Skip to main content

Advertisement

Log in

Reduced graphene oxide/hexagonal boron nitride-based composite as a positive electrode in asymmetric supercapacitors

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Supercapacitors appear to be attractive options for energy storage due to their high power density and lengthy cycling life. This work is focused on the design of reduced graphene oxide/hexagonal boron nitride (rGO/h-BN), via a hydrothermal method, as electrode materials for supercapacitor applications. Interestingly, the composite with rGO/h-BN 50:50 showed good capacity when compared to other ratios. Similarly, asymmetric supercapacitor devices were made up of rGO/h-BN and rGO as positive and negative electrodes, respectively, and nickel foam and stainless steel were used as a substrate. The nickel foam as substrate exhibits a high capacitance retention of 90% after 1000 cycles in a coin-cell configuration compared to stainless-steel substrate (71% after 500 cycles). Interestingly, a significant enhancement in the capacitance of Co3O4 was observed when incorporated with rGO/h-BN composite. The asymmetric supercapacitor made up of rGO/h-BN/Co3O4 delivered a good capacitance retention of 78% at 150 mA/g, after 5,000 cycles. As a result, h-BN/rGO-based composites with superlattice were synthesized using a hydrothermal approach as prospective materials for next-generation supercapacitor applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  3. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950

    Article  CAS  Google Scholar 

  4. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816

    Article  CAS  Google Scholar 

  5. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  6. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539

    Article  CAS  Google Scholar 

  7. Tang J, Wang J, Shrestha LK, Hossain MSA, Alothman ZA, Yamauchi Y, Ariga K (2017) Activated porous carbon spheres with customized mesoporous through assembly of di block copolymers for electrochemical capacitor. ACS Appl Mater Interfaces 9:18986–18993

    Article  CAS  Google Scholar 

  8. Gao PC, Tsai WY, Daffos B, Taberna PL, Pérez CR, Gogotsi Y, Favier F (2015) Graphene-like carbide derived carbon for high-power supercapacitors. Nanomater Energy 12:197–206

    Article  CAS  Google Scholar 

  9. Boota M, Hatzell KB, Alhabeb M, Kumbur EC, Gogotsi Y (2015) Graphene-containing flowable electrodes for capacitive energy storage. Carbon 92:142–149

    Article  CAS  Google Scholar 

  10. Jha PK, Singh SK, Kumar V, Rana S, Kurungot S, Ballav N (2017) High-level supercapacitive performance of chemically reduced graphene oxide. Inside Chem 3:846–860

    CAS  Google Scholar 

  11. Pandit B, Dhakate SR, Singh BP, Sankapal BR (2017) Free-standing flexible MWCNTs bucky paper: extremely stable and energy efficient supercapacitive electrode. Electrochim Acta 249:395–403

    Article  CAS  Google Scholar 

  12. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614

    Article  CAS  Google Scholar 

  13. Abbas Q, Raza R, Shabbir I, Olabi AG (2019) Heteroatom doped high porosity carbon nanomaterials as electrodes for energy storage in electrochemical capacitors: a review. Adv Mater Dev 4:341–352

    Google Scholar 

  14. Fan M, Wu J, Yuan J, Deng L, Zhong N, He L, Cui J, Wang Z, Behera SK, Zhang C, Lai J (2019) Doping nanoscale graphene domains improves magnetism in hexagonal boron nitride. Adv Mater 31:1805778

    Article  CAS  Google Scholar 

  15. Gautam C, Tiwary CS, Jose S, Brunetto G, Ozden S, Vinod S, Raghavan P, Biradar S, Galvao DS (2015) Carbon-doped hexagonal boron nitride solids. ACS Nano 9:12088–12095

    Article  CAS  Google Scholar 

  16. Indrajit MP, Samadhan K, Haridas P, Ranjit T, Gunther A, Bhalchandra K (2020) 2D/3D heterostructure of h-BN/reduced graphite oxide as a remarkable electrode material for supercapacitor. J Power Sources 479:229092

    Article  CAS  Google Scholar 

  17. Kumar KS, Choudhary N, Jung Y, Thomas J (2018) Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Lett 3:482–495

    Article  CAS  Google Scholar 

  18. Azadmanjiri J, Srivastava VK, Kumar P, Wang J, Yu A (2018) Graphene-supported 2D transition metal oxide heterostructures. J Mater Chem A 6:13509–13537

    Article  CAS  Google Scholar 

  19. Solís-Fernández P, Bissett M, Ago H (2017) Synthesis, structure and applications of graphene-based 2D heterostructures. Chem Soc Rev 46:4572–4613

    Article  Google Scholar 

  20. Byun S, Kim JH, Song SH, Lee M, Park JJ, Lee G, Hong SH, Lee D (2016) Scalable heterostructure comprising boron nitride and graphene for high-performance flexible supercapacitors. Chem Mater 28:7750–7756

    Article  CAS  Google Scholar 

  21. Saha S, Jana M, Khanra P, Samanta P, Koo H, Murmu NC, Kuila T (2015) Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device. ACS Appl Mater Interfaces 7:14211–14222

    Article  CAS  Google Scholar 

  22. Saha S, Jana M, Samanta P, Murmu NC, Kim NH, Kuila T, Lee JH (2017) Investigation of band structure and electrochemical properties of h-BN/rGO composites for asymmetric supercapacitor applications. Mater Chem Phys 190:153–165

    Article  CAS  Google Scholar 

  23. Li Q, Liu M, Zhang Y, Liu Z (2016) Hexagonal boron nitride-graphene heterostructures: synthesis and interfacial properties. Small 12:32–50

    Article  CAS  Google Scholar 

  24. Yankowitz M, Ma Q, Jarillo-Herrero P, LeRoy BJ (2019) van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat Rev Phys 1:112–125

    Article  CAS  Google Scholar 

  25. Wang J, Ma F, Sun M (2017) Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv 7:16801–16822

    Article  CAS  Google Scholar 

  26. Chaves A, Azadani JG, Alsalman H, da Costa DR, Frisenda R, Chaves AJ et al (2020) Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater Appl 4(1):1–21

    Article  CAS  Google Scholar 

  27. Subramanian V, Hall SC, Smith PH, Rambabu B (2004) Mesoporous anhydrous RuO2 as a supercapacitor electrode material. Solid State Ion 175:511–515

    Article  CAS  Google Scholar 

  28. Xu B, Pan L, Zhu Q (2016) Synthesis of Co3S4 nanosheets and their superior supercapacitor property. J Mater Eng Perform 25:1117–1121

    Article  CAS  Google Scholar 

  29. Hu J, Noked M, Gillette E, Han F, Gui Z, Wang C, Lee SB (2015) Dual-template synthesis of ordered mesoporous carbon/Fe2O3 nanowires: high porosity and structural stability for supercapacitors. J Mater Chem A 3:21501–21510

    Article  CAS  Google Scholar 

  30. Li M, Sun G, Yin P, Ruan C, Ai K (2013) Controlling the formation of rodlike V2O5 nanocrystals on reduced graphene oxide for high-performance supercapacitors. ACS Appl Mater Interfaces 5:11462–11470

    Article  CAS  Google Scholar 

  31. Liu H, Dai M, Zhao D, Wu X, Wang B (2020) Realizing superior electrochemical performance of asymmetric capacitors through tailoring electrode architectures. ACS Appl Energy Mater 3:7004–7010

    Article  CAS  Google Scholar 

  32. Li X-Y, Yan Y, Zhang B, Bai T-J, Wang Z-Z, He T-S (2021) PAN-derived electrospun nanofibers for supercapacitor applications: ongoing approaches and challenges. J Mater Sci 56:10745–10781. https://doi.org/10.1007/s10853-021-05939-6

    Article  CAS  Google Scholar 

  33. Liu C, Wu X, Wang B (2020) Performance modulation of energy storage devices: a case of Ni–Co–S electrode materials. Chem Eng J 392:123651

    Article  CAS  Google Scholar 

  34. Li X, Zhou R, Wang Z, Zhang M, He T (2022) Electrospun metal–organic framework-based nanofibers for energy storage and environmental applications: current approaches and challenges. J Mater Chem A 10:1642–1681

    Article  CAS  Google Scholar 

  35. Subramani K, Kowsik S, Sathish M (2016) Facile and scalable ultra–fine cobalt oxide/reduced graphene oxide nanocomposites for high energy asymmetric supercapacitors. ChemistrySelect 1:3455–3467

    Article  CAS  Google Scholar 

  36. Jang G-S, Ameen S, Akhtar MS, Kim E, Shin H-S (2017) Electrochemical investigations of hydrothermally synthesized porous cobalt oxide (Co3O4) nanorods: supercapacitor application. ChemistrySelect 2:8941–8949

    Article  CAS  Google Scholar 

  37. Wang X, Xia H, Wang X, Gao J, Shi B, Fang Y (2016) Facile synthesis ultrathin mesoporous Co3O4 nanosheets for high-energy asymmetric supercapacitor. J Alloys Compd 686:969–975

    Article  CAS  Google Scholar 

  38. Niveditha CV, Aswini R, Jabeen Fatima MJ, Ramanarayan R, Pullanjiyot N, Swaminathan S (2018) Feather like highly active Co3O4 electrode for supercapacitor application: a potentiodynamic approach. Mater Res Express 5:065501

    Article  CAS  Google Scholar 

  39. Guan Q, Cheng J, Wang B, Ni W, Gu G, Li X, Huang L, Yang G, Nie F (2014) Needlelike Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl Mater Interfaces 6:7626–7632

    Article  CAS  Google Scholar 

  40. He G, Li J, Chen H, Shi J, Sun X, Chen S, Wang X (2012) Hydrothermal preparation of Co3O4@graphene nanocomposite for supercapacitor with enhanced capacitive performance. Mater Lett 82:61–63

    Article  CAS  Google Scholar 

  41. Ma L, Zhou H, Shen X, Chen Q, Zhu G, Ji Z (2014) Facile synthesis of Co3O4 porous nanosheets/reduced graphene oxide composites and their excellent supercapacitor performance. RSC Adv 4:53180–53187

    Article  CAS  Google Scholar 

  42. Xie L-J, Wu J-F, Chen C-M, Zhang C-M, Wan L, Wang J-L, Kong Q-Q, Lv C-X, Li K-X, Sun G-H (2013) A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide–cobalt oxide nanocomposite anode. J Power Sources 242:148–156

    Article  CAS  Google Scholar 

  43. Yasmin M, Bayhan Z, Nada A, Arsalan M, Alsharaeh E (2021) Hexagonal boron nitride effect on the performance of graphene-based lithium–sulfur batteries and its stability at elevated temperatures. Mater Chem Phys 257:123807

    Article  CAS  Google Scholar 

  44. Bello A, Barzegar F, Momodu D, Dangbegnon J, Taghizadeh F, Fabiane M, Manyala N (2015) Asymmetric supercapacitor based on nanostructured graphene foam/polyvinyl alcohol/formaldehyde and activated carbon electrodes. J Power Sources 273:305–311

    Article  CAS  Google Scholar 

  45. Song Y, Zhang C, Li B, Ding G, Jiang D, Wang H, Xie X (2014) Van der Waals epitaxy and characterization of hexagonal boron nitride nanosheets on graphene. Nano Res Lett 9:1–7

    Article  CAS  Google Scholar 

  46. Kang Y, Chu Z, Zhang D, Li G, Jiang Z, Cheng H, Li X (2013) Incorporate boron and nitrogen into graphene to make bcn hybrid nanosheets with enhanced microwave absorbing properties. Carbon 61:200–208

    Article  CAS  Google Scholar 

  47. Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang ZF, Storr K, Balicas L, Liu F, Ajayan PM (2010) Atomic layers of hybridized boron nitride and graphene domains. Nat Matter 9:430–435

    Article  CAS  Google Scholar 

  48. Saha S, Jana M, Samanta P, Murmu NC, Kuila T (2015) In situ preparation of a SACRGO@Ni electrode by electrochemical functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application in asymmetric supercapacitors. J Mater Chem A 3:19461–19468

    Article  CAS  Google Scholar 

  49. Feng X, Yan Z, Chen N, Zhang Y, Liu X, Ma Y, Yang X, Hou W (2013) Synthesis of a graphene/polyaniline/MCM-41 nanocomposite and its application as a supercapacitor. New J Chem 37:2203–2209

    Article  CAS  Google Scholar 

  50. Feng X, Chen N, Zhang Y, Yan Z, Liu X, Ma Y, Shen Q, Wang L, Huang W (2014) The self-assembly of shape controlled functionalized graphene-MnO2 composites for application as supercapacitors. J Mater Chem A 2:9178–9184

    Article  CAS  Google Scholar 

  51. Cui X, Ding P, Zhuang N, Shi L, Song N, Tang S (2015) Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect. ACS Appl Mater Interfaces 7:19068–19075

    Article  CAS  Google Scholar 

  52. Gao T, Gong L, Wang Z, Yang Z, Pan W, He L, Zhang J, Ou E (2015) Boron nitride/ reduced graphene oxide nanocomposites as supercapacitors electrodes. Mater Lett 159:54–57

    Article  CAS  Google Scholar 

  53. Hou S, Zhang G, Zeng W, Zhu J, Gong F, Li F, Duan H (2014) Hierarchical core-shell structure of ZnO Nanorod@NiO/MoO2 composite nanosheet arrays for high-performance supercapacitors. ACS Appl Mater Interfaces 6:13564–13570

    Article  CAS  Google Scholar 

  54. Zheng D, Feng H, Zhang X, He X, Yu M, Lu X, Tong Y (2017) Porous MoO2 nanowires as stable and high-rate negative electrodes for electrochemical capacitor. Chem Commun 53:3929–3932

    Article  CAS  Google Scholar 

  55. Kandula S, Shrestha KR, Rajeshkhanna G, Kim NH, Lee JH (2019) Kirkendall growth and ostwald ripening induced hierarchical morphology of Ni–Co LDH/MMoSx (M = Co, Ni, and Zn) heteronanostructures as advanced electrode materials for asymmetric solid-state supercapacitors. ACS Appl Mater Interfaces 11:11555–11567

    Article  CAS  Google Scholar 

  56. Kang KN, Ramadoss A, Min JW, Yoon JC, Lee D, Kang SJ, Jang JH (2020) Wire-shaped 3D-hybrid supercapacitors as substitutes for batteries. Nano-Micro Lett 12:28

    Article  CAS  Google Scholar 

  57. VijayaSankar K, KalaiSelvan R, Meyrick D (2015) Electrochemical performances of CoFe2O4 nanoparticles and a rGO based asymmetric supercapacitor. RSC Adv 5:99959–99967

    Article  Google Scholar 

  58. Chang J, Jin M, Yao F, Kim HT, Le TV, Yue H, Gunes F, Li B, Ghosh A, Xie S, Lee HY (2013) asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv Funct Mater 23:5074–5083

    Article  CAS  Google Scholar 

  59. Cao J, Wang Y, Zhou Y, Ouyang HJ, Jia D, Guo L (2013) High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J Electroanal Chem 689:201–206

    Article  CAS  Google Scholar 

  60. Xie JL, Wu FJ, Chen MC, Zhang MC, Wan L, Wang L, Kong QQ, Lva XC, Li XK, Sun HG (2013) A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide-cobalt oxide nanocomposite anode. J Power Sources 242:148–156

    Article  CAS  Google Scholar 

  61. Shao Y, Wang H, Zhang Q, Li Y (2013) High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes. J Mater Chem C 1:1245–1251

    Article  CAS  Google Scholar 

  62. Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641

    Article  CAS  Google Scholar 

  63. Guo H, Gao Q (2009) Boron and nitrogen Co-doped porous carbon and its enhanced properties as supercapacitor. J Power Sources 186:551–556

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of a research project in collaboration with EXPEC Advanced Research Center, Saudi Aramco under agreement no. AFU-01-2017. The authors gratefully acknowledge Alfaisal University and its Office of Research for their continuous support throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edreese Alsharaeh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5583 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Althubaiti, N., Mussa, Y., Bongu, C.S. et al. Reduced graphene oxide/hexagonal boron nitride-based composite as a positive electrode in asymmetric supercapacitors. J Mater Sci 57, 14371–14385 (2022). https://doi.org/10.1007/s10853-022-07525-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07525-w

Navigation