Skip to main content

Advertisement

Log in

Robust, lightweight gelatin composite aerogel with outstanding thermal insulation

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermal insulation materials with high mechanical strength and low thermal conductivity play an important role in the construction industry. In this study, a compound aerogel with stable performance, high strength, low density and good thermal insulation performance was successfully prepared by using gelatin as the base and layered bimetallic hydroxide (LDH) as the reinforcing phase. 3-aminopropyl triethoxylsilane was used to modify the surface of layered bimetallic hydroxide to enhance interfacial bonding. The results show that the gelatin/layered bimetallic hydroxide composite aerogel has high porosity (> 96%) and low thermal conductivity (0.034–0.037 W/(m K)), volume density as low as 0.035 g/cm3. The maximum compression strength and compression modulus are 1.05 Mpa and 9.82 Mpa, respectively. The improvement of the mechanical strength of the composite aerogel may be attributed to the two-dimensional layered nanosheets of LDH to construct the internal micro/nano structure of the composite aerogel. Outstanding mechanical and low thermal conductivity enable its application in high-performance thermal insulation materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Baetens R, Jelle BP, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energy Build 43(4):761–769. https://doi.org/10.1016/j.enbuild.2010.12.012

    Article  Google Scholar 

  2. Jaxel J, Markevicius G, Rigacci A, Budtova T (2017) Thermal superinsulating silica aerogels reinforced with short man-made cellulose fibers. Compos A Appl Sci Manuf 103:113–121. https://doi.org/10.1016/j.compositesa.2017.09.018

    Article  CAS  Google Scholar 

  3. Liu H, Li S, Li H, Chen Z, Li J, Li Y (2018) HNTs/SiO2 dual-network aerogels with improved strength and thermal insulation. J Sol Gel Sci Technol 88(3):519–527. https://doi.org/10.1007/s10971-018-4851-3

    Article  CAS  Google Scholar 

  4. Wang C, Cheng H, Hong C, Zhang X, Zeng T (2018) Lightweight chopped carbon fibre reinforced silica-phenolic resin aerogel nanocomposite: facile preparation, properties and application to thermal protection. Compos A Appl Sci Manuf 112:81–90. https://doi.org/10.1016/j.compositesa.2018.05.026

    Article  CAS  Google Scholar 

  5. Lee H, Lee D, Cho J, Kim Y-O, Lim S, Youn S, Jung YC, Kim SY, Seong DG (2019) Super-insulating, flame-retardant, and flexible poly(dimethylsiloxane) composites based on silica aerogel. Compos A Appl Sci Manuf 123:108–113. https://doi.org/10.1016/j.compositesa.2019.05.004

    Article  CAS  Google Scholar 

  6. Zhao F, Zhu J, Peng T, Liu H, Ge S, Xie H, Xie L, Jiang C (2021) Preparation of functionalized halloysite reinforced polyimide composite aerogels with excellent thermal insulation properties. Appl Clay Sci 211:106200. https://doi.org/10.1016/j.clay.2021.106200

    Article  CAS  Google Scholar 

  7. Pu H, Ding X, Chen H, Dai R, Shan Z (2021) Functional aerogels with sound absorption and thermal insulation derived from semi-liquefied waste bamboo and gelatin. Environ Technol Innov 24:101874. https://doi.org/10.1016/j.eti.2021.101874

    Article  CAS  Google Scholar 

  8. Zhu J, Zhao F, Xiong R, Peng T, Ma Y, Hu J, Xie L, Jiang C (2020) Thermal insulation and flame retardancy of attapulgite reinforced gelatin-based composite aerogel with enhanced strength properties. Compos A Appl Sci Manuf 138:106040. https://doi.org/10.1016/j.compositesa.2020.106040

    Article  CAS  Google Scholar 

  9. White RJ, Budarin VL, Clark JH (2010) Pectin-derived porous materials. Chemistry 16(4):1326–1335. https://doi.org/10.1002/chem.200901879

    Article  CAS  Google Scholar 

  10. Quraishi S, Martins M, Barros AA, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J Supercrit Fluids 105:1–8. https://doi.org/10.1016/j.supflu.2014.12.026

    Article  CAS  Google Scholar 

  11. Zhou Q, Li H, Wang L, Lu R (2018) Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems. IEEE Trans Syst Man Cybern Syst 48(10):1747–1758. https://doi.org/10.1109/TSMC.2017.2738155

    Article  Google Scholar 

  12. Luo Q, Hossen MA, Zeng Y, Dai J, Li S, Qin W, Liu Y (2022) Gelatin-based composite films and their application in food packaging: a review. J Food Eng 313:110762. https://doi.org/10.1016/j.jfoodeng.2021.110762

    Article  CAS  Google Scholar 

  13. Wang YT, Zhao HB, Degracia K, Han LX, Sun H, Sun M, Wang YZ, Schiraldi DA (2017) Green approach to improving the strength and flame retardancy of poly(vinyl alcohol)/clay aerogels: incorporating biobased gelatin. ACS Appl Mater Interfaces 9(48):42258–42265. https://doi.org/10.1021/acsami.7b14958

    Article  CAS  Google Scholar 

  14. Jiang J, Zhang Q, Zhan X, Chen F (2019) A multifunctional gelatin-based aerogel with superior pollutants adsorption, oil/water separation and photocatalytic properties. Chem Eng J 358:1539–1551. https://doi.org/10.1016/j.cej.2018.10.144

    Article  CAS  Google Scholar 

  15. Peng T, Zhu J, Huang T, Jiang C, Zhao F, Ge S, Xie L (2021) Facile preparation for gelatin/hydroxyethyl cellulose-SiO2 composite aerogel with good mechanical strength, heat insulation, and water resistance. J Appl Polym Sci 138(23):50539. https://doi.org/10.1002/app.50539

    Article  CAS  Google Scholar 

  16. Ahmady A, Abu Samah NH (2021) A review: gelatine as a bioadhesive material for medical and pharmaceutical applications. Int J Pharm 608:121037. https://doi.org/10.1016/j.ijpharm.2021.121037

    Article  CAS  Google Scholar 

  17. Zhu Y, Chen S, Zhang C, Ikoma T, Guo H, Zhang X, Li X, Chen W (2021) Novel microsphere-packing synthesis, microstructure, formation mechanism and in vitro biocompatibility of porous gelatin/hydroxyapatite microsphere scaffolds. Ceram Int 47(22):32187–32194. https://doi.org/10.1016/j.ceramint.2021.08.111

    Article  CAS  Google Scholar 

  18. Luo X, Shen J, Ma Y, Liu L, Meng R, Yao J (2020) Robust, sustainable cellulose composite aerogels with outstanding flame retardancy and thermal insulation. Carbohydr Polym 230:115623. https://doi.org/10.1016/j.carbpol.2019.115623

    Article  CAS  Google Scholar 

  19. Shang K, Liao W, Wang J, Wang YT, Wang YZ, Schiraldi DA (2016) Nonflammable alginate nanocomposite aerogels prepared by a simple freeze-drying and post-cross-linking method. ACS Appl Mater Interfaces 8(1):643–650. https://doi.org/10.1021/acsami.5b09768

    Article  CAS  Google Scholar 

  20. Li XL, He YR, Qin ZM, Chen MJ, Chen HB (2019) Facile fabrication, mechanical property and flame retardancy of aerogel composites based on alginate and melamine-formaldehyde. Polymer 181:121783. https://doi.org/10.1016/j.polymer.2019.121783

    Article  CAS  Google Scholar 

  21. Sahoo M, Singha S, Parida KM (2011) Amine functionalized layered double hydroxide: a reusable catalyst for aldol condensation. New J Chem 35(11):2503–2509. https://doi.org/10.1039/C1NJ20492K

    Article  CAS  Google Scholar 

  22. Oh JM, Choi S-J, Lee G-E, Han S-H, Choy J-H (2009) Inorganic drug-delivery nanovehicle conjugated with cancer-cell-specific ligand. Adv Funct Mater 19(10):1617–1624. https://doi.org/10.1002/adfm.200801127

    Article  CAS  Google Scholar 

  23. Li K, Jin S, Li J, Chen H (2019) Improvement in antibacterial and functional properties of mussel-inspired cellulose nanofibrils/gelatin nanocomposites incorporated with graphene oxide for active packaging. Ind Crops Prod 132:197–212. https://doi.org/10.1016/j.indcrop.2019.02.011

    Article  CAS  Google Scholar 

  24. Wojciechowska P, Pietras P, Maciejewski H (2014) Synthesis, characterization, and thermal properties of organic-inorganic hybrids based on gelatin and organomodified silicones. Adv Polym Technol 33(S1):21459. https://doi.org/10.1002/adv.21459

    Article  CAS  Google Scholar 

  25. Yang L, Mukhopadhyay A, Jiao Y, Yong Q, Chen L, Xing Y, Hamel J, Zhu H (2017) Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2. Nanoscale 9(32):11452–11462. https://doi.org/10.1039/C7NR02243C

    Article  CAS  Google Scholar 

  26. Jin H, Zhou X, Xu T, Dai C, Gu Y, Yun S, Hu T, Guan G, Chen J (2020) Ultralight and hydrophobic palygorskite-based aerogels with prominent thermal insulation and flame retardancy. CS Appl Mater Interfaces 12(10):11815–11824. https://doi.org/10.1021/acsami.9b20923

    Article  CAS  Google Scholar 

  27. Huang H, Yu Y, Qing Y, Zhang X, Cui J, Wang H (2020) Ultralight industrial bamboo residue-derived holocellulose thermal insulation aerogels with hydrophobic and fire resistant properties. Materials 13(2):477. https://doi.org/10.3390/ma13020477

    Article  CAS  Google Scholar 

  28. Qi J, Xie Y, Liang H, Wang Y, Ge T, Song Y, Wang M, Li Q, Yu H, Fan Z, Liu S, Wang Q, Liu Y, Li J, Lu P, Chen W (2019) Lightweight, flexible, thermally-stable, and thermally-insulating aerogels derived from cotton nanofibrillated cellulose. ACS Sustain Chem Eng 7(10):9202–9210. https://doi.org/10.1021/acssuschemeng.8b06851

    Article  CAS  Google Scholar 

  29. Ye D-D, Wang T, Liao W, Wang H, Zhao H-B, Wang Y-T, Xu S, Wang Y-Z (2019) Ultrahigh-temperature insulating and fire-resistant aerogels from cationic amylopectin and clay via a facile route. ACS Sustain Chem Eng 7(13):11582–11592. https://doi.org/10.1021/acssuschemeng.9b01487

    Article  CAS  Google Scholar 

  30. Zhao H, Li X, Ji H, Yu H, Yu B, Qi T (2019) Constructing secondary-pore structure by in-situ synthesized mullite whiskers to prepare whiskers aerogels with ultralow thermal conductivity. J Eur Ceram Soc 39(4):1344–1351. https://doi.org/10.1016/j.jeurceramsoc.2018.10.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Key Research & Development Program of Hunan Province of China (No. 2022GK2040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chongwen Jiang or Dewen He.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 878 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhao, F., Peng, T. et al. Robust, lightweight gelatin composite aerogel with outstanding thermal insulation. J Mater Sci 57, 14835–14847 (2022). https://doi.org/10.1007/s10853-022-07508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07508-x

Navigation