Skip to main content

Advertisement

Log in

Tailoring the surface morphology of nanostructured cobalt oxide for high-sensitivity CO sensor

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of efficient carbon monoxide (CO) gas sensors with earth abundance and low cost is very important in gas sensing applications. The cobalt oxide material with various morphologies and structures demonstrates different gas sensing properties. In this work, different morphologies of nanostructured spinel cobalt oxide (Co3O4) have been synthesized by pulsed laser ablation in liquid media (PLAL) using high-purity cobalt as a target in several ethanol/water mixtures. The gas properties of the fabricated Co3O4-based sensors were investigated toward CO gas at various gas concentrations and operating temperatures. Several characterization techniques including TEM, XRD, XPS, and Raman spectroscopy were utilized to study the chemical and physical properties of the fabricated samples. The obtained results displayed that the morphology of the nanostructured Co3O4 could be controlled by altering the ethanol concentrations in the ablation media. Compared with the Co3O4 nanoparticles prepared by laser ablation in water, the Co3O4 nanosheets/flakes prepared at 70% ethanol exhibited superior sensitivity characteristics. A sensitivity of 360% was achieved at 300 °C and 200 ppm of CO. These results reordered for Co3O4 nanosheets/flakes demonstrate a brand-new approach for the fabrication of low-detection-limit CO sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Shaalan NM, Hamad D, Saber O (2019) Co-evaporated CuO-doped In<inf>2</inf>O<inf>3</inf> 1D-nanostructure for reversible CH<inf>4</inf> detection at low temperatures: structural phase change and properties. Materials 12. https://doi.org/10.3390/ma1224073

  2. Aljaafari A, Ahmed F, Awada C, Shaalan NM (2020) Flower-like ZnO nanorods synthesized by microwave-assisted one-pot method for detecting reducing gases: structural properties and sensing reversibility. Front Chem 8:1–11. https://doi.org/10.3389/fchem.2020.00456

    Article  CAS  Google Scholar 

  3. Shaalan NM, Hamad D, Aljaafari A, Abdel-Latief AY, Abdel-Rahim MA (2019) Preparation and characterization of developed Cu<inf>x</inf> Sn<inf>1−x</inf> O<inf>2</inf> nanocomposite and its promising methane gas sensing properties, Sensors (Switzerland) 19. https://doi.org/10.3390/s19102257

  4. Shaalan NM, Rashad M, Moharram AH, Abdel-Rahim MA (2016) Promising methane gas sensor synthesized by microwave-assisted Co3O4 nanoparticles. Mater Sci Semicond Process 46:1–5. https://doi.org/10.1016/j.mssp.2016.01.020

    Article  CAS  Google Scholar 

  5. Walker BT (2021) Nanoscale organic hybrid materials based on cobalt oxide ( Co3O4) 1–7

  6. El-Deen AG, Hussein El-Shafei M, Hessein A, Hassanin AH, Shaalan NM, El-Moneim AA (2020) High-performance asymmetric supercapacitor based hierarchical NiCo2 O4@ carbon nanofibers//activated multichannel carbon nanofibers. Nanotechnology 31:365404. https://doi.org/10.1088/1361-6528/ab97d6

  7. Shi Y, Pan X, Li B, Zhao M, Pang H (2018) Co3O4 and its composites for high-performance Li-ion batteries. Chem Eng J 343:427–446. https://doi.org/10.1016/j.cej.2018.03.024

    Article  CAS  Google Scholar 

  8. Shaalan NM, Rashad M, Moharram AH, Abdel-Rahim MA (2016) Promising methane gas sensor synthesized by microwave-assisted Co3O4 nanoparticles. Mater Sci Semicond Process 46. https://doi.org/10.1016/j.mssp.2016.01.020

  9. Ma J, Wei H, Liu Y, Ren X, Li Y, Wang F, Han X, Xu E, Cao X, Wang G, Ren F, Wei S (2020) Application of Co3O4-based materials in electrocatalytic hydrogen evolution reaction: a review. Int J Hydrogen Energy 45:21205–21220. https://doi.org/10.1016/j.ijhydene.2020.05.280

    Article  CAS  Google Scholar 

  10. Kozlovskiy AL, Kenzhina IE, Zdorovets MV (2020) FeCo–Fe2CoO4/Co3O4 nanocomposites: phase transformations as a result of thermal annealing and practical application in catalysis. Ceram Int 46. https://doi.org/10.1016/j.ceramint.2020.01.019.

  11. Hu S, Melton C, Mukherjee D (2014) A facile route for the synthesis of nanostructured oxides and hydroxides of cobalt using laser ablation synthesis in solution (LASIS). Phys Chem Chem Phys 16:24034–24044. https://doi.org/10.1039/c4cp03018d

    Article  CAS  Google Scholar 

  12. Hu X, Wei L, Chen R, Wu Q, Li J (2020) Reviews and prospectives of Co3O4-based nanomaterials for supercapacitor application. Chem Select 5. https://doi.org/10.1002/slct.201904485

  13. Rabani I, Zafar R, Subalakshmi K, Kim HS, Bathula C, Seo YS (2021) A facile mechanochemical preparation of Co3O4@g-C3N4 for application in supercapacitors and degradation of pollutants in water. J Hazard Mater 407. https://doi.org/10.1016/j.jhazmat.2020.124360

  14. Kunhikrishnan L, Shanmugham R (2021) High electrochemical performance of morphologically controlled cobalt oxide for supercapacitor application. Mater Char 177. https://doi.org/10.1016/j.matchar.2021.111160

  15. Busacca C, Donato A, Lo Faro M, Malara A, Neri G, Trocino S (2020) CO gas sensing performance of electrospun Co3O4 nanostructures at low operating temperature. Sensors Actuat B Chem 303:127193. https://doi.org/10.1016/j.snb.2019.127193

  16. Man L, Niu B, Xu H, Cao B, Wang J (2011) Microwave hydrothermal synthesis of nanoporous cobalt oxides and their gas sensing properties. Mater Res Bull 46:1097–1101. https://doi.org/10.1016/J.MATERRESBULL.2011.02.045

    Article  CAS  Google Scholar 

  17. Grillo F, Natile MM, Glisenti A (2004) Low temperature oxidation of carbon monoxide: the influence of water and oxygen on the reactivity of a Co3O4 powder surface. Appl Catal B Environ 48:267–274. https://doi.org/10.1016/J.APCATB.2003.11.003

    Article  CAS  Google Scholar 

  18. Vetter S, Haffer S, Wagner T, Tiemann M (2015) Nanostructured Co3O4 as a CO gas sensor: temperature-dependent behavior. Sensors Actuat B Chem 206:133–138. https://doi.org/10.1016/J.SNB.2014.09.025

    Article  CAS  Google Scholar 

  19. Xu JM, Cheng JP (2016) The advances of Co3O4 as gas sensing materials: a review. J Alloys Compd 686:753–768. https://doi.org/10.1016/J.JALLCOM.2016.06.086

    Article  CAS  Google Scholar 

  20. Shi T, Hou H, Hussain S, Ge C, Alsaiari MA, Alkorbi AS, Liu G, Alsaiari R, Qiao G (2022) Efficient detection of hazardous H2S gas using multifaceted Co3O4/ZnO hollow nanostructures. Chemosphere 287. https://doi.org/10.1016/j.chemosphere.2021.132178

  21. Li S, Pu J, Zhu S, Gui Y (2022) Co3O4@TiO2@Y2O3 nanocomposites for a highly sensitive CO gas sensor and quantitative analysis. J Hazard Mater 422. https://doi.org/10.1016/j.jhazmat.2021.126880

  22. Patil D, Patil P, Subramanian V, Joy PA, Potdar HS (2010) Highly sensitive and fast responding CO sensor based on Co3O4 nanorods. Talanta 81:37–43. https://doi.org/10.1016/j.talanta.2009.11.034

    Article  CAS  Google Scholar 

  23. Dou Z, Cao C, Chen Y, Song W (2014) Fabrication of porous Co3O4 nanowires with high CO sensing performance at a low operating temperature. Chem Commun 50:14889–14891. https://doi.org/10.1039/c4cc05498a

    Article  CAS  Google Scholar 

  24. Gondal MA, Saleh TA, Drmosh QA (2012) Synthesis of nickel oxide nanoparticles using pulsed laser ablation in liquids and their optical characterization. Appl Surf Sci 258:6982–6986. https://doi.org/10.1016/j.apsusc.2012.03.147

    Article  CAS  Google Scholar 

  25. Gondal MA, Drmosh QA, Saleh TA (2010) Preparation and characterization of SnO2 nanoparticles using high power pulsed laser. Appl Surf Sci 256:7067–7070. https://doi.org/10.1016/j.apsusc.2010.05.027

    Article  CAS  Google Scholar 

  26. Gondal MA, Drmosh QA, Yamani ZH, Saleh TA (2009) Synthesis of ZnO 2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles. Appl Surf Sci 256:298–304. https://doi.org/10.1016/j.apsusc.2009.08.019

    Article  CAS  Google Scholar 

  27. Alheshibri M, Akhtar S, Al Baroot A, Elsayed K, Al Qahtani HS, Drmosh QA (2021) Template-free single-step preparation of hollow CoO nanospheres using pulsed laser ablation in liquid enviroment. Arab J Chem 14:103317. https://doi.org/10.1016/j.arabjc.2021.103317

    Article  CAS  Google Scholar 

  28. Alheshibri M, Jehannin M, Coleman VA, Craig VSJ (2019) Does gas supersaturation by a chemical reaction produce bulk nanobubbles? J Colloid Interf Sci 554:388–395. https://doi.org/10.1016/J.JCIS.2019.07.016

    Article  CAS  Google Scholar 

  29. Yan Z, Bao R, Huang Y, Chrisey DB (2010) Hollow particles formed on laser-induced bubbles by excimer laser ablation of Al in liquid. J Phys Chem C 114:11370–11374. https://doi.org/10.1021/jp104884x

    Article  CAS  Google Scholar 

  30. Jin H, Sun G, Zhang B, Luo N, Li Y, Lin L, Bala H, Cao J, Zhang Z, Wang Y (2019) Facile synthesis of Co3O4 nanochains and their improved TEA sensing performance by decorating with Au nanoparticles. J Alloys Compd 776:782–790. https://doi.org/10.1016/J.JALLCOM.2018.10.330

    Article  CAS  Google Scholar 

  31. Fan X, Xu Y, Ma C, He W (2021) In-situ growth of Co3O4 nanoparticles based on electrospray for an acetone gas sensor. J Alloys Compd 854:157234. https://doi.org/10.1016/J.JALLCOM.2020.157234

    Article  CAS  Google Scholar 

  32. Cao Y, Ge J, Jiang M, Zhang F, Lei X (2021) Acid-etched Co3O4 nanoparticles on nickel foam: the highly reactive (311) facet and enriched defects for boosting methanol oxidation electrocatalysis. ACS Appl Mater Interf 13. https://doi.org/10.1021/acsami.1c04045

  33. Hezam A, Wang J, Drmosh QA, Karthik P, Abdullah Bajiri M, Namratha K, Zare M, Lakshmeesha TR, Shivanna S, Cheng C, Neppolian B, K. Byrappa, Rational construction of plasmonic Z-scheme Ag-ZnO-CeO2 heterostructures for highly enhanced solar photocatalytic H2 evolution. Appl Surf Sci 541. https://doi.org/10.1016/j.apsusc.2020.148457

  34. Wang H, Odawara O, Wada H (2017) Morphology and optical properties of YVO4:Eu3+ nanoparticles fabricated by laser ablation in ethanol. Appl Surf Sci 425:689–695. https://doi.org/10.1016/J.APSUSC.2017.07.072

    Article  CAS  Google Scholar 

  35. Wang Y, Wei X, Hu X, Zhou W, Zhao Y (2019) Effect of formic acid treatment on the structure and catalytic activity of Co 3 O 4 for N 2 O decomposition. Catal Lett 149. https://doi.org/10.1007/s10562-019-02681-2.

  36. Hadjiev VG, Iliev MN, Vergilov IV (1988) The Raman spectra of Co3O4. J Phys C Solid State Phys 21. https://doi.org/10.1088/0022-3719/21/7/007

  37. Gupta SK, Jha PK (2009) Modified phonon confinement model for size dependent Raman shift and linewidth of silicon nanocrystals. Solid State Commun 149. https://doi.org/10.1016/j.ssc.2009.08.036

  38. Yang C, Zhou ZF, Li JW, Yang XX, Qin W, Jiang R, Guo NG, Wang Y, Sun CQ (2012) Correlation between the band gap, elastic modulus, Raman shift and melting point of CdS, ZnS, and CdSe semiconductors and their size dependency. Nanoscale 44. https://doi.org/10.1039/c2nr11605g

  39. Qiu B, Guo W, Liang Z, Xia W, Gao S, Wang Q, Yu X, Zhao R, Zou R (2017) Fabrication of Co3O4 nanoparticles in thin porous carbon shells from metal-organic frameworks for enhanced electrochemical performance. RSC Adv 7:13340–13346. https://doi.org/10.1039/c6ra28296b

    Article  CAS  Google Scholar 

  40. Goto T, Honda M, Kulinich SA, Shimizu Y, Ito T (2015) Defects in ZnO nanoparticles laser-ablated in water-ethanol mixtures at different pressures. Jpn J Appl Phys 54:070305. https://doi.org/10.7567/JJAP.54.070305/XML

    Article  Google Scholar 

  41. Kwon YJ, Kim HW, Ko WC, Choi H, Ko YH, Jeong YK (2019) Laser-engineered oxygen vacancies for improving the NO2 sensing performance of SnO2 nanowires. J Mater Chem A 7:27205–27211. https://doi.org/10.1039/C9TA06578D

    Article  CAS  Google Scholar 

  42. Yamazoe N, Fuchigami J, Kishikawa M, Seiyama T (1979) Interactions of tin oxide surface with O2, H2O AND H2. Surf Sci 86:335–344. https://doi.org/10.1016/0039-6028(79)90411-4

    Article  CAS  Google Scholar 

  43. Shaalan NM, Hamad D, Alshoaibi A, Abdel-Latief AY, Abdel-Rahim MA (2020) Development of numerical analysis and methane sensing application of highly sensitive quantum crystals based on tin dioxide prepared by hydrothermal. J Mater Sci Mater Electron 31. https://doi.org/10.1007/s10854-019-01505-8

  44. Shaalan NM, Morsy AEA, Abdel-Rahim MA, Rashad M (2021) Simple preparation of Ni/CuO nanocomposites with superior sensing activity toward the detection of methane gas. Appl Phys A Mater Sci Process 127:1–12. https://doi.org/10.1007/s00339-021-04543-4

    Article  CAS  Google Scholar 

  45. Ruhland B, Becker T, Müller G (1998), Gas-kinetic interactions of nitrous oxides with SnO2 surfaces. Sensors Actuat B Chem50:85–94. https://doi.org/10.1016/S0925-4005(98)00160-9

  46. Haridas D, Gupta V (2012) Enhanced response characteristics of SnO 2 thin film based sensors loaded with Pd clusters for methane detection. Sensors Actuat B Chem 166–167:156–164. https://doi.org/10.1016/j.snb.2012.02.026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MA extends his appreciation to the Deputyship for Research & Innovation, Ministry of Education, Saudi Arabia, for funding his research work through the project number IF-2020-022-Sci at Imam Abdulrahman bin Faisail University. QAD acknowledges the IRC-HES for providing the analysis facilities.

Funding

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia, F-2020-022-Sci.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muidh Alheshibri or Q. A. Drmosh.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alheshibri, M., Shaalan, N.M., A. Drmosh, Q. et al. Tailoring the surface morphology of nanostructured cobalt oxide for high-sensitivity CO sensor. J Mater Sci 57, 12865–12874 (2022). https://doi.org/10.1007/s10853-022-07438-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07438-8