Skip to main content

Advertisement

Log in

Microstructure and reactivity of cryomilled Al-Ni energetic material with nanoscale lamellar structure

  • Innovation in Materials Processing
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An Al-Ni alloy system with excellent energy density and mechanical performance is regarded as a novel high-energy–density material to enhance the energy emission of explosives or propellants. In this study, we explored the influence of a process control agent (PCA) varying from 0, 0.1, 0.25, 0.5, to 1.0 (wt.%) on the cryomilling of Al and Ni powder mixtures. The structural and morphological evolution of cryomilled Al-Ni powder was determined by X-ray diffraction, scanning electron microscopy, particle size distribution analysis, and transmission electron microscopy. Differential thermal analysis was used to study the exothermic reaction temperature, and activation energy calculations were performed using Kissinger plots. The results indicated that the addition of PCA changed the Al-Ni aggregate shape from oval to granular. The lamellar size also became finer after adding PCA up to 0.25 wt.% but the lamellar shape changed to granular at 1 wt.% PCA. These nanoscale lamellae serve as nuclei to produce Al-Ni reaction compounds, which gradually decrease the activation energy. The optimal concentration of PCA was determined to be 0.25 wt.% as this concentration decreased the activation energy of the Al-Ni alloy because of the fine, homogeneous, and alternate Al-Ni lamellae in the alloy when cryomilled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The data generated in this work cannot be shared at this time as it is a part of ongoing project which is treated as confidential.

References

  1. Floro JA (1986) Propagation of explosive crystallization in thin Rh-Si multilayer films. J Vac Sci Technol 4:631–637

    Article  CAS  Google Scholar 

  2. Gavens AJ, Heerden DV, Mann AB et al (2000) Effect of intermixing on self-propagating reactions in Al/Ni nanolaminate foils. J Appl Phys 87:1255–1263

    Article  CAS  Google Scholar 

  3. Mann AB, Gavens AJ, Reiss ME et al (1997) Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils. J Appl Phys 82:1178–1188

    Article  CAS  Google Scholar 

  4. Adams DP (2015) Reactive multilayers fabricated by vapor deposition: a critical review. Thin Solid Films 576:98–128

    Article  CAS  Google Scholar 

  5. Rogachev AS, Mukasyan AS (2010) Combustion of heterogeneous nanostructural systems (review). Combust Explos Shock Waves 46:243–266

    Article  Google Scholar 

  6. Hastings DL, Dreizin EL (2018) Reactive structural materials: preparation and characterization. Adv Eng Mater 20:1700631

    Article  Google Scholar 

  7. Ovid’ko IA, Valiev, RZ, Zhu, YT, (2018) Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci 94:462–540

    Article  Google Scholar 

  8. Zhu P, Li JCM, Liu CT (2002) Reaction mechanism of combustion synthesis of NiAl. Mater Sci Eng A 329–331:57–68

    Article  Google Scholar 

  9. Mason BA, Sippel TR, Groven LJ et al (2015) Combustion of mechanically activated Ni/Al reactive composites with microstructural refinement tailored using two-step milling. Intermetallics 66:88–95

    Article  CAS  Google Scholar 

  10. Mason BA, Groven LJ, Son SF (2013) The role of microstructure refinement on the impact ignition and combustion behavior of mechanically activated Ni/Al reactive composites. J Appl Phys 114:113501

    Article  Google Scholar 

  11. Manukyan KV, Tan W, Deboer RJ et al (2015) Irradiation-enhanced reactivity of multilayer Al/Ni nanomaterials. ACS Appl Mater Interfaces 7:11272–11279

    Article  CAS  Google Scholar 

  12. Sraj I, Specht PE, Thadhani NN et al (2014) Numerical simulation of shock initiation of Ni/Al multilayered composites. J Appl Phys 115:023515

    Article  Google Scholar 

  13. Gibbins JD, Stover AK, Krywopusk NM et al (2015) Properties of reactive Al: Ni compacts fabricated by radial forging of elemental and alloy powders. Combust Flame 162:4408–4416

    Article  CAS  Google Scholar 

  14. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Article  CAS  Google Scholar 

  15. Duckham A, Spey SJ, Wang J et al (2004) Reactive nanostructured foil used as a heat source for joining titanium. J Appl Phys 96:2336–2342

    Article  CAS  Google Scholar 

  16. Noro J, Ramos AS, Vieira MT (2008) Intermetallic phase formation in nanometric Ni/Al multilayer thin films. Intermetallics 16:1061–1065

    Article  CAS  Google Scholar 

  17. Andrzejak TA, Shafirovich E, Varma A (2007) Ignition mechanism of nickel-coated aluminum particles. Combust Flame 150:60–70

    Article  CAS  Google Scholar 

  18. Oh M, Oh MC, Han D et al (2018) Exothermic reaction kinetics in high energy density Al-Ni with nanoscale multilayers synthesized by cryomilling. Metals 8:121

    Article  Google Scholar 

  19. Sun F, Rojas P, Zúñiga EJ (2006) Nanostructure in a Ti alloy processed using a cryomilling technique. Mater Sci Eng A 430:90–97

    Article  Google Scholar 

  20. Yazdani N, Toroghinejad MR, Shabani A et al (2021) Effects of process control agent amount, milling time, and annealing heat treatment on the microstructure of AlCrCuFeNi high-entropy alloy synthesized through mechanical alloying. Metals 11:1493

    Article  CAS  Google Scholar 

  21. Lu L, Zhang YF (1999) Influence of process control agent on interdiffusion between Al and Mg during mechanical alloying. J Alloy Compd 290:279–283

    Article  CAS  Google Scholar 

  22. Zhang YF, Lu Lu, Yap SM (1999) Prediction of the amount of PCA for mechanical milling. J Mater Proc Technol 89–90:260–265

    Article  Google Scholar 

  23. Long BD, Zuhailawati H, Umemoto M et al (2010) Effect of ethanol on the formation and properties of a Cu–NbC composite. J Alloy Compd 503:228–232

    Article  CAS  Google Scholar 

  24. Sharma A, Lee H, Ahn B (2021) Microstructure and properties of in-situ Al–Si/Al2O3 composites prepared by displacement reaction. Powd Met 64:192–197

    Article  CAS  Google Scholar 

  25. Pilar M, Escoda L, Sunol JJ et al (2008) Magnetic study and thermal analysis of a metastable Fe–Zr-based alloy: influence of process control agents. J Magn Magn Mater 320:e823–e827

    Article  CAS  Google Scholar 

  26. Neamţu BV, Isnard O, Chicinaş I et al (2011) Structural and magnetic properties of nanocrystalline NiFeCuMo powders produced by wet mechanical alloying. J Alloy Compd 509:3632–3637

    Article  Google Scholar 

  27. Pilar M, Sunol JJ, Bonastre J et al (2007) Influence of process control agents in the development of a metastable Fe–Zr based alloy. J Non-Cryst Solids 353:848–850

    Article  CAS  Google Scholar 

  28. Lee W, Kwun SI (1996) The effects of process control agents on mechanical alloying mechanisms in the Ti–Al system. J Alloys Compd 240:193–199

    Article  CAS  Google Scholar 

  29. Gheisaria K, Javadpourb S (2013) The effect of process control agent on the structure and magnetic properties of nanocrystalline mechanically alloyed Fe–45% Ni powders. J Magn Magn Mater 343:133–137

    Article  Google Scholar 

  30. Manukyan KV, Mason BA, Groven LJ, Lin YC, Cherukara M, Son SF, Strachan A, Mukasyan AS (2012) Tailored reactivity of Ni–Al nanocomposites: microstructural correlations. J Phys Chem C 116(39):21027–21038

    Article  CAS  Google Scholar 

  31. Simo˜es S, Viana F, Ramos AS, Vieira MT, Vieira MF, (2011) Anisothermal solid-state reactions of Ni/Al nanometric multilayers. Intermetallics 19(3):350–356

    Article  Google Scholar 

  32. Blaine RL, Kissinger HE (2012) Homer Kissinger and the Kissinger equation. Thermochim Acta 540:1–6

    Article  CAS  Google Scholar 

  33. Huang BL, Vallone J, Luton MJ (1995) Formation of nanocrystalline B2 NiAl through cryomilling of Ni-50 at. % Al at 87 K. Nanostruct Mater 5:411–424

    Article  CAS  Google Scholar 

  34. Rocha CJ, Araújo RMLN, Goncales VS et al (2003) An investigation of the use of stearic acid as a process control agent in high energy ball milling of Nb-Al and Ni-Al powder mixtures. Mat Sic Forum 299–300:457

    Google Scholar 

  35. Koch CC (2002) Nanostructured materials: processing, properties and potential applications. William Andrew Publishing, Norwich

    Google Scholar 

  36. White JD, Reeves RV, Son SF et al (2009) Thermal explosion in Al-Ni system: influence of mechanical activation. J Phys Chem A 113:13541–13547

    Article  CAS  Google Scholar 

  37. Lagoviyer OS, Schoenitz M, Dreizin EL (2018) Effect of milling temperature on structure and reactivity of Al-Ni composites. J Mater Sci 53:1178–1190

    Article  CAS  Google Scholar 

  38. Christopher ES, Alexander SM (2017) Reactive Ni/Al nanocomposites: structural characteristics and activation energy. J Phys Chem A 121:1175–1181

    Article  Google Scholar 

  39. Shteinberg AS, Lin YC, Son SF, Mukasyan AS (2020) Kinetics of high temperature reaction in Ni-Al system: influence of mechanical activation. J Phys Chem A 114:6111–6116

    Article  Google Scholar 

  40. White JDE, Reeves RV, Son SF, Mukasyan AS (2009) Thermal explosion in Al-Ni system: influence of mechanical activation. J Phys Chem A 113:13541–13547

    Article  CAS  Google Scholar 

  41. Lagoviyer OS, Schoenitz M, Dreizin EL (2018) Effect of milling temperature on structure and reactivity of Al–Ni composites. J Mater Sci 53:1178–1190

    Article  CAS  Google Scholar 

  42. Manukyan KV, Mason BA, Groven LJ, Lin YC, Cherukara M, Son SF, Strachan A, Mukasyan AS (2012) Tailored reactivity of Ni+Al nanocomposites: microstructural correlations. J Phys Chem C 116:21027–21038

    Article  CAS  Google Scholar 

  43. Reeves RV, Mukasyan AS, Son SF (2010) Thermal and impact reaction initiation in Ni/Al heterogeneous reactive systems. J Phys Chem C 114:14772–14780

    Article  CAS  Google Scholar 

  44. Manukyan KV, Mason BA, Groven LJ et al (2012) Tailored reactivity of Ni + Al nanocomposites: microstructural correlations. J Phys Chem C 116:21027–21038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1A2C1005478) and (No. 2021R1A4A1031357). The authors would like to thank Mr. Minseok Oh for helping with the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byungmin Ahn.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests regarding the publication of this manuscript.

Additional information

Handling Editor: M. Grant Norton

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Lee, H. & Ahn, B. Microstructure and reactivity of cryomilled Al-Ni energetic material with nanoscale lamellar structure. J Mater Sci 57, 17957–17966 (2022). https://doi.org/10.1007/s10853-022-07429-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07429-9

Navigation