Skip to main content

Advertisement

Log in

Integrated design of sandwich-like C@MoS2@C nanospheres as active anode material for lithium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2) is gaining popularity as an active material for constructing anode in rechargeable lithium-ion batteries. However, the low conductivity, poor cycle stability and charge–discharge rate performance are still the main obstacles hindering its practical applications. In the present work, a novel structure of sandwich-like N-doped carbon@MoS2@N-doped carbon hierarchical nanospheres (C@MoS2@C) is rationally designed, where a hollow N-doped carbon hierarchical microsphere served as a core and ultrathin N-doped carbon coated “sandwiched” MoS2 nanosheets (NSs) as a shell. The inner carbon skeleton serves as a template for the in-situ growth of MoS2 NSs, whereas the outside carbon layers protect the MoS2 layer with high structural stability. The 3D fiber carbon nanospheres made from KCC-1 have high specific surface area and large pore diameter, which can shorten the ion diffusion path and accelerate the reaction kinetics. Additionally, the close contact between MoS2 and the two carbon layers not only improves the conductivity of electrode but also enhances the reversibility of the conversion reaction of Mo/Li2S to MoS2 by suppress the oxidation of Li2S to polysulfides. As a sequence, the as-prepared C@MoS2@C nanospheres exhibit a remarkable initial discharge capacity, excellent cycling stability, and outstanding rate performance. We believe that the as-prepared composite material may offer some potential applications as anodic materials for efficient lithium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Yu XY, Hu H, Wang YW, Chen HY, Lou XW (2015) Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew Chem Int Ed 54:7395–7398. https://doi.org/10.1002/anie.201502117

    Article  CAS  Google Scholar 

  2. Wu HY, Zhang XE, Wu QH, Han Y, Wu XY, Ji PL, Zhou M, Diao GW et al (2020) Confined growth of 2D MoS2 nanosheets in N-doped pearl necklace-like structured carbon nanofibers with boosted lithium and sodium storage performance. Chem Commun 56:141–144. https://doi.org/10.1039/c9cc07291h

    Article  CAS  Google Scholar 

  3. Wang TY, Chen SQ, Pang H, Xue HG, Yu Y (2017) MoS2-based nanocomposites for electrochemical energy storage. Adv Sci 4:26. https://doi.org/10.1002/advs.201600289

    Article  CAS  Google Scholar 

  4. Wang T, Jia CC, Wang B, Yang P (2020) MoS2 nanosheets grown vertically on N-doped carbon nanotubes embedded CoP nanoparticles for efficient hydrogen evolution. J Alloys Compd 813:152211. https://doi.org/10.1016/j.jallcom.2019.152211

    Article  CAS  Google Scholar 

  5. Cao XH, Shi YM, Shi WH, Rui XH, Yan QY, Kong J, Zhang H (2013) Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 9:3433–3438. https://doi.org/10.1002/smll.201202697

    Article  CAS  Google Scholar 

  6. Zheng YH, Zheng X, Liu B, Fu CY, Zhou L, Liu Y, Wu WW, Xiong CX et al (2020) Few-layer MoS2 nanosheets anchored by CNT network for superior lithium storage. Electrochim Acta 331:135392. https://doi.org/10.1016/j.electacta.2019.135392

    Article  CAS  Google Scholar 

  7. Huang SS, Jin ZQ, Ding YW, Ning P, Chen QC, Fu J, Zhang Q, Zhang J et al (2021) Encapsulating Fe2O3 nanotubes into carbon-coated Co9S8 nanocages derived from a MOFs-directed strategy for efficient oxygen evolution reactions and liions storage. Small 17:2103178. https://doi.org/10.1002/smll.202103178

    Article  CAS  Google Scholar 

  8. Zheng MB, Tang H, Li LL, Hu Q, Zhang L, Xue HG, Pang H (2018) Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci 5:1700592. https://doi.org/10.1002/advs.201700592

    Article  CAS  Google Scholar 

  9. Jia HP, Gao PF, Yang J, Wang JL, Nuli YN, Yang Z (2011) Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv Energy Mater 1:1036–1039. https://doi.org/10.1002/aenm.201100485

    Article  CAS  Google Scholar 

  10. Wei Q, Chen YM, Hong XJ, Song CL, Yang Y, Si LP, Zhang M, Cai YP (2020) Novel bread-like nitrogen-doped carbon anchored nano-silicon as high-stable anode for lithium-ion batteries. Appl Surf Sci 511:145609. https://doi.org/10.1016/j.apsusc.2020.145609

    Article  CAS  Google Scholar 

  11. Xu JL, Liu L, Sun YH, Yan WJ, Wang ZR, Sun Q (2020) Ni-doped Ni3S2 nanoflake intertexture grown on graphene oxide as sheet-like anode for high-performance lithium-ion batteries. J Alloys Compd 835:155418. https://doi.org/10.1016/j.jallcom.2020.155418

    Article  CAS  Google Scholar 

  12. Wang PC, Zhang P, Zheng XH, Cao J, Liu Y, Feng JC, Qi JL (2020) Constructing MoS2/CoMo2S4/Co3S4 nanostructures supported by graphene layers as the anode for lithium-ion batteries. Dalton Trans 49:1167–1172. https://doi.org/10.1039/c9dt04042k

    Article  CAS  Google Scholar 

  13. Li J, Hou S, Liu TZ, Wang LK, Mei C, Guo YY, Zhao LZ (2020) Hierarchical hollow-nanocube Ni-Co Skeleton@MoO3/MoS2 hybrids for improved-performance lithium-ion batteries. Chem-a Eur J 26:2013–2024. https://doi.org/10.1002/chem.201904085

    Article  CAS  Google Scholar 

  14. Guo DY, Zhang ZH, Xi BJ, Yu ZS, Zhou Z, Chen XA (2020) Ni3S2 anchored to N/S co-doped reduced graphene oxide with highly pleated structure as a sulfur host for lithium–sulfur batteries. J Mater Chem A 8:3834–3844. https://doi.org/10.1039/c9ta12235d

    Article  CAS  Google Scholar 

  15. Mehtab T, Yasin G, Arif M, Shakeel M, Korai RM, Nadeem M, Muhammad N, Lu X (2019) Metal-organic frameworks for energy storage devices: batteries and supercapacitors. J Energy Storage 21:632–646. https://doi.org/10.1016/j.est.2018.12.025

    Article  Google Scholar 

  16. Li JH, Rui BL, Wei WX, Nie P, Chang LM, Le ZY, Liu MQ, Wang HR et al (2020) Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries. J Power Sources 449:227481. https://doi.org/10.1016/j.jpowsour.2019.227481

    Article  CAS  Google Scholar 

  17. Zhao G, Cheng YL, Sun PX, Ma WX, Hao SH, Wang XK, Xu XJ, Xu QQ et al (2020) Biocarbon based template synthesis of uniform lamellar MoS2 nanoflowers with excellent energy storage performance in lithium-ion battery and supercapacitors. Electrochim Acta 331:135262. https://doi.org/10.1016/j.electacta.2019.135262

    Article  CAS  Google Scholar 

  18. Gao SN, Yang LT, Shao J, Qu QT, Wu YP, Holze R (2020) Construction of hierarchical hollow MoS2/Carbon microspheres for enhanced lithium storage performance. J Electrochem Soc 167:100525. https://doi.org/10.1149/1945-7111/ab98b0

    Article  CAS  Google Scholar 

  19. Chai CS, Tan H, Fan XY, Huang K (2020) MoS2 nanosheets/graphitized porous carbon nanofiber composite: a dual-functional host for high-performance lithium-sulfur batteries. J Alloys Compd 820:153144. https://doi.org/10.1016/j.jallcom.2019.153144

    Article  CAS  Google Scholar 

  20. Li MR, Peng HY, Pei Y, Wang F, Zhu Y, Shi RY, He XX, Lei ZB et al (2020) MoS2 nanosheets grown on hollow carbon spheres as a strong polysulfide anchor for high performance lithium sulfur batteries. Nanoscale 12:23636–23644. https://doi.org/10.1039/d0nr05727d

    Article  CAS  Google Scholar 

  21. Yu B, Chen YF, Wang ZG, Chen DJ, Wang XQ, Zhang WL, He JR, He WD (2020) 1T-MoS2 nanotubes wrapped with N-doped graphene as highly-efficient absorbent and electrocatalyst for Li-S batteries. J Power Sources 447:227364. https://doi.org/10.1016/j.jpowsour.2019.227364

    Article  CAS  Google Scholar 

  22. Li XM, Zai JT, Xiang SJ, Liu YY, He XB, Xu ZY, Wang KX, Ma ZF et al (2016) Regeneration of metal sulfides in the delithiation process: the key to cyclic stability. Adv Energy Mater 6:1601056. https://doi.org/10.1002/aenm.201601056

    Article  CAS  Google Scholar 

  23. Xiong QQ, Ji ZG (2016) Controllable growth of MoS2/C flower-like microspheres with enhanced electrochemical performance for lithium ion batteries. J Alloys Compd 673:215–219. https://doi.org/10.1016/j.jallcom.2016.02.253

    Article  CAS  Google Scholar 

  24. Zhou WJ, Yin ZY, Du YP, Huang X, Zeng ZY, Fan ZX, Liu H, Wang JY et al (2013) Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9:140–147. https://doi.org/10.1002/smll.201201161

    Article  CAS  Google Scholar 

  25. Yang K, Mei T, Chen ZH, Xiong M, Wang XH, Wang JY, Li JH, Yu L et al (2020) Chinese hydrangea lantern-like Co9S8@MoS2 composites with enhanced lithium-ion battery properties. Nanoscale 12:3435–3442. https://doi.org/10.1039/c9nr09260a

    Article  CAS  Google Scholar 

  26. Liu ZX, Xiang MY, Zhang Y, Shao HY, Zhu YF, Guo XL, Li LQ, Wang H et al (2020) Lithium migration pathways at the composite interface of LiBH4 and two-dimensional MoS2 enabling superior ionic conductivity at room temperature. Phys Chem Chem Phys 22:4096–4105. https://doi.org/10.1039/c9cp06090a

    Article  CAS  Google Scholar 

  27. Wang X, Fei SM, Huang SS, Wu CH, Zhao JR, Chen ZW, Uvdal K, Hu ZJ (2019) MoS2 nanosheets inlaid in 3D fibrous N-doped carbon spheres for lithium-ion batteries and electrocatalytic hydrogen evolution reaction. Carbon 150:363–370. https://doi.org/10.1016/j.carbon.2019.05.029

    Article  CAS  Google Scholar 

  28. Sahoo S, Gaur APS, Ahmadi M, Guinel MJF, Katiyar RS (2013) Temperature-dependent raman studies and thermal conductivity of few-layer MoS2. J Phys Chem C 117:9042–9047. https://doi.org/10.1021/jp402509w

    Article  CAS  Google Scholar 

  29. Childres I, Jauregui LA, Tian JF, Chen YP (2011) Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements. New J Phys 13:025008. https://doi.org/10.1088/1367-2630/13/2/025008

    Article  CAS  Google Scholar 

  30. Chen PZ, Zhang N, Wang SB, Zhou TP, Tong Y, Ao CC, Yan WS, Zhang LD et al (2019) Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. PNAS 116:6635–6640. https://doi.org/10.1073/pnas.1817881116

    Article  CAS  Google Scholar 

  31. Chen MX, Qi J, Guo DY, Lei HT, Zhang W, Cao R (2017) Facile synthesis of sponge-like Ni3N/NC for electrocatalytic water oxidation. Chem Commun 53:9566–9569. https://doi.org/10.1039/c7cc05172g

    Article  CAS  Google Scholar 

  32. Lin YM, Qiu ZZ, Li DZ, Ullah S, Yang H, Xin HL, Liao WD, Yang B et al (2018) NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Mater 3:67–74. https://doi.org/10.1016/j.ensm.2017.06.001

    Article  Google Scholar 

  33. Zhu H, Du ML, Zhang M, Zou ML, Yang TT, Wang SL, Yao JM, Guo BC (2014) S-rich single-layered MoS2 nanoplates embedded in N-doped carbon nanofibers: efficient co-electrocatalysts for the hydrogen evolution reaction. Chem Commun 50:15435–15438. https://doi.org/10.1039/c4cc06480a

    Article  CAS  Google Scholar 

  34. Yang LF, Zhang L, Xu GC, Ma X, Wang WW, Song HJ, Jia DZ (2018) Metal-organic-framework-derived hollow CoSx@MoS2 microcubes as superior bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions. ACS Sustain Chem Eng 6:12961–12968. https://doi.org/10.1021/acssuschemeng.8b02428

    Article  CAS  Google Scholar 

  35. Zeng Y, Guo N, Song YJ, Zhao Y, Li HY, Xu XJ, Qiu JD, Yu HW (2018) Fabrication of Z-scheme magnetic MoS2/CoFe2O4 nanocomposites with highly efficient photocatalytic activity. J Colloid Interface Sci 514:664–674. https://doi.org/10.1016/j.jcis.2017.12.079

    Article  CAS  Google Scholar 

  36. Zhou ZP, Chen F, Wu L, Kuang TR, Liu XH, Yang JT, Fan P, Fei ZD et al (2020) Heteroatoms-doped 3D carbon nanosphere cages embedded with MoS2 for lithium-ion battery. Electrochim Acta 332:135490. https://doi.org/10.1016/j.electacta.2019.135490

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Science and Technology Commission of Shanghai Municipality (19ZR1418100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shoushuang Huang or Zhiwen Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 261 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, X., Huang, S. et al. Integrated design of sandwich-like C@MoS2@C nanospheres as active anode material for lithium-ion batteries. J Mater Sci 57, 14948–14958 (2022). https://doi.org/10.1007/s10853-022-07547-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07547-4