Skip to main content

Advertisement

Log in

Effect of grain size on the irradiation response of grade 91 steel subjected to Fe ion irradiation at 300 °C

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Irradiation using Fe ion at 300 °C up to 100 dpa was carried out on three variants of Grade 91 (G91) steel samples with different grain size ranges: fine-grained (FG, with blocky grains of a few micrometers long and a few hundred nanometers wide), ultrafine-grained (UFG, grain size of ~ 400 nm) and nanocrystalline (NC, lath grains of ~ 200 nm long and ~ 80 nm wide). Electron microscopy investigations indicate that NC G91 exhibit higher resistance to irradiation-induced defect formation than FG and UFG G91. In addition, nano-indentation studies reveal that irradiation-induced hardening is significantly lower in NC G91 than that in FG and UFG G91. Effective mitigation of irradiation damage was achieved in NC G91 steel in the current irradiation condition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Henry J, Maloy SA (2017) 9 - Irradiation-resistant ferritic and martensitic steels as core materials for Generation IV nuclear reactors. In: Yvon P (ed) Structural Materials for Generation IV Nuclear Reactors. Woodhead Publishing, pp 329–355

    Chapter  Google Scholar 

  2. Bhattacharya A, Zinkle SJ (2020) 1.12 - Cavity Swelling in Irradiated Materials. In: Konings RJM, Stoller RE (eds) Comprehensive Nuclear Materials (Second Edition). Elsevier, Oxford, pp 406–455

    Chapter  Google Scholar 

  3. Gaganidze E, Aktaa J (2013) Assessment of neutron irradiation effects on RAFM steels. Fusion Eng Des 88:118–128. https://doi.org/10.1016/j.fusengdes.2012.11.020

    Article  CAS  Google Scholar 

  4. Zinkle SJ, Was GS (2013) Materials challenges in nuclear energy. Acta Mater 61:735–758. https://doi.org/10.1016/j.actamat.2012.11.004

    Article  CAS  Google Scholar 

  5. Klueh RL, Harries DR (2001) High-chromium ferritic and martensitic steels for nuclear applications, in, AsTM West Conshohocken, PA,.

  6. Was GS (2016) Fundamentals of radiation materials science: metals and alloys, springer.

  7. Konstantinović MJ, Stergar E, Lambrecht M, Gavrilov S (2016) Comparison of the mechanical properties of T91 steel from the MEGAPIE, and TWIN-ASTIR irradiation programs. J Nucl Mater 468:228–231. https://doi.org/10.1016/j.jnucmat.2015.07.038

    Article  CAS  Google Scholar 

  8. Yan H, Liu X, He L, Stubbins J (2021) Early-stage microstructural evolution and phase stability in neutron-irradiated ferritic-martensitic steel T91. J Nucl Mater 557:153207. https://doi.org/10.1016/j.jnucmat.2021.153207

    Article  CAS  Google Scholar 

  9. Duan J, Wen H, Zhou C, He X, Islamgaliev R, Valiev R (2020) Annealing behavior in a high-pressure torsion-processed Fe–9Cr steel. J Mater Sci 55:7958–7968. https://doi.org/10.1007/s10853-020-04560-3

    Article  CAS  Google Scholar 

  10. Duan J, Wen H, Zhou C, He X, Islamgaliev R, Valiev R (2019) Discontinuous grain growth in an equal-channel angular pressing processed Fe-9Cr steel with a heterogeneous microstructure. Mater Characterization. https://doi.org/10.1016/j.matchar.2019.110004

    Article  Google Scholar 

  11. Duan J, Wen H, Zhou C, Islamgaliev R, Li X (2019) Evolution of microstructure and texture during annealing in a high-pressure torsion processed Fe-9Cr alloy. Materialia 6:100349. https://doi.org/10.1016/j.mtla.2019.100349

    Article  CAS  Google Scholar 

  12. Duan J, He L, Fu Z, Hoffman A, Sridharan K, Wen H (2021) Microstructure, strength and irradiation response of an ultra-fine grained FeNiCoCr multi-principal element alloy. J Alloy Compd 851:156796. https://doi.org/10.1016/j.jallcom.2020.156796

    Article  CAS  Google Scholar 

  13. Zhang X, Hattar K, Chen Y, Shao L, Li J, Sun C, Yu K, Li N, Taheri ML, Wang H, Wang J, Nastasi M (2018) Radiation damage in nanostructured materials. Prog Mater Sci 96:217–321. https://doi.org/10.1016/j.pmatsci.2018.03.002

    Article  Google Scholar 

  14. Sun C, Song M, Yu KY, Chen Y, Kirk M, Li M, Wang H, Zhang X (2013) In situ evidence of defect cluster absorption by grain boundaries in Kr ion irradiated nanocrystalline Ni. Metall and Mater Trans A 44:1966–1974. https://doi.org/10.1007/s11661-013-1635-9

    Article  CAS  Google Scholar 

  15. Chen D, Wang J, Chen T, Shao L (2013) Defect annihilation at grain boundaries in alpha-Fe. Sci Rep 3:1450. https://doi.org/10.1038/srep01450

    Article  CAS  Google Scholar 

  16. Song M, Wu YD, Chen D, Wang XM, Sun C, Yu KY, Chen Y, Shao L, Yang Y, Hartwig KT, Zhang X (2014) Response of equal channel angular extrusion processed ultrafine-grained T91 steel subjected to high temperature heavy ion irradiation. Acta Mater 74:285–295. https://doi.org/10.1016/j.actamat.2014.04.034

    Article  CAS  Google Scholar 

  17. Toloczko MB, Garner F, Voyevodin V, Bryk V, Borodin O, Mel’Nychenko V, Kalchenko A (2014) Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa. J Nucl Mater 453:323–333. https://doi.org/10.1016/j.jnucmat.2014.06.011

    Article  CAS  Google Scholar 

  18. Gigax J, Chen T, Kim H, Wang J, Price L, Aydogan E, Maloy SA, Schreiber D, Toloczko M, Garner F (2016) Radiation response of alloy T91 at damage levels up to 1000 peak dpa. J Nucl Mater 482:257–265. https://doi.org/10.1016/j.jnucmat.2016.10.003

    Article  CAS  Google Scholar 

  19. Aydogan E, Chen T, Gigax J, Chen D, Wang X, Dzhumaev P, Emelyanova O, Ganchenkova M, Kalin B, Leontiva-Smirnova M (2017) Effect of self-ion irradiation on the microstructural changes of alloy EK-181 in annealed and severely deformed conditions. J Nucl Mater 487:96–104. https://doi.org/10.1016/j.jnucmat.2017.02.006

    Article  CAS  Google Scholar 

  20. Was G, Jiao Z, Getto E, Sun K, Monterrosa A, Maloy S, Anderoglu O, Sencer B, Hackett M (2014) Emulation of reactor irradiation damage using ion beams. Scripta Mater 88:33–36. https://doi.org/10.1016/j.scriptamat.2014.06.003

    Article  CAS  Google Scholar 

  21. Stoller RE (2002) The effect of free surfaces on cascade damage production in iron. J Nucl Mater 307:935–940. https://doi.org/10.1016/S0022-3115(02)01096-6

    Article  Google Scholar 

  22. Weber WJ, Zhang Y (2019) Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: Challenges and recommendations. Curr Opin Solid State Mater Sci 23:100757. https://doi.org/10.1016/j.cossms.2019.06.001

    Article  CAS  Google Scholar 

  23. Stoller RE, Toloczko MB, Was GS, Certain AG, Dwaraknath S, Garner FA (2013) On the use of SRIM for computing radiation damage exposure. Nucl Instrum Methods Phys Res, Sect B 310:75–80. https://doi.org/10.1016/j.nimb.2013.05.008

    Article  CAS  Google Scholar 

  24. Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM – The stopping and range of ions in matter (2010). Nucl Instrum Methods Phys Res, Sect B 268:1818–1823. https://doi.org/10.1016/j.nimb.2010.02.091

    Article  CAS  Google Scholar 

  25. Lin Y-R, Bhattacharya A, Chen D, Kai J-J, Henry J, Zinkle SJ (2021) Temperature-dependent cavity swelling in dual-ion irradiated Fe and Fe-Cr ferritic alloys. Acta Mater 207:116660. https://doi.org/10.1016/j.actamat.2021.116660

    Article  CAS  Google Scholar 

  26. Egerton RF (2011) Electron energy-loss spectroscopy in the electron microscope, Springer Science & Business Media.

  27. Didenko AN, Kozlov EV, Sharkeev YP, Tailashev AS, Rjabchikov AI, Pranjavichus L, Augulis L (1993) Observation of deep dislocation structures and “long-range effect” in ion-implanted α-Fe. Surf Coat Technol 56:97–104. https://doi.org/10.1016/0257-8972(93)90012-D

    Article  CAS  Google Scholar 

  28. Shao L, Wei CC, Gigax J, Aitkaliyeva A, Chen D, Sencer BH, Garner FA (2014) Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5MeV self-ions. J Nucl Mater 453:176–181. https://doi.org/10.1016/j.jnucmat.2014.06.002

    Article  CAS  Google Scholar 

  29. Sun C, Garner FA, Shao L, Zhang X, Maloy SA (2017) Influence of injected interstitials on the void swelling in two structural variants of 304L stainless steel induced by self-ion irradiation at 500°C. Nucl Instrum Methods Phys Res, Sect B 409:323–327. https://doi.org/10.1016/j.nimb.2017.03.070

    Article  CAS  Google Scholar 

  30. El-Atwani O, Esquivel E, Aydogan E, Martinez E, Baldwin JK, Li M, Uberuaga BP, Maloy SA (2019) Unprecedented irradiation resistance of nanocrystalline tungsten with equiaxed nanocrystalline grains to dislocation loop accumulation. Acta Mater 165:118–128. https://doi.org/10.1016/j.actamat.2018.11.024

    Article  CAS  Google Scholar 

  31. El-Atwani O, Esquivel E, Efe M, Aydogan E, Wang YQ, Martinez E, Maloy SA (2018) Loop and void damage during heavy ion irradiation on nanocrystalline and coarse grained tungsten: Microstructure, effect of dpa rate, temperature, and grain size. Acta Mater 149:206–219. https://doi.org/10.1016/j.actamat.2018.02.035

    Article  CAS  Google Scholar 

  32. El-Atwani O, Nathaniel JE, Leff AC, Hattar K, Taheri ML (2017) Direct observation of sink-dependent defect evolution in nanocrystalline iron under irradiation. Sci Rep 7:1836. https://doi.org/10.1038/s41598-017-01744-x

    Article  CAS  Google Scholar 

  33. Han WZ, Demkowicz MJ, Fu EG, Wang YQ, Misra A (2012) Effect of grain boundary character on sink efficiency. Acta Mater 60:6341–6351. https://doi.org/10.1016/j.actamat.2012.08.009

    Article  CAS  Google Scholar 

  34. Gigax JG, Kim H, Chen T, Garner FA, Shao L (2017) Radiation instability of equal channel angular extruded T91 at ultra-high damage levels. Acta Mater 132:395–404. https://doi.org/10.1016/j.actamat.2017.04.038

    Article  CAS  Google Scholar 

  35. Liu X, Miao Y, Li M, Kirk MA, Maloy SA, Stubbins JF (2017) Ion-irradiation-induced microstructural modifications in ferritic/martensitic steel T91. J Nucl Mater 490:305–316. https://doi.org/10.1016/j.jnucmat.2017.04.047

    Article  CAS  Google Scholar 

  36. Bergner F, Pareige C, Hernández-Mayoral M, Malerba L, Heintze C (2014) Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe–Cr model alloys. J Nucl Mater 448:96–102. https://doi.org/10.1016/j.jnucmat.2014.01.024

    Article  CAS  Google Scholar 

  37. Yabuuchi K, Kuribayashi Y, Nogami S, Kasada R, Hasegawa A (2014) Evaluation of irradiation hardening of proton irradiated stainless steels by nanoindentation. J Nucl Mater 446:142–147. https://doi.org/10.1016/j.jnucmat.2013.12.009

    Article  CAS  Google Scholar 

  38. Chen D, Murakami K, Dohi K, Nishida K, Li Z, Sekimura N (2020) The effects of loop size on the unfaulting of Frank loops in heavy ion irradiation. J Nucl Mater. https://doi.org/10.1016/j.jnucmat.2019.151942

    Article  Google Scholar 

  39. Busby JT, Hash MC, Was GS (2005) The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. J Nucl Mater 336:267–278. https://doi.org/10.1016/j.jnucmat.2004.09.024

    Article  CAS  Google Scholar 

  40. Setman D, Kerber MB, Schafler E, Zehetbauer MJ (2010) Activation enthalpies of deformation-induced lattice defects in severe plastic deformation nanometals measured by differential scanning calorimetry. Metall and Mater Trans A 41:810–815. https://doi.org/10.1007/s11661-009-0058-0

    Article  CAS  Google Scholar 

  41. Setman D, Schafler E, Korznikova E, Zehetbauer MJ (2008) The presence and nature of vacancy type defects in nanometals detained by severe plastic deformation. Mater Sci Eng, A 493:116–122. https://doi.org/10.1016/j.msea.2007.06.093

    Article  CAS  Google Scholar 

  42. Zhao MZ, Liu PP, Bai JW, Zhu YM, Wan FR, Ohnuki S, Zhan Q (2014) In-situ observation of the effect of the precipitate/matrix interface on the evolution of dislocation structures in CLAM steel during irradiation. Fusion Eng Des 89:2759–2765. https://doi.org/10.1016/j.fusengdes.2014.07.022

    Article  CAS  Google Scholar 

  43. Getto E, Vancoevering G, Was GS (2017) The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels. J Nucl Mater 484:193–208. https://doi.org/10.1016/j.jnucmat.2016.12.006

    Article  CAS  Google Scholar 

  44. Liu PP, Zhao MZ, Zhu YM, Bai JW, Wan FR, Zhan Q (2013) Effects of carbide precipitate on the mechanical properties and irradiation behavior of the low activation martensitic steel. J Alloy Compd 579:599–605. https://doi.org/10.1016/j.jallcom.2013.07.085

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the U.S. Department of Energy, Office of Nuclear Energy through the NEET-NSUF (Nuclear Energy Enabling Technology—Nuclear Science User Facility) program (award number DE-NE0008524), and through the NSUF-RTE program (award number 18-1403). Partial support for Haiming Wen and Andrew Hoffman came from the U.S. Nuclear Regulatory Commission (NRC) Faculty Development Program (award number NRC 31310018M0044). Ruslan Valiev gratefully acknowledges the financial support from Russian Foundation for Basic Research (Project 20-03-00614).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiming Wen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, J., Wen, H., He, L. et al. Effect of grain size on the irradiation response of grade 91 steel subjected to Fe ion irradiation at 300 °C. J Mater Sci 57, 13767–13778 (2022). https://doi.org/10.1007/s10853-022-07480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07480-6

Navigation