Skip to main content

Advertisement

Log in

Improvement of in vitro osteogenesis and anti-infection properties by GelMA scaffold containing levofloxacin nanoparticles and strontium microspheres for osteomyelitis

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Biomaterials that have capacities to simultaneously induce bone regeneration and kill bacteria are in high demand because bone defects face risks of severe infection in clinical therapy. The aim of this study was to investigate the use of gelatin methacryloyl (GelMA), alginate, gelatin hydrogels containing levofloxacin loaded poly (lactic-co-glycolic acid) nanoparticles (LEV-PLGA NPs) as antibacterial agent and strontium loaded PLGA microspheres (Sr-PLGA microspheres) as osteoinductive agent, intended for improving the treatment of osteomyelitis. Nanoparticles and microspheres were prepared using oil-in-water (o/w) and water-in-oil-in-water (w/o/w) emulsion method, respectively. Then GelMA-alginate-gelatin scaffold loaded with both LEV-PLGA NPs and Sr-PLGA microspheres, was prepared by UV radiation crosslinking. The mechanical strength of the GelMA scaffold was increased to 0.1 MPa by introducing gelatin and alginate into the GelMA hydrogel. The highest cumulative drug release from the LEV-PLGA-loaded hydrogels reached 64% over 25 days. The LEV-PLGA-NPs had an effective antibacterial response against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Furthermore, the performance in terms of cell viability had no adverse influence upon the absence of cytotoxicity, as indicated in tests carried out using normal adult human fibroblast cells. The presence of Sr-PLGA microspheres led to upregulation of RUNX2, Osteonectin, and Osteocalcin genes about 10, 9, and 10 times higher than control group in osteogenic differentiation of MC3T3 cells, respectively. Alkaline Phosphatase activity was 59 u/l on day 21. It could therefore be concluded that scaffold might be considered as a potential useful biomaterial for the treatment of osteomyelitis with antibacterial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Johnson EN, Burns TC, Hayda RA, Hospenthal DR, Murray CK (2007) Infectious complications of open type III tibial fractures among combat casualties. Clin Infect Dis 45(4):409–415. https://doi.org/10.1086/520029

    Article  Google Scholar 

  2. Hatzenbuehler J, Pulling TJ (2011) Diagnosis and management of osteomyelitis. Am Fam Physician 84(9):1027–1033 (PMID: 22046943)

    Google Scholar 

  3. Calhoun JH, Manring MM, Shirtliff M (2009) Osteomyelitis of the long bones. Semin Plast Surg 23(2):59–72. https://doi.org/10.1055/s-0029-1214158

    Article  Google Scholar 

  4. Kavanagh N, Ryan E, Widaa A, Sexton G, Fennell J, O’Rourke S, Cahill KC, Kearney CJ, O’Brien FJ, Kerrigan SW (2018) Staphylococcal osteomyelitis: disease progression, treatment challenges, and future directions. Clin Microbiol Rev 31(2):e00084-e117. https://doi.org/10.1128/CMR.00084-17

    Article  CAS  Google Scholar 

  5. Hake ME, Oh JK, Kim JW, Ziran B, Smith W, David Hak C, Mauffrey, (2015) Difficulties and challenges to diagnose and treat post-traumatic long bone osteomyelitis. Eur J Orthop Surg Traumatol 25(1):1–3. https://doi.org/10.1007/s00590-014-1576-z

    Article  CAS  Google Scholar 

  6. Rotman SG, Grijpma DW, Richards RG, Moriarty TF, Eglin D, Guillaume O (2018) Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics. J Control Release 269:88–99. https://doi.org/10.1016/j.jconrel.2017.11.009

    Article  CAS  Google Scholar 

  7. Rotman SG, Thompson K, Grijpma DW, Richards RG, Moriarty TF, Eglin D, Guillaume O (2020) Development of bone seeker–functionalised microspheres as a targeted local antibiotic delivery system for bone infection. J Orthop Transl 21:136–145. https://doi.org/10.1016/j.jot.2019.07.006

    Article  Google Scholar 

  8. Zhou X, Weng W, Chen B, Feng W, Wang W, Nie W, Chen L, Mo X, Su J, He C (2018) Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects. J Mater Chem B 6(5):740–752. https://doi.org/10.1039/C7TB01246B

    Article  CAS  Google Scholar 

  9. Wei P, Yuan Z, Jing W, Huang Y, Cai Q, Guan B, Liu Z, Zhang X, Mao J, Chen D, Yang X (2019) Strengthening the potential of biomineralized microspheres in enhancing osteogenesis via incorporating alendronate. Chem Eng J 368:577–588. https://doi.org/10.1016/j.cej.2019.02.202

    Article  CAS  Google Scholar 

  10. Kim JA, Yun H-S, Choi Y-A, Kim J-E, Choi S-Y, Kwon T-G, Kim YK, Kwon T-Y, Bae MA, Kim NJ, Bae YC, Shin H-I, Park EK (2017) Magnesium phosphate ceramics incorporating a novel indene compound promote osteoblast differentiation in vitro and bone regeneration in vivo. Biomaterials 157:51–61. https://doi.org/10.1016/j.biomaterials.2017.11.032

    Article  CAS  Google Scholar 

  11. Yamamoto M, Hokugo A, Takahashi Y, Nakano T, Hiraoka M, Tabata Y (2015) Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects. Biomaterials 56:18–25. https://doi.org/10.1016/j.biomaterials.2015.03.057

    Article  CAS  Google Scholar 

  12. Nandi SK, Bandyopadhyay S, Das P, Samanta I, Mukherjee P, Roy S, Kundu B (2016) Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol Adv 34(8):1305–1317. https://doi.org/10.1016/j.biotechadv.2016.09.005

    Article  CAS  Google Scholar 

  13. Wei P, Jing W, Yuan Z, Huang Y, Guan B, Zhang W, Zhang X, Mao J, Cai Q, Chen D, Yang X (2019) Vancomycin- and strontium-loaded microspheres with multifunctional activities against bacteria, in angiogenesis, and in osteogenesis for enhancing infected bone regeneration. ACS Appl Mater Interfaces 11(34):30596–30609. https://doi.org/10.1021/acsami.9b10219

    Article  CAS  Google Scholar 

  14. Joosten U, Joist A, Gosheger G, Liljenqvist U, Brandt B, von Eiff C (2005) Effectiveness of hydroxyapatite-vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Biomaterials 26(25):5251–5258. https://doi.org/10.1016/j.biomaterials.2005.01.001

    Article  CAS  Google Scholar 

  15. Olson ME, Horswill AR (2013) Staphylococcus aureus osteomyelitis: bad to the bone. Cell Host Microbe 13(6):629–631. https://doi.org/10.1016/j.chom.2013.05.015

    Article  CAS  Google Scholar 

  16. Jones ME, Karlowsky JA, Draghi DC, Thornsberry C, Sahm DF, Nathwani D (2004) Antibiotic susceptibility of bacteria most commonly isolated from bone related infections: the role of cephalosporins in antimicrobial therapy. Int J Antimicrob Agents 23(3):240–246. https://doi.org/10.1016/j.ijantimicag.2003.08.007

    Article  CAS  Google Scholar 

  17. Hofstee MI, Muthukrishnan G, Atkins GJ, Riool M, Thompson K, Morgenstern M, Moriarty TF (2020) Current concepts of osteomyelitis: from pathologic mechanisms to advanced research methods. Am J Pathol 190(6):1151–1163

    Article  CAS  Google Scholar 

  18. Davis R, Bryson HM (1994) Levofloxacin: a review of its antibacterial activity, pharmacokinetics and therapeutic efficacy. Drugs 47(4):677–700. https://doi.org/10.2165/00003495-199447040-00008

    Article  CAS  Google Scholar 

  19. Wang Q, Chen C, Liu W, He X, Zhou N, Zhang D, Gu H, Li J, Jiang J, Huang W (2017) Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects. Sci Rep 7:41808. https://doi.org/10.1038/srep41808

    Article  CAS  Google Scholar 

  20. Ferreira M, Rzhepishevska O, Grenho L, Malheiros D, Goncalves L, Almeida AJ, Jordao L, Ribeiro IA, Ramstedt M, Gomes P, Bettencourt A (2017) Levofloxacin-loaded bone cement delivery system: Highly effective against intracellular bacteria and Staphylococcus aureus biofilms. Int J Pharm 532(1):241–248. https://doi.org/10.1016/j.ijpharm.2017.08.089

    Article  CAS  Google Scholar 

  21. Greenberg RN, Newman MT, Shariaty S, Pectol RW (2000) Ciprofloxacin, lomefloxacin, or levofloxacin as treatment for chronic osteomyelitis. Antimicrob Agents Chemother 44(1):164–166. https://doi.org/10.1128/AAC.44.1.164-166.2000

    Article  CAS  Google Scholar 

  22. Peng K-T, Chen C-F, Chu I-M, Li Y-M, Hsu W-H, Hsu RW-W, Chang P-J (2010) Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials 31(19):5227–5236. https://doi.org/10.1016/j.biomaterials.2010.03.027

    Article  CAS  Google Scholar 

  23. Gogia JS, Meehan JP, Di Cesare PE, Jamali AA (2009) Local antibiotic therapy in osteomyelitis. Semin Plast Surg 23(2):100–107. https://doi.org/10.1055/s-0029-1214162

    Article  Google Scholar 

  24. Nandi SK, Mukherjee P, Roy S, Kundu B, De DK, Basu D (2009) Local antibiotic delivery systems for the treatment of osteomyelitis–a review. Mater Sci Eng C 29(8):2478–2485. https://doi.org/10.1016/j.msec.2009.07.014

    Article  CAS  Google Scholar 

  25. Kim J-J, El-Fiqi A, Kim H-W (2017) Synergetic cues of bioactive nanoparticles and nanofibrous structure in bone scaffolds to stimulate osteogenesis and angiogenesis. ACS Appl Mater Interfaces 9(3):2059–2073. https://doi.org/10.1021/acsami.6b12089

    Article  CAS  Google Scholar 

  26. Luo X, Barbieri D, Duan R, Yuan H, Bruijn JD (2015) Strontium-containing apatite/polylactide composites enhance bone formation in osteopenic rabbits. Acta Biomater 26:331–337. https://doi.org/10.1016/j.actbio.2015.07.044

    Article  CAS  Google Scholar 

  27. Zhao L, Wang H, Huo K, Zhang X, Wang W, Zhang Y, Wu Z, Chu PK (2013) The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials 34(1):19–29. https://doi.org/10.1016/j.biomaterials.2012.09.041

    Article  CAS  Google Scholar 

  28. Zare EN, Jamaledin R, Naserzadeh P, Afjeh-Dana E, Ashtari B, Hosseinzadeh M, Vecchione R, Wu A, Tay FR, Borzacchiello A, Makvandi P (2020) Metal-based nanostructures/PLGA nanocomposites: antimicrobial activity, cytotoxicity, and their biomedical applications. ACS Appl Mater Interfaces 12(3):3279–3300. https://doi.org/10.1021/acsami.9b19435

    Article  CAS  Google Scholar 

  29. Tovani CB, Oliveira TM, Gloter A, Ramos AP (2018) Sr2+-Substituted CaCO3 nanorods: impact on the structure and bioactivity. Cryst Growth Des 18(5):2932–2940. https://doi.org/10.1021/acs.cgd.8b00017

    Article  CAS  Google Scholar 

  30. Zhang S, Dong Y, Chen M, Xu Y, Ping J, Chen W, Liang W (2020) Recent developments in strontium-based biocomposites for bone regeneration. J Artif Organs 23(3):191–202. https://doi.org/10.1007/s10047-020-01159-y

    Article  Google Scholar 

  31. Kyllönen L, D’Este M, Alini M, Eglin D (2015) Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater 11:412–434. https://doi.org/10.1016/j.actbio.2014.09.006

    Article  CAS  Google Scholar 

  32. Peng S, Liu XS, Huang S, Li Z, Pan H, Zhen W, Luk KDK, Guo XE, Lu WW (2011) The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin. Bone 49(6):1290–1298. https://doi.org/10.1016/j.bone.2011.08.031

    Article  CAS  Google Scholar 

  33. Pors Nielsen S (2004) The biological role of strontium. Bone 35(3):583–588. https://doi.org/10.1016/j.bone.2004.04.026

    Article  CAS  Google Scholar 

  34. Lee HY, Lie D, Lim KS, Thirumoorthy T, Pang SM (2009) Strontium ranelate-induced toxic epidermal necrolysis in a patient with post-menopausal osteoporosis. Osteoporos Int 20(1):161–162. https://doi.org/10.1007/s00198-008-0677-0

    Article  CAS  Google Scholar 

  35. Shen X, Li T, Xie X, Feng Yi, Chen Z, Yang H, Chunhui W, Deng S, Liu Y (2020) PLGA-based drug delivery systems for remotely triggered cancer therapeutic and diagnostic applications. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00381

    Article  Google Scholar 

  36. Chereddy KK, Vandermeulen G, Préat V (2016) PLGA based drug delivery systems: Promising carriers for wound healing activity. Wound repair Regen 24(2):223–236. https://doi.org/10.1111/wrr.12404

    Article  Google Scholar 

  37. Ghitman J, Biru EI, Stan R, Iovu H (2020) Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Mater Des 193:108805. https://doi.org/10.1016/j.matdes.2020.108805

    Article  CAS  Google Scholar 

  38. Han FY, Thurecht KJ, Whittaker AK, Smith MT (2016) Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front Pharmacol. https://doi.org/10.3389/fphar.2016.00185

    Article  Google Scholar 

  39. Jusu SM, Obayemi JD, Salifu AA, Nwazojie CC, Uzonwanne V, Odusanya OS, Soboyejo WO (2020) Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer. Sci Rep. https://doi.org/10.1038/s41598-020-71129-0

    Article  Google Scholar 

  40. Zhang P, Qin J, Zhang B, Zheng Y, Yang L, Shen Y, Zuo B, Zhang F (2019) Gentamicin-loaded silk/nanosilver composite scaffolds for MRSA-induced chronic osteomyelitis. R Soc Open Sci. https://doi.org/10.1098/rsos.182102

    Article  Google Scholar 

  41. Minpeng Lu, Liao J, Dong J, Jun Wu, Qiu H, Zhou X, Li J, Jiang D, He T-C, Quan Z (2016) An effective treatment of experimental osteomyelitis using the antimicrobial titanium/silver-containing nHP66 (nano-hydroxyapatite/polyamide-66) nanoscaffold biomaterials. Sci Rep. https://doi.org/10.1038/srep39174

    Article  Google Scholar 

  42. Pina S, Ribeiro VP, Marques CF, Raquel Maia F, Silva TH, Reis RL, Miguel Oliveira J (2019) Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials. https://doi.org/10.3390/ma12111824

    Article  Google Scholar 

  43. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric Scaffolds in Tissue Engineering Application: A Review. Int J Polym Sci. https://doi.org/10.1155/2011/290602

    Article  Google Scholar 

  44. Jin H, Zhuo Y, Sun Y, Fu H, Han Z (2019) Microstructure design and degradation performance in vitro of three-dimensional printed bioscaffold for bone tissue engineering. Adv Mech Eng 11(10):1–10. https://doi.org/10.1177/1687814019883784

    Article  CAS  Google Scholar 

  45. Spagnuolo M, Liu L (2012) Fabrication and degradation of electrospun scaffolds from L-Tyrosine-based polyurethane blends for tissue engineering applications. ISRN Nanotechnol. https://doi.org/10.5402/2012/627420

    Article  Google Scholar 

  46. Mondal S, Das S, Nandi AK (2020) A review on recent advances in polymer and peptide hydrogels. Soft Matter 16(6):1404–1454. https://doi.org/10.1039/C9SM02127B

    Article  CAS  Google Scholar 

  47. Sun M, Sun X, Wang Z, Guo S, Yu G, Yang H (2018) Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue. Polymers (Basel) 10(11):1290. https://doi.org/10.3390/polym10111290

    Article  CAS  Google Scholar 

  48. Lynch CR, Kondiah PPD, Choonara YE, du Toit LC, Ally N, Pillay V (2020) Hydrogel Biomaterials for Application in Ocular Drug Delivery. Front Bioeng Biotechnol 8:228. https://doi.org/10.3389/fbioe.2020.00228

    Article  Google Scholar 

  49. Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1(12):16071. https://doi.org/10.1038/natrevmats.2016.71

    Article  CAS  Google Scholar 

  50. Xiao S, Zhao T, Wang J, Wang C, Du J, Ying L, Lin J, Zhang C, Hu W, Wang L, Xu K (2019) Gelatin methacrylate (GelMA)-based hydrogels for cell transplantation: an effective strategy for tissue engineering. Stem Cell Rev Reports 15(5):664–679. https://doi.org/10.1007/s12015-019-09893-4

    Article  CAS  Google Scholar 

  51. Dong Z, Yuan Q, Huang K, Xu W, Liu G, Gu Z (2019) Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration. RSC Adv 9(31):17737–17744. https://doi.org/10.1039/C9RA02695A

    Article  CAS  Google Scholar 

  52. Kumar G, Sharma S, Shafiq N, Khuller GK, Malhotra S (2012) Optimization, in vitro-in vivo evaluation, and short-term tolerability of novel levofloxacin-loaded PLGA nanoparticle formulation. J Pharm Sci 101(6):2165–2176. https://doi.org/10.1002/jps.23087

    Article  CAS  Google Scholar 

  53. Reznikov N, Shahar R, Weiner S (2014) Bone hierarchical structure in three dimensions. Acta Biomater 10(9):3815–3826. https://doi.org/10.1016/j.actbio.2014.05.024

    Article  Google Scholar 

  54. López- López M, Fernandez- Delgado A, Moya ML, Blanco- Arevalo D, Carrera C, Haba RR, Ventosa A, Bernal E, Lopez- Cornejo P (2019) Optimized preparation of levofloxacin loaded polymeric nanoparticles. Pharmaceutics 11(2):57. https://doi.org/10.3390/pharmaceutics11020057

    Article  CAS  Google Scholar 

  55. Cheng Y, Huang L, Wang Y, Huo Q, Shao Y, Bao H, Li Z, Liu Y, Li X (2019) Strontium promotes osteogenic differentiation by activating autophagy via the the AMPK/mTOR signaling pathway in MC3T3-E1 cells. Int J Mol Med 44(2):652–660. https://doi.org/10.3892/ijmm.2019.4216

    Article  CAS  Google Scholar 

  56. Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C, Zhang C (2014) Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater 10(5):2269–2281

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was sponsored by a grant awarded by Nanotechnology Research Centre, Tehran University of Medical Sciences (Grant Number 99341151263).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Esfandyari-Manesh or Rassoul Dinarvand.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidifar, E., Esfandyari-Manesh, M., Motasadizadeh, H. et al. Improvement of in vitro osteogenesis and anti-infection properties by GelMA scaffold containing levofloxacin nanoparticles and strontium microspheres for osteomyelitis. J Mater Sci 57, 13603–13619 (2022). https://doi.org/10.1007/s10853-022-07456-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07456-6

Profiles

  1. Hamidreza Motasadizadeh