Abstract
Biomaterials that have capacities to simultaneously induce bone regeneration and kill bacteria are in high demand because bone defects face risks of severe infection in clinical therapy. The aim of this study was to investigate the use of gelatin methacryloyl (GelMA), alginate, gelatin hydrogels containing levofloxacin loaded poly (lactic-co-glycolic acid) nanoparticles (LEV-PLGA NPs) as antibacterial agent and strontium loaded PLGA microspheres (Sr-PLGA microspheres) as osteoinductive agent, intended for improving the treatment of osteomyelitis. Nanoparticles and microspheres were prepared using oil-in-water (o/w) and water-in-oil-in-water (w/o/w) emulsion method, respectively. Then GelMA-alginate-gelatin scaffold loaded with both LEV-PLGA NPs and Sr-PLGA microspheres, was prepared by UV radiation crosslinking. The mechanical strength of the GelMA scaffold was increased to 0.1 MPa by introducing gelatin and alginate into the GelMA hydrogel. The highest cumulative drug release from the LEV-PLGA-loaded hydrogels reached 64% over 25 days. The LEV-PLGA-NPs had an effective antibacterial response against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Furthermore, the performance in terms of cell viability had no adverse influence upon the absence of cytotoxicity, as indicated in tests carried out using normal adult human fibroblast cells. The presence of Sr-PLGA microspheres led to upregulation of RUNX2, Osteonectin, and Osteocalcin genes about 10, 9, and 10 times higher than control group in osteogenic differentiation of MC3T3 cells, respectively. Alkaline Phosphatase activity was 59 u/l on day 21. It could therefore be concluded that scaffold might be considered as a potential useful biomaterial for the treatment of osteomyelitis with antibacterial properties.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Johnson EN, Burns TC, Hayda RA, Hospenthal DR, Murray CK (2007) Infectious complications of open type III tibial fractures among combat casualties. Clin Infect Dis 45(4):409–415. https://doi.org/10.1086/520029
Hatzenbuehler J, Pulling TJ (2011) Diagnosis and management of osteomyelitis. Am Fam Physician 84(9):1027–1033 (PMID: 22046943)
Calhoun JH, Manring MM, Shirtliff M (2009) Osteomyelitis of the long bones. Semin Plast Surg 23(2):59–72. https://doi.org/10.1055/s-0029-1214158
Kavanagh N, Ryan E, Widaa A, Sexton G, Fennell J, O’Rourke S, Cahill KC, Kearney CJ, O’Brien FJ, Kerrigan SW (2018) Staphylococcal osteomyelitis: disease progression, treatment challenges, and future directions. Clin Microbiol Rev 31(2):e00084-e117. https://doi.org/10.1128/CMR.00084-17
Hake ME, Oh JK, Kim JW, Ziran B, Smith W, David Hak C, Mauffrey, (2015) Difficulties and challenges to diagnose and treat post-traumatic long bone osteomyelitis. Eur J Orthop Surg Traumatol 25(1):1–3. https://doi.org/10.1007/s00590-014-1576-z
Rotman SG, Grijpma DW, Richards RG, Moriarty TF, Eglin D, Guillaume O (2018) Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics. J Control Release 269:88–99. https://doi.org/10.1016/j.jconrel.2017.11.009
Rotman SG, Thompson K, Grijpma DW, Richards RG, Moriarty TF, Eglin D, Guillaume O (2020) Development of bone seeker–functionalised microspheres as a targeted local antibiotic delivery system for bone infection. J Orthop Transl 21:136–145. https://doi.org/10.1016/j.jot.2019.07.006
Zhou X, Weng W, Chen B, Feng W, Wang W, Nie W, Chen L, Mo X, Su J, He C (2018) Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects. J Mater Chem B 6(5):740–752. https://doi.org/10.1039/C7TB01246B
Wei P, Yuan Z, Jing W, Huang Y, Cai Q, Guan B, Liu Z, Zhang X, Mao J, Chen D, Yang X (2019) Strengthening the potential of biomineralized microspheres in enhancing osteogenesis via incorporating alendronate. Chem Eng J 368:577–588. https://doi.org/10.1016/j.cej.2019.02.202
Kim JA, Yun H-S, Choi Y-A, Kim J-E, Choi S-Y, Kwon T-G, Kim YK, Kwon T-Y, Bae MA, Kim NJ, Bae YC, Shin H-I, Park EK (2017) Magnesium phosphate ceramics incorporating a novel indene compound promote osteoblast differentiation in vitro and bone regeneration in vivo. Biomaterials 157:51–61. https://doi.org/10.1016/j.biomaterials.2017.11.032
Yamamoto M, Hokugo A, Takahashi Y, Nakano T, Hiraoka M, Tabata Y (2015) Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects. Biomaterials 56:18–25. https://doi.org/10.1016/j.biomaterials.2015.03.057
Nandi SK, Bandyopadhyay S, Das P, Samanta I, Mukherjee P, Roy S, Kundu B (2016) Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol Adv 34(8):1305–1317. https://doi.org/10.1016/j.biotechadv.2016.09.005
Wei P, Jing W, Yuan Z, Huang Y, Guan B, Zhang W, Zhang X, Mao J, Cai Q, Chen D, Yang X (2019) Vancomycin- and strontium-loaded microspheres with multifunctional activities against bacteria, in angiogenesis, and in osteogenesis for enhancing infected bone regeneration. ACS Appl Mater Interfaces 11(34):30596–30609. https://doi.org/10.1021/acsami.9b10219
Joosten U, Joist A, Gosheger G, Liljenqvist U, Brandt B, von Eiff C (2005) Effectiveness of hydroxyapatite-vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Biomaterials 26(25):5251–5258. https://doi.org/10.1016/j.biomaterials.2005.01.001
Olson ME, Horswill AR (2013) Staphylococcus aureus osteomyelitis: bad to the bone. Cell Host Microbe 13(6):629–631. https://doi.org/10.1016/j.chom.2013.05.015
Jones ME, Karlowsky JA, Draghi DC, Thornsberry C, Sahm DF, Nathwani D (2004) Antibiotic susceptibility of bacteria most commonly isolated from bone related infections: the role of cephalosporins in antimicrobial therapy. Int J Antimicrob Agents 23(3):240–246. https://doi.org/10.1016/j.ijantimicag.2003.08.007
Hofstee MI, Muthukrishnan G, Atkins GJ, Riool M, Thompson K, Morgenstern M, Moriarty TF (2020) Current concepts of osteomyelitis: from pathologic mechanisms to advanced research methods. Am J Pathol 190(6):1151–1163
Davis R, Bryson HM (1994) Levofloxacin: a review of its antibacterial activity, pharmacokinetics and therapeutic efficacy. Drugs 47(4):677–700. https://doi.org/10.2165/00003495-199447040-00008
Wang Q, Chen C, Liu W, He X, Zhou N, Zhang D, Gu H, Li J, Jiang J, Huang W (2017) Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects. Sci Rep 7:41808. https://doi.org/10.1038/srep41808
Ferreira M, Rzhepishevska O, Grenho L, Malheiros D, Goncalves L, Almeida AJ, Jordao L, Ribeiro IA, Ramstedt M, Gomes P, Bettencourt A (2017) Levofloxacin-loaded bone cement delivery system: Highly effective against intracellular bacteria and Staphylococcus aureus biofilms. Int J Pharm 532(1):241–248. https://doi.org/10.1016/j.ijpharm.2017.08.089
Greenberg RN, Newman MT, Shariaty S, Pectol RW (2000) Ciprofloxacin, lomefloxacin, or levofloxacin as treatment for chronic osteomyelitis. Antimicrob Agents Chemother 44(1):164–166. https://doi.org/10.1128/AAC.44.1.164-166.2000
Peng K-T, Chen C-F, Chu I-M, Li Y-M, Hsu W-H, Hsu RW-W, Chang P-J (2010) Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials 31(19):5227–5236. https://doi.org/10.1016/j.biomaterials.2010.03.027
Gogia JS, Meehan JP, Di Cesare PE, Jamali AA (2009) Local antibiotic therapy in osteomyelitis. Semin Plast Surg 23(2):100–107. https://doi.org/10.1055/s-0029-1214162
Nandi SK, Mukherjee P, Roy S, Kundu B, De DK, Basu D (2009) Local antibiotic delivery systems for the treatment of osteomyelitis–a review. Mater Sci Eng C 29(8):2478–2485. https://doi.org/10.1016/j.msec.2009.07.014
Kim J-J, El-Fiqi A, Kim H-W (2017) Synergetic cues of bioactive nanoparticles and nanofibrous structure in bone scaffolds to stimulate osteogenesis and angiogenesis. ACS Appl Mater Interfaces 9(3):2059–2073. https://doi.org/10.1021/acsami.6b12089
Luo X, Barbieri D, Duan R, Yuan H, Bruijn JD (2015) Strontium-containing apatite/polylactide composites enhance bone formation in osteopenic rabbits. Acta Biomater 26:331–337. https://doi.org/10.1016/j.actbio.2015.07.044
Zhao L, Wang H, Huo K, Zhang X, Wang W, Zhang Y, Wu Z, Chu PK (2013) The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials 34(1):19–29. https://doi.org/10.1016/j.biomaterials.2012.09.041
Zare EN, Jamaledin R, Naserzadeh P, Afjeh-Dana E, Ashtari B, Hosseinzadeh M, Vecchione R, Wu A, Tay FR, Borzacchiello A, Makvandi P (2020) Metal-based nanostructures/PLGA nanocomposites: antimicrobial activity, cytotoxicity, and their biomedical applications. ACS Appl Mater Interfaces 12(3):3279–3300. https://doi.org/10.1021/acsami.9b19435
Tovani CB, Oliveira TM, Gloter A, Ramos AP (2018) Sr2+-Substituted CaCO3 nanorods: impact on the structure and bioactivity. Cryst Growth Des 18(5):2932–2940. https://doi.org/10.1021/acs.cgd.8b00017
Zhang S, Dong Y, Chen M, Xu Y, Ping J, Chen W, Liang W (2020) Recent developments in strontium-based biocomposites for bone regeneration. J Artif Organs 23(3):191–202. https://doi.org/10.1007/s10047-020-01159-y
Kyllönen L, D’Este M, Alini M, Eglin D (2015) Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater 11:412–434. https://doi.org/10.1016/j.actbio.2014.09.006
Peng S, Liu XS, Huang S, Li Z, Pan H, Zhen W, Luk KDK, Guo XE, Lu WW (2011) The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin. Bone 49(6):1290–1298. https://doi.org/10.1016/j.bone.2011.08.031
Pors Nielsen S (2004) The biological role of strontium. Bone 35(3):583–588. https://doi.org/10.1016/j.bone.2004.04.026
Lee HY, Lie D, Lim KS, Thirumoorthy T, Pang SM (2009) Strontium ranelate-induced toxic epidermal necrolysis in a patient with post-menopausal osteoporosis. Osteoporos Int 20(1):161–162. https://doi.org/10.1007/s00198-008-0677-0
Shen X, Li T, Xie X, Feng Yi, Chen Z, Yang H, Chunhui W, Deng S, Liu Y (2020) PLGA-based drug delivery systems for remotely triggered cancer therapeutic and diagnostic applications. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00381
Chereddy KK, Vandermeulen G, Préat V (2016) PLGA based drug delivery systems: Promising carriers for wound healing activity. Wound repair Regen 24(2):223–236. https://doi.org/10.1111/wrr.12404
Ghitman J, Biru EI, Stan R, Iovu H (2020) Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Mater Des 193:108805. https://doi.org/10.1016/j.matdes.2020.108805
Han FY, Thurecht KJ, Whittaker AK, Smith MT (2016) Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front Pharmacol. https://doi.org/10.3389/fphar.2016.00185
Jusu SM, Obayemi JD, Salifu AA, Nwazojie CC, Uzonwanne V, Odusanya OS, Soboyejo WO (2020) Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer. Sci Rep. https://doi.org/10.1038/s41598-020-71129-0
Zhang P, Qin J, Zhang B, Zheng Y, Yang L, Shen Y, Zuo B, Zhang F (2019) Gentamicin-loaded silk/nanosilver composite scaffolds for MRSA-induced chronic osteomyelitis. R Soc Open Sci. https://doi.org/10.1098/rsos.182102
Minpeng Lu, Liao J, Dong J, Jun Wu, Qiu H, Zhou X, Li J, Jiang D, He T-C, Quan Z (2016) An effective treatment of experimental osteomyelitis using the antimicrobial titanium/silver-containing nHP66 (nano-hydroxyapatite/polyamide-66) nanoscaffold biomaterials. Sci Rep. https://doi.org/10.1038/srep39174
Pina S, Ribeiro VP, Marques CF, Raquel Maia F, Silva TH, Reis RL, Miguel Oliveira J (2019) Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials. https://doi.org/10.3390/ma12111824
Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric Scaffolds in Tissue Engineering Application: A Review. Int J Polym Sci. https://doi.org/10.1155/2011/290602
Jin H, Zhuo Y, Sun Y, Fu H, Han Z (2019) Microstructure design and degradation performance in vitro of three-dimensional printed bioscaffold for bone tissue engineering. Adv Mech Eng 11(10):1–10. https://doi.org/10.1177/1687814019883784
Spagnuolo M, Liu L (2012) Fabrication and degradation of electrospun scaffolds from L-Tyrosine-based polyurethane blends for tissue engineering applications. ISRN Nanotechnol. https://doi.org/10.5402/2012/627420
Mondal S, Das S, Nandi AK (2020) A review on recent advances in polymer and peptide hydrogels. Soft Matter 16(6):1404–1454. https://doi.org/10.1039/C9SM02127B
Sun M, Sun X, Wang Z, Guo S, Yu G, Yang H (2018) Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue. Polymers (Basel) 10(11):1290. https://doi.org/10.3390/polym10111290
Lynch CR, Kondiah PPD, Choonara YE, du Toit LC, Ally N, Pillay V (2020) Hydrogel Biomaterials for Application in Ocular Drug Delivery. Front Bioeng Biotechnol 8:228. https://doi.org/10.3389/fbioe.2020.00228
Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1(12):16071. https://doi.org/10.1038/natrevmats.2016.71
Xiao S, Zhao T, Wang J, Wang C, Du J, Ying L, Lin J, Zhang C, Hu W, Wang L, Xu K (2019) Gelatin methacrylate (GelMA)-based hydrogels for cell transplantation: an effective strategy for tissue engineering. Stem Cell Rev Reports 15(5):664–679. https://doi.org/10.1007/s12015-019-09893-4
Dong Z, Yuan Q, Huang K, Xu W, Liu G, Gu Z (2019) Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration. RSC Adv 9(31):17737–17744. https://doi.org/10.1039/C9RA02695A
Kumar G, Sharma S, Shafiq N, Khuller GK, Malhotra S (2012) Optimization, in vitro-in vivo evaluation, and short-term tolerability of novel levofloxacin-loaded PLGA nanoparticle formulation. J Pharm Sci 101(6):2165–2176. https://doi.org/10.1002/jps.23087
Reznikov N, Shahar R, Weiner S (2014) Bone hierarchical structure in three dimensions. Acta Biomater 10(9):3815–3826. https://doi.org/10.1016/j.actbio.2014.05.024
López- López M, Fernandez- Delgado A, Moya ML, Blanco- Arevalo D, Carrera C, Haba RR, Ventosa A, Bernal E, Lopez- Cornejo P (2019) Optimized preparation of levofloxacin loaded polymeric nanoparticles. Pharmaceutics 11(2):57. https://doi.org/10.3390/pharmaceutics11020057
Cheng Y, Huang L, Wang Y, Huo Q, Shao Y, Bao H, Li Z, Liu Y, Li X (2019) Strontium promotes osteogenic differentiation by activating autophagy via the the AMPK/mTOR signaling pathway in MC3T3-E1 cells. Int J Mol Med 44(2):652–660. https://doi.org/10.3892/ijmm.2019.4216
Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C, Zhang C (2014) Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater 10(5):2269–2281
Acknowledgements
This project was sponsored by a grant awarded by Nanotechnology Research Centre, Tehran University of Medical Sciences (Grant Number 99341151263).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Handling Editor: Annela M. Seddon.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jamshidifar, E., Esfandyari-Manesh, M., Motasadizadeh, H. et al. Improvement of in vitro osteogenesis and anti-infection properties by GelMA scaffold containing levofloxacin nanoparticles and strontium microspheres for osteomyelitis. J Mater Sci 57, 13603–13619 (2022). https://doi.org/10.1007/s10853-022-07456-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-022-07456-6


