregs using XCT-aided geometrical models. Appl Compos Mater 28:659–684. https://doi.org/10.1007/s10443-021-09877-z

    Article  CAS  Google Scholar 

  113. Fairuz AM, Sapuan SM, Zainudin ES, Jaafar CNA (2015) Pultrusion process of natural fibre-reinforced polymer composites. In: Chapter 11, manufacturing of natural fibre reinforced polymer composites. 217–31. https://doi.org/10.1007/978-3-319-07944-8_11

  114. Vinod A, Tengsuthiwat J, Gowda Y, Vijay R, Sanjay MR, Siengchin S, Dhakal HN (2022) Jute/Hemp bio-epoxy hybrid bio-composites: Influence of stacking sequence on adhesion of fiber-matrix. Int J Adhes Adhes. https://doi.org/10.1016/j.ijadhadh.2021.103050

    Article  Google Scholar 

  115. Aleksendric D, Carlone P (2015) Soft computing in the design and manufacturing of composite materials. Woodhead Publishing, United Kingdom, pp 15–38

    Book  Google Scholar 

  116. Shrigandhi GD, Kothavale BS (2021) Biodegradable composites for filament winding process. Mater Today: Proc 42:2762–2768. https://doi.org/10.1016/j.matpr.2020.12.718

    Article  Google Scholar 

  117. Naresh K, Shankar K, Rao BS, Velmurugan R (2016) Effect of high strain rate on glass/carbon/hybrid fiber reinforced epoxy laminated composites. Compos B Eng 100:125–135. https://doi.org/10.1016/j.compositesb.2016.06.007

    Article  CAS  Google Scholar 

  118. Naresh K, Shankar K, Velmurugan R, Gupta NK (2018) Statistical analysis of the tensile strength of GFRP, CFRP and hybrid composites. Thin-Walled Struct 126:150–161. https://doi.org/10.1016/j.tws.2016.12.021

    Article  Google Scholar 

  119. Naresh K, Khan KA, Umer R, Vasudevan A (2020) Temperature-frequency-dependent viscoelastic properties of neat epoxy and fiber reinforced polymer composites: experimental characterization and theoretical predictions. Polymers 12:1700. https://doi.org/10.3390/polym12081700

    Article  CAS  Google Scholar 

  120. Khan T, Irfan MS, Cantwell WJ, Umer R (2022) Crack healing in infusible thermoplastic composite laminates. Compos A Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2022.106896

    Article  Google Scholar 

  121. Naresh K, Salem A, Khan KA, Cantwell WJ, Umer R (2021) Isothermal compaction-creep-recovery behavior and statistical void analysis of prepregs under various process parameters. Compos A Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2021.106663

    Article  Google Scholar 

  122. Ud Din I, Naresh K, Umer R, Khan KA, Drzal LT, Haq M, Cantwell WJ (2020) Processing and out-of-plane properties of composites with embedded graphene paper for EMI shielding applications. Compos A Appl Sci Manuf 134:105901. https://doi.org/10.1016/j.compositesa.2020.105901

    Article  CAS  Google Scholar 

  123. Minchenkov K, Vedernikov A, Safonov A, Akhatov I (2021) Thermoplastic pultrusion: a review. Polymers. https://doi.org/10.3390/polym13020180

    Article  Google Scholar 

  124. Gadam SUK, Roux JA, McCarty TA, Vaughan JG (2000) The impact of pultrusion processing parameters on resin pressure rise inside a tapered cylindrical die for glass-fibre/epoxy composites. Compos Sci Technol 60:945–958

    Article  CAS  Google Scholar 

  125. Zhang H, Huang T, Jiang Q, He L, Bismarck A, Hu Q (2021) Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: a review. J Mater Sci 56:12999–13022. https://doi.org/10.1007/s10853-021-06111-w

    Article  CAS  Google Scholar 

  126. Frketic J, Dickens T, Ramakrishnan S (2017) Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: an additive review of contemporary and modern techniques for advanced materials manufacturing. Addit Manuf 14:69–86. https://doi.org/10.1016/j.addma.2017.01.003

    Article  CAS  Google Scholar 

  127. Chansoda K, Suvanjumrat C, Chookaew W (2021) Comparative study on the wood-based PLA fabricated by compression Molding and additive manufacturing. In: IOP Conf Series: materials science and engineering 1137: 012032.

  128. Immonen K, Willberg-Keyrilainen P, Ropponen J, Nurmela A, Metsa-Kortelainen S, Kaukoniemi OV, Kangas H (2021) Thermoplastic cellulose-based compound for additive manufacturing. Molecules. https://doi.org/10.3390/molecules26061701

    Article  Google Scholar 

  129. Le Duigou A, Fruleux T, Matsuzaki R, Chabaud G, Ueda M, Castro M (2021) 4D printing of continuous flax-fibre based shape-changing hygromorph biocomposites: towards sustainable metamaterials. Mater Des. https://doi.org/10.1016/j.matdes.2021.110158

    Article  Google Scholar 

  130. Le Duigou A, Correa D, Ueda M, Matsuzaki R, Castro M (2020) A review of 3D and 4D printing of natural fibre biocomposites. Mater Des 194:108911. https://doi.org/10.1016/j.matdes.2020.108911

    Article  CAS  Google Scholar 

  131. Ji A, Zhang S, Bhagia S, Yoo CG, Ragauskas AJ (2020) 3D printing of biomass-derived composites: application and characterization approaches. RSC Adv 10:21698–21723. https://doi.org/10.1039/d0ra03620j

    Article  CAS  Google Scholar 

  132. Lotfi A, Li H, Dao DV, Prusty G (2019) Natural fiber–reinforced composites: a review on material, manufacturing, and machinability. J Thermoplast Compos Mater 34:238–284. https://doi.org/10.1177/0892705719844546

    Article  CAS  Google Scholar 

  133. Baley C, Kervoëlen A, Lan M, Cartié D, Le Duigou A, Bourmaud A, Davies P (2016) Flax/PP manufacture by automated fibre placement (AFP). Mater Des 94:207–213. https://doi.org/10.1016/j.matdes.2016.01.011

    Article  CAS  Google Scholar 

  134. Sanandiya ND, Vijay Y, Dimopoulou M, Dritsas S, Fernandez JG (2018) Large-scale additive manufacturing with bioinspired cellulosic materials. Sci Rep 8:8642. https://doi.org/10.1038/s41598-018-26985-2

    Article  CAS  Google Scholar 

  135. Quanjin M, Rejab MRM, Kaige J, Idris MS, Harith MN (2018) Filament winding technique, experiment and simulation analysis on tubular structure. IOP Conf Ser: Mater Sci Eng 342:012029. https://doi.org/10.1088/1757-899x/342/1/012029

    Article  CAS  Google Scholar 

  136. Kim BC, Potter K, Weaver PM (2012) Continuous tow shearing for manufacturing variable angle tow composites. Compos A Appl Sci Manuf 43:1347–1356. https://doi.org/10.1016/j.compositesa.2012.02.024

    Article  CAS  Google Scholar 

  137. Zhang L, Wang X, Pei J, Zhou Y (2020) Review of automated fibre placement and its prospects for advanced composites. J Mater Sci 55:7121–7155. https://doi.org/10.1007/s10853-019-04090-7

    Article  CAS  Google Scholar 

  138. Zhang W, Liu F, Jiang T, Yi M, Chen W (2021) Overview of current design and analysis of potential theories for automated fibre placement mechanisms. Chin J Aeronaut 35:1–13. https://doi.org/10.1016/j.cja.2021.04.018

    Article  Google Scholar 

  139. Wang H, Chen J, Fan Z, Xiao J, Wang X (2021) Experimental investigation on the influence of fiber path curvature on the mechanical properties of composites. Materials (Basel). https://doi.org/10.3390/ma14102602

    Article  Google Scholar 

  140. Han ZY, Fu HY, Fu Y, Z, (2004) Analysis and application of filament winding with concave curved surface. Propul Technol 25:286–288

    Google Scholar 

  141. Wang GY, Cao J, Zhang H (2012) A 2-axis computer-controlled winding forming method for composite bend pipe. J Harbin Technol U 44:130–134

    Google Scholar 

  142. Harik R (2020) Next automated fiber placement: advancing composites manufacturing towards a new paradigm. SAMPE J: 6–14.

  143. Ge X (2012) Parameterized self-motion manifold of 7-DOF automatic fiber placement robotic manipulator. J Mech Eng 48:27–31

    Article  Google Scholar 

  144. Brasington A, Sacco C, Halbritter J, Wehbe R, Harik R (2021) Automated fiber placement: a review of history, current technologies, and future paths forward. Compos Part C Open Access. https://doi.org/10.1016/j.jcomc.2021.100182

    Article  Google Scholar 

  145. Taneva E, Kusnoto B, Evans CA. (2015) 3D scanning, imaging, and printing in orthodontics. Issues in contemporary orthodontics.

  146. Schmidleithner C, Kalaskar DM. (2018) Stereolithography. 3D Printing.

  147. Tan LJ, Zhu W, Zhou K (2020) Recent progress on polymer materials for additive manufacturing. Adv Func Mater 30:2003062. https://doi.org/10.1002/adfm.202003062

    Article  CAS  Google Scholar 

  148. Wu Y, Li C, Chen T, Qiu R, Liu W (2021) Photo-curing 3D printing of micro-scale bamboo fibers reinforced palm oil-based thermosets composites. Compos Part A Appl. https://doi.org/10.1016/j.compositesa.2021.106676

    Article  Google Scholar 

  149. Goh GD, Yap YL, Agarwala S, Yeong WY (2019) Recent progress in additive manufacturing of fiber reinforced polymer composite. Adv Mater Technol 4:1800271. https://doi.org/10.1002/admt.201800271

    Article  CAS  Google Scholar 

  150. Fidan I, Imeri A, Gupta A, Hasanov S, Nasirov A, Elliott A, Alifui-Segbaya F, Nanami N (2019) The trends and challenges of fiber reinforced additive manufacturing. Int J Adv Manuf Syst 102:1801–1818. https://doi.org/10.1007/s00170-018-03269-7

    Article  Google Scholar 

  151. Low Z-X, Chua YT, Ray BM, Mattia D, Metcalfe IS, Patterson DA (2017) Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J Membr Sci 523:596–613. https://doi.org/10.1016/j.memsci.2016.10.006

    Article  CAS  Google Scholar 

  152. Yang Y, Song X, Li X, Chen Z, Zhou C, Zhou Q, Chen Y (2018) Recent progress in biomimetic additive manufacturing technology: from materials to functional structures. Adv Mater. https://doi.org/10.1002/adma.201706539

    Article  Google Scholar 

  153. Azlin MNM, Ilyas RA, Zuhri MYM, Sapuan SM, Harussani MM, Sharma S, Nordin AH, Nurazzi NM, Afiqah AN (2022) 3D printing and shaping polymers, composites, and nanocomposites: a review. Polymers 14:180. https://doi.org/10.3390/polym14010180

    Article  CAS  Google Scholar 

  154. Verma P, Ubaid J, Schiffer A, Jain A, Martínez-Pañeda E, Kumar S (2021) Essential work of fracture assessment of acrylonitrile butadiene styrene (ABS) processed via fused filament fabrication additive manufacturing. Int J Adv Manuf Syst 113:771–784. https://doi.org/10.1007/s00170-020-06580-4

    Article  Google Scholar 

  155. Budelmann D, Schmidt C, Meiners D (2020) Prepreg tack: a review of mechanisms, measurement, and manufacturing implication. Polym Compos 41:3440–3458. https://doi.org/10.1002/pc.25642

    Article  CAS  Google Scholar 

  156. Szcesny M, Heieck F, Carosella S, Middendorf P, Sehrschön H, Schneiderbauer M (2017) The advanced ply placement process – an innovative direct 3D placement technology for plies and tapes. Adv Manuf Polymer Compos Sci 3:2–9. https://doi.org/10.1080/20550340.2017.1291398

    Article  Google Scholar 

  157. Sefene EM (2022) State-of-the-art of selective laser melting process: a comprehensive review. J Manuf Syst 63:250–274. https://doi.org/10.1016/j.jmsy.2022.04.002

    Article  Google Scholar 

  158. Cruz Sanchez FA, Boudaoud H, Camargo M, Pearce JM (2020) Plastic recycling in additive manufacturing: a systematic literature review and opportunities for the circular economy. J Clean Prod 264:121602. https://doi.org/10.1016/j.jclepro.2020.121602

    Article  Google Scholar 

  159. Moumen AE, Tarfaoui M, Lafdi K (2019) Additive manufacturing of polymer composites processing and modeling approaches. Compos Part B Eng 171:166–182

    Article  Google Scholar 

  160. Nadimpalli VK, Na JK, Bruner DT, King BA, Yang L, Stucker BE (2016) In-situ non-destructive evaluation of ultrasonic additive manufactured components. solid freeform fabrication 2016. In: Proceedings of the 26th annual international solid freeform fabrication symposium – an additive manufacturing conference reviewed paper: 1557–67.

  161. Brenken B, Barocio E, Favaloro A, Kunc V, Pipes RB (2018) Fused filament fabrication of fiber-reinforced polymers: a review. Addit Manuf 21:1–16. https://doi.org/10.1016/j.addma.2018.01.002

    Article  CAS  Google Scholar 

  162. Rajendran Royan NR, Leong JS, Chan WN, Tan JR, Shamsuddin ZSB (2021) Current state and challenges of natural fibre-reinforced polymer composites as feeder in FDM-based 3D printing. Polymers. https://doi.org/10.3390/polym13142289

    Article  Google Scholar 

  163. Mitchell A, Lafont U, Hołyńska M, Semprimoschnig C (2018) Additive manufacturing — a review of 4D printing and future applications. Addit Manuf 24:606–626. https://doi.org/10.1016/j.addma.2018.10.038

    Article  CAS  Google Scholar 

  164. Lee CH, Padzil F, Lee SH, Ainun ZMA, Abdullah LC (2021) Potential for natural fiber reinforcement in PLA Polymer filaments for fused deposition modeling (FDM) additive manufacturing: a review. Polymers (Basel). https://doi.org/10.3390/polym13091407

    Article  Google Scholar 

  165. Maguire A, Pottackal N, Saadi MASR, Rahman MM, Ajayan PM (2021) Additive manufacturing of polymer-based structures by extrusion technologies. Oxford Open Mater Sci. https://doi.org/10.1093/oxfmat/itaa004

    Article  Google Scholar 

  166. Nascimento HM, Granzotto DCT, Radovanovic E, Fávaro SL (2021) Obtention and characterization of polypropylene composites reinforced with new natural fibers from Yucca aloifolia L. Compos B Eng. https://doi.org/10.1016/j.compositesb.2021.109414

    Article  Google Scholar 

  167. Sacco C, Baz Radwan A, Anderson A, Harik R, Gregory E (2020) Machine learning in composites manufacturing: a case study of Automated Fiber Placement inspection. Compos Struct 250:112514. https://doi.org/10.1016/j.compstruct.2020.112514

    Article  Google Scholar 

  168. Wehbe R, Sacco C, Baz Radwan A, Albazzan M, Harik R (2020) Influence of process parameters in AFP fiber steering on cylinders: Constant curvature paths. Composites Part C: Open Access 2:100036. https://doi.org/10.1016/j.jcomc.2020.100036

    Article  Google Scholar 

  169. Sacco C, Brasington A, Saidy C, Kirkpatrick M, Halbritter J, Wehbe R, Harik R (2021) On the effect of manual rework in AFP quality control for a doubly-curved part. Compos B Eng. https://doi.org/10.1016/j.compositesb.2021.109432

    Article  Google Scholar 

  170. BahamondeJácome LG, Albazzan MA, Chevalier PL, Gürdal Z, Tatting BF, Harik R (2018) Rapid tools for an AFP manufacturing defects assessment framework, SAMPE 2018, Long Beach, California.

  171. Sacco C (2017) Machine learning methods for rapid inspection of automated fiber placement manufactured composite structures. In: Chapter 3, Thesis and dissertation: master of science in aerospace engineering, University of South Carolina: 29–54.

  172. Raspall F, Velu R, Vaheed NM (2019) Fabrication of complex 3D composites by fusing automated fiber placement (AFP) and additive manufacturing (AM) technologies. Adv Manuf Polymer Compos Sci 5:6–16. https://doi.org/10.1080/20550340.2018.1557397

    Article  CAS  Google Scholar 

  173. Vistagy I (2012) Vistagy fiber SIM 2012 brochure. Spring, New York

    Google Scholar 

  174. Hasenjaeger B (2013) Programming and simulating automated fiber placement CNC machines. SAMPE J 49:7–13

    Google Scholar 

  175. Cheng T, Wood D, Antorveza K, Kiesewetter L, Ozdemir E, Menges A (2021) Programming material compliance and actuation: hybrid additive fabrication of biocomposite structures for large-scale self-shaping. Bioinspir Biomim 16:055004

    Article  Google Scholar 

  176. Ltd C (2012) VERICUT Composite Brochure. Springer, New York

    Google Scholar 

  177. Lee NA, Weber RE, Kennedy JH, Van Zak JJ, Smith M, Duro-Royo J, Oxman N (2020) Sequential multimaterial additive manufacturing of functionally graded biopolymer composites. 3D Printing and Additive Manufacturing 7: 205–215.

  178. Nicholas P, Rossi G, Williams E, Bennett M, Schork T (2020) Integrating real-time multi-resolution scanning and machine learning for Conformal Robotic 3D Printing in Architecture. Int J Archit Comput 18:371–384. https://doi.org/10.1177/1478077120948203

    Article  Google Scholar 

  179. Spickenheuer A, Scheffler C, Bittrich L, Haase R, Weise D, Garray D (2018) Tailored fiber placement in thermoplastic composites. Technol Lightweight Struct 1:114. https://doi.org/10.21935/tls.v1i2.95

    Article  Google Scholar 

  180. Lozano GG, Tiwari A, Turner C, Astwood S (2015) A review on design for manufacture of variable stiffness composite laminates. Proc Inst Mech Eng B J Eng Manuf 230:981–992. https://doi.org/10.1177/0954405415600012

    Article  CAS  Google Scholar 

  181. Rihaczek G, Klammer M, Basnak O, Petrs J, Grisin B, Dahy H, Carosella S (2000) Middendorf P (2020) curved foldable tailored fiber reinforcements for moldless customized bio-composite structures. Proof Concept: Biomimetic NFRP Stools Polymers. https://doi.org/10.3390/polym12092000

    Article  Google Scholar 

  182. Sippach T, Dahy H, Uhlig K, Grisin B, Carosella S, Middendorf P (2020) Structural optimization through biomimetic-inspired material-specific application of plant-based natural fiber-reinforced polymer composites (NFRP) for future sustainable lightweight architecture. Polymers. https://doi.org/10.3390/polym12123048

    Article  Google Scholar 

  183. Costalonga Martins V, Cutajar S, van der Hoven C, Baszyński P, Dahy H (2020) Flex flax stool: validation of moldless fabrication of complex spatial forms of natural fiber-reinforced polymer (NFRP) structures through an integrative approach of tailored fiber placement and coreless filament winding techniques. Appl Sci. https://doi.org/10.3390/app10093278

    Article  Google Scholar 

  184. Cutajar S, Martins VC, Hoven Cvd, Baszyński P, Dahy H (2020) Towards Modular Natural FiberReinforced Polymer Architecture. In: Proceedings of the 40th annual conference of the association of computer aided design in architecture 1: 564–73.

  185. Wright T, Bechtold T, Bernhard A, Manian AP, Scheiderbauer M (2019) Tailored fibre placement of carbon fibre rovings for reinforced polypropylene composite part 1: PP infusion of carbon reinforcement. Compos B Eng 162:703–711. https://doi.org/10.1016/j.compositesb.2019.01.016

    Article  CAS  Google Scholar 

  186. El-Dessouky HM, Saleh MN, Gautam M, Han G, Scaife RJ, Potluri P (2019) Tailored fibre placement of commingled carbon-thermoplastic fibres for notch-insensitive composites. Compos Struct 214:348–358. https://doi.org/10.1016/j.compstruct.2019.02.043

    Article  Google Scholar 

  187. Uhlig K, Bittrich L, Spickenheuer A, Almeida JHS (2019) Waviness and fiber volume content analysis in continuous carbon fiber reinforced plastics made by tailored fiber placement. Compos Struct 222:110910. https://doi.org/10.1016/j.compstruct.2019.110910

    Article  Google Scholar 

  188. Almeida JHS, Bittrich L, Jansen E, Tita V, Spickenheuer A (2019) Buckling optimization of composite cylinders for axial compression: a design methodology considering a variable-axial fiber layout. Compos Struct. https://doi.org/10.1016/j.compstruct.2019.110928

    Article  Google Scholar 

  189. Wu Z, Raju G, Weaver PM (2015) Framework for the buckling optimization of variable-angle tow composite plates. AIAA J 53:3788–3804. https://doi.org/10.2514/1.J054029

    Article  Google Scholar 

  190. Raj SSR, Dhas JER, Jesuthanam CP (2020) Challenges on machining characteristics of natural fiber-reinforced composites – a review. J Reinf Plast Compos 40:41–69. https://doi.org/10.1177/0731684420940773

    Article  CAS  Google Scholar 

  191. Masoud F, Sapuan SM, Mohd Ariffin MKA, Nukman Y, Bayraktar E (2020) Cutting processes of natural fiber-reinforced polymer composites. Polymers. https://doi.org/10.3390/polym12061332

    Article  Google Scholar 

  192. Patel K, Patel K, Gohil P, Chaudhary V (2018) Investigations of milling parameters on hemp fiber reinforced composite using ANOVA and regression. Appl Mech Mater 877:177–182. https://doi.org/10.4028/www.scientific.net/AMM.877.177

    Article  Google Scholar 

  193. Balasubramanian K, Sultan MTH, Cardona F, Rajeswari N (2016) Machining analysis of natural fibre reinforced composites using fuzzy logic. IOP Conf Ser: Mater Sci Eng 152:1–7

    Article  Google Scholar 

  194. Venkateshwaran N, ElayaPerumal A (2013) Hole quality evaluation of natural fiber composite using image analysis technique. J Reinf Plast Compos 32:1188–1197. https://doi.org/10.1177/0731684413486847

    Article  CAS  Google Scholar 

  195. Liu S, Bao J, Lu Y, Li J, Lu S, Sun X (2021) Digital twin modeling method based on biomimicry for machining aerospace components. J Manuf Syst 58:180–195. https://doi.org/10.1016/j.jmsy.2020.04.014

    Article  Google Scholar 

  196. Lazarus BS, Velasco-Hogan A, Gómez-del Río T, Meyers MA, Jasiuk I (2020) A review of impact resistant biological and bioinspired materials and structures. J Mater Res Technol 9:15705–15738. https://doi.org/10.1016/j.jmrt.2020.10.062

    Article  CAS  Google Scholar 

  197. Aisyah HA, Paridah MT, Sapuan SM, Ilyas RA, Khalina A, Nurazzi NM, Lee SH, Lee CH (2021) A Comprehensive review on advanced sustainable woven natural fibre polymer composites. Polymers. https://doi.org/10.3390/polym13030471

    Article  Google Scholar 

  198. Bandaru AK, Chouhan H, Bhatnagar N (2020) High strain rate compression testing of intra-ply and inter-ply hybrid thermoplastic composites reinforced with Kevlar/basalt fibers. Polym Testing 84:106407. https://doi.org/10.1016/j.polymertesting.2020.106407

    Article  CAS  Google Scholar 

  199. Bharathi M, Kumaran SS, Samson PE (2021) Effect of silica nanoparticles on mechanical and thermal properties of intra-inter ply hybrid laminated composites. Mater Res Express. https://doi.org/10.1088/2053-1591/abf530

    Article  Google Scholar 

  200. https://www.designworldonlinecom/what-is-polymer-directed-energy-deposition-ded-for-3d-printing-and-how-can-it-benefit-you/.

  201. Shah DU (2014) Natural fibre composites: comprehensive Ashby-type materials selection charts. Mater Des 1980–2015(62):21–31. https://doi.org/10.1016/j.matdes.2014.05.002

    Article  CAS  Google Scholar 

  202. Sarikaya E, Çallioğlu H, Demirel H (2019) Production of epoxy composites reinforced by different natural fibers and their mechanical properties. Compos B Eng 167:461–466. https://doi.org/10.1016/j.compositesb.2019.03.020

    Article  CAS  Google Scholar 

  203. Senthilrajan S, Venkateshwaran N, Naresh K (2022) Parametric study of different fiber parameters and their influence on acoustics and vibration behavior of jute fiber/polyester resin composites. J Nat Fibers. https://doi.org/10.1080/15440478.2022.2085225

    Article  Google Scholar 

  204. Sanjeevi S, Shanmugam V, Kumar S, Ganesan V, Sas G, Johnson DJ, Shanmugam M, Ayyanar A, Naresh K, Neisiany RE, Das O (2021) Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Sci Rep 11:13385. https://doi.org/10.1038/s41598-021-92457-9

    Article  CAS  Google Scholar 

  205. Moyo M, Kanny K, Velmurugan R (2020) Performance of Kenaf non-woven Mat/PLA biocomposites under medium velocity impact. Fibers Polymers 21:2642–2651. https://doi.org/10.1007/s12221-020-1130-z

    Article  CAS  Google Scholar 

  206. Salman SD, Leman Z, Sultan MTH, Ishak MR, Cardona F (2016) Ballistic impact resistance of plain woven kenaf/aramid reinforced polyvinyl butyral laminated hybrid composite. BioResources 11:7282–7295

    CAS  Google Scholar 

  207. Moyo M, Kanny K, Velmurugan R (2020) The efficacy of nanoclay loading in the medium velocity impact resistance of kenaf/PLA biocomposites. Appl Nanosci 11:441–453. https://doi.org/10.1007/s13204-020-01602-9

    Article  CAS  Google Scholar 

  208. Azmi AMR, Sultan MTH, Jawaid M, Talib ARA, Nor AFM (2018) Tensile and flexural properties of a newly developed bulletproof vest using a Kenaf/X-ray film hybrid composite. BioResources 13:4416–4427

    CAS  Google Scholar 

  209. Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES (2014) Quasi-static penetration and ballistic properties of kenaf–aramid hybrid composites. Mater Des 63:775–782. https://doi.org/10.1016/j.matdes.2014.07.010

    Article  Google Scholar 

  210. Bandaru AK, Ahmad S, Bhatnagar N (2017) Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics. Compos A Appl Sci Manuf 97:151–165. https://doi.org/10.1016/j.compositesa.2016.12.007

    Article  CAS  Google Scholar 

  211. Velmurugan R, Naresh K, Shankar K (2017) Influence of fibre orientation and thickness on the response of CFRP composites subjected to high velocity impact loading. Adv Mater Process Technol 4:120–131. https://doi.org/10.1080/2374068x.2017.1410688

    Article  Google Scholar 

  212. Zhang K, Wang F, Yang B, Li L, Gao L, Sun Y, Guo F (2022) Mechanical response and failure mechanisms of natural bamboo fiber reinforced Poly-Benzoxazine composite subjected to split-hopkinson tensile bar loading. Polymers. https://doi.org/10.3390/polym14071450

    Article  Google Scholar 

  213. Naresh K, Shankar K, Velmurugan R, Gupta NK (2020) High strain rate studies for different laminate configurations of bi-directional glass/epoxy and carbon/epoxy composites using DIC. Structures 27:2451–2465. https://doi.org/10.1016/j.istruc.2020.05.022

    Article  Google Scholar 

  214. Liu Y, Shen J, Li Y, Ge X, Li Y (2021) Enhanced high-strain-rate impact resistance of helicoidal composites by fused deposition modelling. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2021.2006837

    Article  Google Scholar 

  215. Naresh K, Rajalakshmi K, Vasudevan A, Senthil Kumaran S, Velmurugan R, Shankar K (2018) Effect of nanoclay and different impactor shapes on glass/epoxy composites subjected to quasi-static punch shear loading. Adv Mater Process Technol 4:345–357. https://doi.org/10.1080/2374068x.2018.1428879

    Article  Google Scholar 

  216. Naresh K, Cantwell WJ, Khan KA, Umer R (2021) Single and multi-layer core designs for Pseudo-Ductile failure in honeycomb sandwich structures. Compos Struct 256:113059. https://doi.org/10.1016/j.compstruct.2020.113059

    Article  Google Scholar 

  217. Sarasini F, Tirillo J, D’Altilia S, Valente T, Santulli C, Touchard F (2016) Damage tolerance of carbon/flax hybrid composites subjected to LVI. Compos B Eng 91:144

    Article  CAS  Google Scholar 

  218. Santulli C (2019) Mechanical and impact damage analysis on carbon/natural fibers hybrid composites: a review. Materials 12:517. https://doi.org/10.3390/ma12030517

    Article  CAS  Google Scholar 

  219. Otani LB, Alves H, Melo JDD, Amico SC (2014) Elastic Moduli characterization of composites using the Impulse Excitation Technique. Technical-scientific Informative ITC-06 / ATCP, ATCP Physical Engineering: 1–36. Doi:https://doi.org/10.13140/RG.2.1.1551.2481

  220. Jiang H, Qin S, Fu J, Zhang J, Ding G (2021) How to model and implement connections between physical and virtual models for digital twin application. J Manuf Syst 58:36–51. https://doi.org/10.1016/j.jmsy.2020.05.012

    Article  Google Scholar 

  221. Xia K, Sacco C, Kirkpatrick M, Saidy C, Nguyen L, Kircaliali A, Harik R (2021) A digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces and intelligence. J Manuf Syst 58:210–230. https://doi.org/10.1016/j.jmsy.2020.06.012

    Article  Google Scholar 

  222. Katunin A, Dragan K, Nowak T, Chalimoniuk M (2021) Quality control approach for the detection of internal lower density areas in composite disks in industrial conditions based on a combination of NDT techniques. Sensors 21:1–25. https://doi.org/10.3390/s21217174

    Article  CAS  Google Scholar 

  223. Alhammad M, Fragonara LZ, Avdelidis NP Diagnosis of Composite Materials in Aircraft Applications–Brief Survey of Recent Literature. Preprints. Doi:https://doi.org/10.20944/preprints202011.0216.v1

  224. Nsengiyumva W, Zhong S, Lin J, Zhang Q, Zhong J, Huang Y (2021) Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: a state-of-the-art review. Compos Struct 256:112951. https://doi.org/10.1016/j.compstruct.2020.112951

    Article  Google Scholar 

  225. Gupta R, Mitchell D, Blanche J, Harper S, Tang W, Pancholi K, Baines L, Bucknall DG, Flynn D (2021) A review of sensing technologies for non-destructive evaluation of structural composite materials. J Compos Sci. https://doi.org/10.3390/jcs5120319

    Article  Google Scholar 

  226. Wang B, Zhong S, Lee T-L, Fancey KS, Mi J (2020) Non-destructive testing and evaluation of composite materials/structures: a state-of-the-art review. Adv Mech Eng 12:168781402091376. https://doi.org/10.1177/1687814020913761

    Article  Google Scholar 

  227. Hassani S, Mousavi M, Gandomi AH (2021) Structural health monitoring in composite structures: a comprehensive review. Sensors (Basel). https://doi.org/10.3390/s22010153

    Article  Google Scholar 

  228. Gupta K, McClanahan A, Erickson K, Zoughi R (2008) Show me the road to hydrogen non-destructive evaluation (NDE), Technical Report. A University Transportation Center Program at Missouri University of Science and Technology: 1–47.

  229. Towsyfyan H, Biguri A, Boardman R, Blumensath T (2019) Successes and challenges in non-destructive testing of aircraft composite structures. Chin J Aeronaut 33:771–791. https://doi.org/10.1016/j.cja.2019.09.017

    Article  Google Scholar 

  230. Boopathy G, Surendar G, Nema A (2017) A review on non-destructive testing of composite materials in aircraft applications. Int J Mech Eng 8:1334–1342

    Google Scholar 

  231. Wang Z, Dixit P, Chegdani F, Takabi B, Tai BL, El Mansori M, Bukkapatnam S (2020) Bidirectional gated recurrent deep learning neural networks for smart acoustic emission sensing of natural fiber-reinforced polymer composite machining process. Smart Sust Manuf Syst 4:20190042. https://doi.org/10.1520/ssms20190042

    Article  Google Scholar 

  232. Wang Z, Chegdani F, Yalamarti N, Takabi B, Tai B, El Mansori M, Bukkapatnam S (2020) Acoustic emission characterization of natural fiber reinforced plastic composite machining using a random forest machine learning model. J Manuf Sci Eng. https://doi.org/10.1115/1.4045945

    Article  Google Scholar 

  233. Sarasini F, Santulli C (2014) Non-destructive testing (NDT) of natural fibre composites: acoustic emission technique. Nat Fibre Compos. https://doi.org/10.1533/9780857099228.3.273

    Article  Google Scholar 

  234. Gholizadeh S (2016) A review of non-destructive testing methods of composite materials. Procedia Struct Integrity 1:50–57. https://doi.org/10.1016/j.prostr.2016.02.008

    Article  Google Scholar 

  235. Loganathan TM, Sultan MTH, Gobalakrishnan MK (2018) Chapter 11 Ultrasonic inspection of natural fiber-reinforced composites. Sustainable composites for aerospace applications. Woodhead Publishing, UK, pp 227–251

    Chapter  Google Scholar 

  236. Lu T, Chen X, Wang H, Zhang L, Zhou Y (2020) Comparison of low-velocity impact damage in thermoplastic and thermoset composites by non-destructive three-dimensional X-ray microscope. Polym Testing 91:106730. https://doi.org/10.1016/j.polymertesting.2020.106730

    Article  CAS  Google Scholar 

  237. Papa I, Lopresto V, Langella A (2021) Ultrasonic inspection of composites materials: application to detect impact damage. Int J Lightweight Mater Manuf 4:37–42. https://doi.org/10.1016/j.ijlmm.2020.04.002

    Article  Google Scholar 

  238. Yilmaz B, Asokkumar A, Jasiūnienė E, Kažys RJ (2020) Air-coupled, contact, and immersion ultrasonic non-destructive testing: comparison for bonding quality evaluation. Appl Sci 10:6757. https://doi.org/10.3390/app10196757

    Article  CAS  Google Scholar 

  239. Sfarra S, Ibarra-Castanedo C, Santulli C, Paoletti D, Maldague X (2016) Monitoring of jute/hemp fiber hybrid laminates by nondestructive testing techniques. Sci Eng Compos Mater 23:283–300. https://doi.org/10.1515/secm-2013-0138

    Article  Google Scholar 

  240. Grager J-C, Kotschate D, Gamper J, Gaal M, Pinkert K, Mooshofer H, Goldammer M, Grosse CU (2018) Advances in air-coupled ultrasonic testing combining an optical microphone with novel transmitter concepts. In: 12th European conference on Non-Destructive Testing, At: Gothenburg, Sweden: 1–10.

  241. Chen F, Bouvard J-L, Sawada D, Pradille C, Hummel M, Sixta H, Budtova T (2021) Exploring digital image correlation technique for the analysis of the tensile properties of all-cellulose composites. Cellulose 28:4165–4178. https://doi.org/10.1007/s10570-021-03807-9

    Article  CAS  Google Scholar 

  242. Lopato P, Psuj G, Szymanik B (2016) Nondestructive inspection of thin basalt fiber reinforced composites using combined terahertz imaging and infrared thermography. Adv Mater Sci Eng 2016:1–13. https://doi.org/10.1155/2016/1249625

    Article  Google Scholar 

  243. Sfarra S, Ibarra-Castanedo C, Santulli C, Sarasini F, Ambrosini D, Paoletti D, Maldague X (2013) Eco-friendly laminates: from the indentation to non-destructive evaluation by optical and infrared monitoring techniques. Strain 49:175–189. https://doi.org/10.1111/str.12026

    Article  CAS  Google Scholar 

  244. Boccardi B, Carlomagno C, Meola M, Russo S (2019) Lock-In Thermography and ultrasonic testing of impacted basalt fibers reinforced thermoplastic matrix composites. Appl Sci 9:3025. https://doi.org/10.3390/app9153025

    Article  CAS  Google Scholar 

  245. Zhang H, Sfarra S, Sarasini F, Santulli C, Fernandes H, Avdelidis N, Ibarra-Castanedo C, Maldague X (2018) Thermographic non-destructive evaluation for natural fiber-reinforced composite laminates. Appl Sci 8:240. https://doi.org/10.3390/app8020240

    Article  CAS  Google Scholar 

  246. Wang D, Onawumi PY, Ismail SO, Dhakal HN, Popov I, Silberschmidt VV, Roy A (2019) Machinability of natural-fibre-reinforced polymer composites: conventional vs ultrasonically-assisted machining. Compos A Appl Sci Manuf 119:188–195. https://doi.org/10.1016/j.compositesa.2019.01.028

    Article  CAS  Google Scholar 

  247. Xu H, Li L, Li G (2022) N situ characterization of the flexural behavior and failure mechanism of 2D needle-punched carbon/carbon composites by digital image correlation. J Mater Sci. https://doi.org/10.1007/s10853-022-07272-y

    Article  Google Scholar 

  248. Naresh K, Shankar K, Velmurugan R (2018) Digital image processing and thermo-mechanical response of neat epoxy and different laminate orientations of fiber reinforced polymer composites for vibration isolation applications. Int J Polym Anal 23:684–709. https://doi.org/10.1080/1023666x.2018.1494431

    Article  CAS  Google Scholar 

  249. Habibi M, Laperrière L (2020) Digital image correlation and acoustic emission for damage analysis during tensile loading of open-hole flax laminates. Eng Fract Mech 228:106921. https://doi.org/10.1016/j.engfracmech.2020.106921

    Article  Google Scholar 

  250. Ramakrishnan KR, Corn S, Le Moigne N, Ienny P, Slangen P (2021) Experimental assessment of low velocity impact damage in flax fabrics reinforced biocomposites by coupled high-speed imaging and DIC analysis. Compos A Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2020.106137

    Article  Google Scholar 

  251. Garcea SC, Wang Y, Withers PJ (2018) X-ray computed tomography of polymer composites. Compos Sci Technol 156:305–319. https://doi.org/10.1016/j.compscitech.2017.10.023

    Article  CAS  Google Scholar 

  252. Li S, Yang S, Shang L, Liu X, Ma J, Ma Q, Tian G (2021) 3D Visualization of bamboo node’s vascular bundle. Forests. https://doi.org/10.3390/f12121799

    Article  Google Scholar 

  253. Palombini FL, Kindlein W, de Oliveira BF, de Araujo Mariath JE (2016) Bionics and design: 3D microstructural characterization and numerical analysis of bamboo based on X-ray microtomography. Mater Charact 120:357–368. https://doi.org/10.1016/j.matchar.2016.09.022

    Article  CAS  Google Scholar 

  254. Koddenberg T, Militz H (2018) Morphological imaging and quantification of axial xylem tissue in Fraxinus excelsior L. through X-ray micro-computed tomography. Micron 111:28–35. https://doi.org/10.1016/j.micron.2018.05.004

    Article  Google Scholar 

  255. Yu S, Hwang YH, Hwang JY, Hong SH (2019) Analytical study on the 3D-printed structure and mechanical properties of basalt fiber-reinforced PLA composites using X-ray microscopy. Compos Sci Technol 175:18–27. https://doi.org/10.1016/j.compscitech.2019.03.005

    Article  CAS  Google Scholar 

  256. de Kergariou C, Le Duigou A, Popineau V, Gager V, Kervoelen A, Perriman A, Saidani-Scott H, Allegri G, Panzera TH, Scarpa F (2021) Measure of porosity in flax fibres reinforced polylactic acid biocomposites. Compos A Appl Sci Manuf 141:106183. https://doi.org/10.1016/j.compositesa.2020.106183

    Article  CAS  Google Scholar 

  257. Naresh K, Khan KA, Cantwell WJ, Umer R (2022) Rate and temperature dependent compaction-creep-recovery and void analysis of compression molded prepregs. Compos B Eng 235:109757. https://doi.org/10.1016/j.compositesb.2022.109757

    Article  CAS  Google Scholar 

  258. du Plessis A, Yadroitsev I, Yadroitsava I, Le Roux SG (2018) X-Ray microcomputed tomography in additive manufacturing a review of the current technology and applications. 3D Printing and Additive Manufacturing 5: 227–47. https://doi.org/10.1089/3dp.2018.0060

  259. Mutiargo B, Pavlovic M, Malcolm AA, Goh B, Krishnan M, Shota T, Shaista H, Jhinaoui A, Putro MIS (2019) Evaluation of X-Ray Computed Tomography (CT) Images of Additively Manufactured Components using Deep Learning. In: 3rd Singapore international non-destructive testing conference and exhibition (SINCE2019), Singapore: 94–102.

  260. Naresh K, Khan KA, Cantwell WJ, Umer R (2021) Viscoelastic and cyclic compaction response of prepregs tested under isothermal temperatures and various compaction speeds. Polym Compos 42:6928–6940. https://doi.org/10.1002/pc.26351

    Article  CAS  Google Scholar 

  261. Bensadoun F, Barburski M, Straumit I, Le Quan Tran N, Fuentes C, Zenina J, Shishkina O, Pyka G, Verpoest I, Van Vuure AW, Wevers M, Lomov SV (2014) Challenges of X-Ray Tomography Technique on Natural Fibre-Based Composites. In: 11th European conference on non-destructive testing (ECNDT 2014), October 6–10, 2014, Prague, Czech Republic: 1–12.

  262. Di Giuseppe E, Castellani R, Dobosz S, Malvestio J, Berzin F, Beaugrand J, Delisée C, Vergnes B, Budtova T (2016) Reliability evaluation of automated analysis, 2D scanner, and micro-tomography methods for measuring fiber dimensions in polymer-lignocellulosic fiber composites. Compos Part A Appl Sci 90:320. https://doi.org/10.1016/j.compositesa.2016.07.020

    Article  CAS  Google Scholar 

  263. Bruni-Bossio BM, Melenka GW, Ayranci C, Carey JP (2019) Micro-computed tomography analysis of natural fiber and bio-matrix tubular-braided composites. J Compos Mater 53:4003–4013. https://doi.org/10.1177/0021998319853023

    Article  Google Scholar 

  264. Rask M, Madsen B, Sørensen BF, Fife JL, Martyniuk K, Lauridsen EM (2012) In situ observations of microscale damage evolution in unidirectional natural fibre composites. Compos Part A Appl Sci 43:1639–1649. https://doi.org/10.1016/j.compositesa.2012.02.007

    Article  CAS  Google Scholar 

  265. Fuentes CA, Willekens P, Petit J, Thouminot C, Müssig J, Trindade LM, Van Vuure AW (2017) Effect of the middle lamella biochemical composition on the non-linear behaviour of technical fibres of hemp under tensile loading using strain mapping. Compos Part A Appl Sci 101:529–542. https://doi.org/10.1016/j.compositesa.2017.07.017

    Article  CAS  Google Scholar 

  266. Villarraga-Gómez H, Herazo EL, Smith ST (2019) X-ray computed tomography: from medical imaging to dimensional metrology. Precis Eng 60:544–569. https://doi.org/10.1016/j.precisioneng.2019.06.007

    Article  Google Scholar 

  267. Yu S, Bale H, Park S, Hwang JY, Hong SH (2021) Anisotropic microstructure dependent mechanical behavior of 3D-printed basalt fiber-reinforced thermoplastic composites. Compos B Eng 224:109184. https://doi.org/10.1016/j.compositesb.2021.109184

    Article  CAS  Google Scholar 

  268. Yu S, Hwang JY, Hong SH (2020) 3D microstructural characterization and mechanical properties determination of short basalt fiber-reinforced polyamide 6,6 composites. Compos B Eng 187:107839. https://doi.org/10.1016/j.compositesb.2020.107839

    Article  CAS  Google Scholar 

  269. Auenhammer RM, Jeppesen N, Mikkelsen LP, Dahl VA, Blinzler BJ, Asp LE (2022) Robust numerical analysis of fibrous composites from X-ray computed tomography image data enabling low resolutions. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2022.109458

    Article  Google Scholar 

  270. Alahmed N, Naresh K, Khan KA, Cantwell WJ, Umer R (2022) In-situ X-ray computed tomography characterization of compaction-creep-recovery response and statistical void analysis of carbon/epoxy prepregs. Compos Commun 31:101117. https://doi.org/10.1016/j.coco.2022.101117

    Article  Google Scholar 

  271. Wielhorski Y, Mendoza A, Rubino M, Roux S (2022) Numerical modeling of 3D woven composite reinforcements: a review. Compos Part A Appl Sci 154:106729. https://doi.org/10.1016/j.compositesa.2021.106729

    Article  Google Scholar 

  272. Hasan KMF, Horváth PG, Alpár T (2021) Potential fabric-reinforced composites: a comprehensive review. J Mater Sci 56:14381–14415. https://doi.org/10.1007/s10853-021-06177-6

    Article  CAS  Google Scholar 

  273. Soltani P, Zarrebini M, Laghaei R, Hassanpour A (2017) Prediction of permeability of realistic and virtual layered nonwovens using combined application of X-ray μ CT and computer simulation. Chem Eng Res Des 124:299–312. https://doi.org/10.1016/j.cherd.2017.06.035

    Article  CAS  Google Scholar 

  274. Czigány T (2006) Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study. Compos Sci Technol 66:3210–3220. https://doi.org/10.1016/j.compscitech.2005.07.007

    Article  CAS  Google Scholar 

  275. Seychal G, Ramasso E, Le Moal P, Bourbon G, Gabrion X, Placet V (2022) Towards in-situ acoustic emission-based health monitoring in bio-based composites structures: does embedment of sensors affect the mechanical behaviour of flax/epoxy laminates? Compos B Eng 236:109787. https://doi.org/10.1016/j.compositesb.2022.109787

    Article  CAS  Google Scholar 

  276. Grabi M, Chellil A, Habibi M, Grabi H, Laperriere L (2022) Characterization of low-velocity impact and post-impact damage of luffa mat composite using acoustic emission and digital image correlation. J Compos Mater. https://doi.org/10.1177/00219983221083733

    Article  Google Scholar 

  277. Chew E, Liu JL, Tay TE, Tran LQN, Tan VBC (2021) Improving the mechanical properties of natural fibre reinforced laminates composites through Biomimicry. Compos Struct 258:113208. https://doi.org/10.1016/j.compstruct.2020.113208

    Article  CAS  Google Scholar 

  278. Alemdar A, Zhang H, Sain M, Cescutti G, Müssig J (2008) Determination of Fiber Size Distributions of Injection Moulded Polypropylene/Natural Fibers Using X-ray Microtomography. Adv Eng Mater 10:126–130. https://doi.org/10.1002/adem.200700232

    Article  CAS  Google Scholar 

  279. Xu D, Cerbu C, Wang H, Rosca IC (2019) Analysis of the hybrid composite materials reinforced with natural fibers considering digital image correlation (DIC) measurements. Mech Mater 135:46–56. https://doi.org/10.1016/j.mechmat.2019.05.001

    Article  Google Scholar 

  280. Guessasma S, Belhabib S, Nouri H (2019) Understanding the microstructural role of bio-sourced 3D printed structures on the tensile performance. Polym Testing 77:105924

    Article  Google Scholar 

  281. Tabrej K, Sultan MTH, Jawaid M, Shah AUM, Sani S (2021) Low velocity impact, ultrasonic C-Scan and compression after impact of Kenaf/Jute hybrid composites. Impact studies of composite materials. Springer, Amsterdam, pp 73–85

    Chapter  Google Scholar 

  282. Fischer B, Sarasini F, Tirillò J, Touchard F, Chocinski-Arnault L, Mellier D, Panzer N, Sommerhuber R, Russo P, Papa I, Lopresto V, Ecault R (2019) Impact damage assessment in biocomposites by micro-CT and innovative air-coupled detection of laser-generated ultrasound. Compos Struct 210:922–931. https://doi.org/10.1016/j.compstruct.2018.12.013

    Article  Google Scholar 

  283. Derusova D, Vavilov V, Sfarra S, Sarasini F, Krasnoveikin V, Chulkov A, Pawar S (2019) Ultrasonic spectroscopic analysis of impact damage in composites by using laser vibrometry. Compos Struct 211:221–228. https://doi.org/10.1016/j.compstruct.2018.12.050

    Article  Google Scholar 

  284. Zhang H, Sfarra S, Genest M, Sarasini F, Perilli S, Fernandes H, Fleuret J, Maldague X (2017) Numerical and experimental analyses for natural and non-natural impacted composites via thermographic inspection, ultrasonic C-scan and terahertz imaging SPIE Commercial + Scientific Sensing and Imaging. Anaheim, California, United States, p 10214

    Google Scholar 

  285. Seghini MC, Touchard F, Sarasini F, Chocinski-Arnault L, Mellier D, Tirillò J (2018) Interfacial adhesion assessment in flax/epoxy and in flax/vinylester composites by single yarn fragmentation test: correlation with micro-CT analysis. Compos Part A Appl 113:66–75. https://doi.org/10.1016/j.compositesa.2018.07.015

    Article  CAS  Google Scholar 

  286. Song W, Zhang C, Wang Z (2021) Investigation of the microstructural characteristics and the tensile strength of silkworm cocoons using X-ray micro computed tomography. Mater Des 199:109436. https://doi.org/10.1016/j.matdes.2020.109436

    Article  Google Scholar 

  287. Selver E, Dalfi H, Yousaf Z (2020) Investigation of the impact and post-impact behaviour of glass and glass/natural fibre hybrid composites made with various stacking sequences: experimental and theoretical analysis. J Ind Text. https://doi.org/10.1177/1528083719900670

    Article  Google Scholar 

  288. Sarasini F, Tirillò J, Valente M, Ferrante L, Cioffi S, Iannace S, Sorrentino L (2013) Hybrid composites based on aramid and basalt woven fabrics: Impact damage modes and residual flexural properties. Mater Des 49:290–302. https://doi.org/10.1016/j.matdes.2013.01.010

    Article  CAS  Google Scholar 

  289. Ferrante L, Tirillò J, Sarasini F, Touchard F, Ecault R, Vidal Urriza MA, Chocinski-Arnault L, Mellier D (2015) Behaviour of woven hybrid basalt-carbon/epoxy composites subjected to laser shock wave testing: Preliminary results. Compos B Eng 78:162–173. https://doi.org/10.1016/j.compositesb.2015.03.084

    Article  CAS  Google Scholar 

  290. Dhakal HN, Sarasini F, Santulli C, Tirillò J, Zhang Z, Arumugam V (2015) Effect of basalt fibre hybridisation on post-impact mechanical behaviour of hemp fibre reinforced composites. Compos A Appl Sci Manuf 75:54–67. https://doi.org/10.1016/j.compositesa.2015.04.020

    Article  CAS  Google Scholar 

  291. Seghini MC, Touchard F, Sarasini F, Chocinski-Arnault L, Ricciardi MR, Antonucci V, Tirillò J (2020) Fatigue behaviour of flax-basalt/epoxy hybrid composites in comparison with non-hybrid composites. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2020.105800

    Article  Google Scholar 

  292. Sarasini F, Tirillò J, D’Altilia S, Valente T, Santulli C, Touchard F (2016) Damage tolerance of carbon/flax hybrid composites subjected to LVI. Compos B Eng 91:144–153. https://doi.org/10.1016/j.compositesb.2016.01.050

    Article  CAS  Google Scholar 

  293. Sfarra S, Ibarra-Castanedo C, Santulli C, Paoletti A, Paoletti D, Sarasini F, Bendada A, Maldague X (2013) Falling weight impacted glass and basalt fibre woven composites inspected using non-destructive techniques. Compos B Eng 45:601–608. https://doi.org/10.1016/j.compositesb.2012.09.078

    Article  CAS  Google Scholar 

  294. Sfarra S, Ibarra-Castanedo C, Sarasini F, Santulli C, Maldague XPV (2016) Basalt fibre laminates non-destructively inspected after low-velocity impacts. FME Transaction 44:380–385. https://doi.org/10.5937/fmet1604380S

    Article  Google Scholar 

  295. De Rosa IM, Santulli C, Sarasini F, Valente M (2009) Post-impact damage characterization of hybrid configurations of jute/glass polyester laminates using acoustic emission and IR thermography. Compos Sci Technol 69:1142–1150. https://doi.org/10.1016/j.compscitech.2009.02.011

    Article  CAS  Google Scholar 

  296. Tomlinson D, Fam A (2020) Axial response of flax fibre reinforced polymer-skinned tubes with lightweight foam cores and bioresin blend. Thin-Walled Struct. https://doi.org/10.1016/j.tws.2020.106923

    Article  Google Scholar 

  297. Paglicawan MA, Emolaga CS, Sudayon JMB, Tria KB (2021) Mechanical properties of abaca-glass fiber composites fabricated by vacuum-assisted resin transfer method. Polymers 13:2719. https://doi.org/10.3390/polym13162719

    Article  CAS  Google Scholar 

  298. Papa I, Lopresto V, Simeoli G, Langella A, Russo P (2017) Ultrasonic damage investigation on woven jute/poly (lactic acid) composites subjected to low velocity impact. Compos B Eng 115:282–288. https://doi.org/10.1016/j.compositesb.2016.09.076

    Article  CAS  Google Scholar 

  299. Scarponi C, Valente M (2006) An application of a new ultrasonic technique to jute composite laminates subjected to low-velocity impact. Int J Mater Prod Technol 26:6–18

    Article  Google Scholar 

  300. Dhakal HN, Zhang ZY, Bennett N, Reis PNB (2012) Low-velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites: influence of impactor geometry and impact velocity. Compos Struct 94:2756–2763. https://doi.org/10.1016/j.compstruct.2012.04.004

    Article  Google Scholar 

  301. Szebényi G, Blößl Y, Hegedüs G, Tábi T, Czigany T, Schledjewski R (2020) Fatigue monitoring of flax fibre reinforced epoxy composites using integrated fibre-optical FBG sensors. Compos Sci Technol 199:108317. https://doi.org/10.1016/j.compscitech.2020.108317

    Article  CAS  Google Scholar 

  302. Wang X, Zhong Y, Luo X, Ren H (2021) Compressive failure mechanism of structural bamboo scrimber. Polymers 13:4223. https://doi.org/10.3390/polym13234223

    Article  CAS  Google Scholar 

  303. Chen G, Luo H (2020) Effects of node with discontinuous hierarchical fibers on the tensile fracture behaviors of natural bamboo. Sust Mater Technol 26:e00228. https://doi.org/10.1016/j.susmat.2020.e00228

    Article  Google Scholar 

  304. Sharma A, Mukhopadhyay T, Rangappa SM, Siengchin S, Kushvaha V (2021) Advances in computational intelligence of polymer composite materials: machine learning assisted modeling. Anal Des Preprints. https://doi.org/10.21203/rs.3.rs-471723/v1

    Article  Google Scholar 

  305. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  CAS  Google Scholar 

  306. Hu C, Hau WNGJ, Chen W, Qin Q-H (2020) The fabrication of long carbon fiber reinforced polylactic acid composites via fused deposition modelling: Experimental analysis and machine learning. J Compos Mater 55:1459–1472. https://doi.org/10.1177/0021998320972172

    Article  CAS  Google Scholar 

  307. Liu Z (2021) Machine learning based health monitoring of composite structures. Thesis and dissertation: Doctor of Philosophy, Université de Lyon: 77–126.

  308. Boon YD, Joshi SC, Bhudolia SK, Gohel G (2020) Recent advances on the design automation for performance-optimized fiber reinforced polymer composite components. J Compos Sci 4:61. https://doi.org/10.3390/jcs4020061

    Article  CAS  Google Scholar 

  309. Wang J, Ma Y, Zhang L, Gao RX, Wu D (2018) Deep learning for smart manufacturing: methods and applications. J Manuf Syst 48:144–156. https://doi.org/10.1016/j.jmsy.2018.01.003

    Article  Google Scholar 

  310. Güemes A, Fernandez-Lopez A, Pozo AR, Sierra-Pérez J (2020) Structural health monitoring for advanced composite structures: a review. J Compos Sci 4:13. https://doi.org/10.3390/jcs4010013

    Article  Google Scholar 

  311. Sha W, Li Y, Tang S, Tian J, Zhao Y, Guo Y, Zhang W, Zhang X, Lu S, Cao YC, Cheng S (2021) Machine learning in polymer informatics. InfoMat 3:353–361. https://doi.org/10.1002/inf2.12167

    Article  CAS  Google Scholar 

  312. Liu Y, Farnsworth M, Tiwari A (2017) A review of optimisation techniques used in the composite recycling area: state-of-the-art and steps towards a research agenda. J Clean Prod 140:1775–1781. https://doi.org/10.1016/j.jclepro.2016.08.038

    Article  Google Scholar 

  313. Li Z (2015) Tension control system design of a filament winding structure based on fuzzy neural network. Eng Rev 35:9–17

    Google Scholar 

  314. Heider D, Piovoso MJ, Gillespie JW Jr (2002) Application of a neural network to improve an automated thermoplastic tow-placement process. J Process Control 12:101–111

    Article  CAS  Google Scholar 

  315. Azimi M, Eslamlou AD, Pekcan G (2020) Data-driven structural health monitoring and damage detection through deep learning: state-of-the-art review. Sensors. https://doi.org/10.3390/s20102778

    Article  Google Scholar 

  316. Gu GX, Chen C-T, Richmond DJ, Buehler MJ (2018) Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater Horiz 5:939–945. https://doi.org/10.1039/c8mh00653a

    Article  CAS  Google Scholar 

  317. Pattnaik P, Sharma A, Choudhary M, Singh V, Agarwal P, Kukshal V (2021) Role of machine learning in the field of Fiber reinforced polymer composites: a preliminary discussion. Mater Today Proc 44:4703–4708. https://doi.org/10.1016/j.matpr.2020.11.026

    Article  CAS  Google Scholar 

  318. Fernandes H, Zhang H, Figueiredo A, Malheiros F, Ignacio LH, Sfarra S, Ibarra-Castanedo C, Guimaraes G, Maldague X (2018) Machine learning and infrared thermography for fiber orientation assessment on randomly-oriented strands parts. Sensors 18:1–16. https://doi.org/10.3390/s18010288

    Article  Google Scholar 

  319. Jiang F, Guan Z, Wang X, Li Z, Tan R, Qiu C (2021) Study on prediction of compression performance of composite laminates after impact based on convolutional neural networks. Appl Compos Mater 28:1153–1173. https://doi.org/10.1007/s10443-021-09904-z

    Article  Google Scholar 

  320. Mulenga TK, Ude AU, Vivekanandhan C (2021) Techniques for modelling and optimizing the mechanical properties of natural fiber composites: a review. Fibers 9:1–17. https://doi.org/10.3390/fib9010006

    Article  CAS  Google Scholar 

  321. Ali MA, Guan Q, Umer R, Cantwell WJ, Zhang T (2021) Efficient processing of μCT images using deep learning tools for generating digital material twins of woven fabrics. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2021.109091

    Article  Google Scholar 

  322. Mendoza A, Trullo R, Wielhorski Y (2021) Descriptive modeling of textiles using FE simulations and deep learning. Compos Sci Technol 213:108897. https://doi.org/10.1016/j.compscitech.2021.108897

    Article  Google Scholar 

  323. Li C, Wei X, He W, Guo H, Zhong J, Wu X, Xu H (2021) Intelligent recognition of composite material damage based on deep learning and infrared testing. Opt Express 29:31739–31753. https://doi.org/10.1364/OE.435230

    Article  CAS  Google Scholar 

  324. Xu C, Xie J, Wu C, Gao L, Chen G, Song G (2018) Enhancing the visibility of delamination during pulsed thermography of carbon fiber-reinforced plates using a stacked autoencoder. Sensors 18:2809. https://doi.org/10.3390/s18092809

    Article  CAS  Google Scholar 

  325. Chabaud G (2020) 3D and 4D printing of high performance continuous synthetic and natural fibre composites for structural and morphing applications. PhD thesis and dessertation, Université de Bretagne Sud: 190–204.

  326. Xu F (2018) Quantitative characterization of deformation and damage process by digital volume correlation: a review. Theor Appl Mech Lett 8:83–96. https://doi.org/10.1016/j.taml.2018.02.004

    Article  Google Scholar 

  327. Mehdikhani M, Breite C, Swolfs Y, Soete J, Wevers M, Lomov SV, Gorbatikh L (2021) Digital volume correlation for meso/micro in-situ damage analysis in carbon fiber reinforced composites. Compos Sci Technol 213:108944. https://doi.org/10.1016/j.compscitech.2021.108944

    Article  CAS  Google Scholar 

  328. Yang H, Kumara S, Bukkapatnam STS, Tsung F (2019) The internet of things for smart manufacturing: a review. IISE Trans 51:1190–1216. https://doi.org/10.1080/24725854.2018.1555383

    Article  Google Scholar 

  329. Zhang Y, Xu X (2021) Machine learning tensile strength and impact toughness of wheat straw reinforced composites. Mach Learn Appl 6:100188. https://doi.org/10.1016/j.mlwa.2021.100188

    Article  Google Scholar 

Download references

Acknowledgements

This publication is based on work supported by the Abu Dhabi Award for Research Excellence (AARE-2019) under project number 8434000349/AARE19-232.

Author information

Authors and Affiliations

Authors

Contributions

JP was involved in the conceptualization, methodology, data curation, visualization, formal analysis, investigation and writing—original draft. KN contributed to the conceptualization, methodology, data curation, software, validation, formal analysis, visualization, investigation and writing—original draft. GR helped in writing—review and editing and investigation. VA was involved in writing—review and editing and formal analysis. MAK contributed to writing—review and editing and formal analysis. KAK was involved in the conceptualization, methodology, writing—review and editing, visualization, resources, investigation, supervision, project administration and funding acquisition.

Corresponding author

Correspondence to K. A. Khan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest for this work.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 365 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preethikaharshini, J., Naresh, K., Rajeshkumar, G. et al. Review of advanced techniques for manufacturing biocomposites: non-destructive evaluation and artificial intelligence-assisted modeling. J Mater Sci 57, 16091–16146 (2022). https://doi.org/10.1007/s10853-022-07558-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07558-1

Profiles

  1. K. A. Khan