Skip to main content

Advertisement

Log in

Design of epoxy resin with sustainability, high adhesion and excellent flame retardancy based on bio-based molecules

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The preparation of bio-based epoxy resin with excellent thermal properties and flame retardant properties from green renewable resources had attracted extensive attention in recent years. Starting from the driving structural properties, the purpose of this study is to prepare multifunctional triglycidylester- diphenolic acid- bio-based epoxy (TDBE) with diphenolic acid (DPA), triglycidyl isocyanurate (TGIC), and 9,10-dihydro-9-oxa-10-phosphophenanthrene 10 oxide (DOPO) as raw materials. TDBE/DDM and bisphenol A epoxy resin curing agent (DGEBA/DDM) was prepared with 4,4 '- diaminodiphenylmethane (DDM) as curing agent. TDBE/DDM has excellent fire safety. LOI value rose from 24.5 to 42.0%, and the UL-94 test level passes V-0 level. In the cone calorimeter test, the peak heat release rate (pHRR) is decreased by 69.3%. Besides, the lap shear TDBE adhesive strength was 42.9 MPa, which increased by 62.5%. This new multifunctional bio-based flame retardant epoxy resin provides a broader application prospect for high-performance materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Fig. 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Ahmadi Z (2019) Nanostructured epoxy adhesives: a review. Prog Org Coat 135:449–453. https://doi.org/10.1016/j.porgcoat.2019.06.028

    Article  CAS  Google Scholar 

  2. Khagokpam GKS, Halder S (2018) Paraffin wax microsphere embedded epoxy composites for potential thermal management in electronic devices. High Perform Polym 31(7):767–777. https://doi.org/10.1177/0954008318792984

    Article  CAS  Google Scholar 

  3. Yang X, Zhu J, Yang D, Zhang J, Guo Y, Zhong X et al (2020) High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers. Compos B Eng 185:107784. https://doi.org/10.1016/j.compositesb.2020.107784

    Article  CAS  Google Scholar 

  4. Pourchet S, Sonnier R, Ben-Abdelkader M, Gaillard Y, Ruiz Q, Placet V et al (2019) New Reactive Isoeugenol Based Phosphate Flame Retardant: Toward Green Epoxy Resins. ACS Sustain Chem Eng 7(16):14074–14088. https://doi.org/10.1021/acssuschemeng.9b02629

    Article  CAS  Google Scholar 

  5. Shibata M, Ohkita T (2017) Fully biobased epoxy resin systems composed of a vanillin-derived epoxy resin and renewable phenolic hardeners. Eur Polymer J 92:165–173. https://doi.org/10.1016/j.eurpolymj.2017.05.007

    Article  CAS  Google Scholar 

  6. Ecochard Y, Decostanzi M, Negrell C, Sonnier R, Caillol S (2019) Cardanol and Eugenol Based Flame Retardant Epoxy Monomers for Thermostable Networks. Molecules. 24(9):1818. https://doi.org/10.3390/molecules24091818

    Article  CAS  Google Scholar 

  7. Zhang J, Mi X, Chen S, Xu Z, Zhang D, Miao M et al (2020) A bio-based hyperbranched flame retardant for epoxy resins. Chem Eng J 381:122719. https://doi.org/10.1016/j.cej.2019.122719

    Article  CAS  Google Scholar 

  8. Fang F, Huo S, Shen H, Ran S, Wang H, Song P et al (2020) A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins. Compos Commun 17:104–108. https://doi.org/10.1016/j.coco.2019.11.011

    Article  Google Scholar 

  9. Jian X-Y, An X-P, Li Y-D, Chen J-H, Wang M, Zeng J-B (2017) All Plant Oil Derived Epoxy Thermosets with Excellent Comprehensive Properties. Macromolecules 50(15):5729–5738. https://doi.org/10.1021/acs.macromol.7b01068

    Article  CAS  Google Scholar 

  10. Faye I, Decostanzi M, Ecochard Y, Caillol S (2017) Eugenol bio-based epoxy thermosets: from cloves to applied materials. Green Chem 19(21):5236–5242. https://doi.org/10.1039/C7GC02322G

    Article  CAS  Google Scholar 

  11. Jiang H, Sun L, Zhang Y, Liu Q, Ru C, Zhang W et al (2019) Novel biobased epoxy resin thermosets derived from eugenol and vanillin. Polym Degrad Stab 160:45–52. https://doi.org/10.1016/j.polymdegradstab.2018.12.007

    Article  CAS  Google Scholar 

  12. Fache M, Viola A, Auvergne R, Boutevin B, Caillol S (2015) Biobased epoxy thermosets from vanillin-derived oligomers. Eur Polymer J 68:526–535. https://doi.org/10.1016/j.polymdegradstab.2018.12.007

    Article  CAS  Google Scholar 

  13. Ma S, Liu X, Jiang Y, Fan L, Feng J, Zhu J (2013) Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid. Sci China Chem 57(3):379–388. https://doi.org/10.1007/s11426-013-5025-3

    Article  CAS  Google Scholar 

  14. Ma S, Liu X, Jiang Y, Tang Z, Zhang C, Zhu J (2013) Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. Green Chem 15(1):245–254. https://doi.org/10.1039/C2GC36715G

    Article  CAS  Google Scholar 

  15. Jaillet F, Darroman E, Ratsimihety A, Auvergne R, Boutevin B, Caillol S (2014) New biobased epoxy materials from cardanol. Eur J Lipid Sci Technol 116(1):63–73. https://doi.org/10.1002/ejlt.201300193

    Article  CAS  Google Scholar 

  16. Nguyen TKL, Livi S, Soares BG, Barra GMO, Gérard J-F, Duchet-Rumeau J (2017) Development of Sustainable Thermosets from Cardanol-based Epoxy Prepolymer and Ionic Liquids. ACS Sustain Chem Eng 5(9):8429–8438. https://doi.org/10.1021/acssuschemeng.7b02292

    Article  CAS  Google Scholar 

  17. Feng X, East AJ, Hammond WB, Zhang Y, Jaffe M (2011) Overview of advances in sugar-based polymers. Polym Adv Technol 22(1):139–150. https://doi.org/10.1002/pat.1859

    Article  CAS  Google Scholar 

  18. Hong J, Radojčić D, Ionescu M, Petrović ZS, Eastwood E (2014) Advanced materials from corn: isosorbide-based epoxy resins. Polym Chem 5(18):5360–5368. https://doi.org/10.1039/c4py00514g

    Article  CAS  Google Scholar 

  19. Gu J, Yang X, Lv Z, Li N, Liang C, Zhang Q (2016) Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int J Heat Mass Transf 92:15–22. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.081

    Article  CAS  Google Scholar 

  20. Wang S, Ma S, Xu C, Liu Y, Dai J, Wang Z et al (2017) Vanillin-derived high-performance flame retardant epoxy resins: facile synthesis and properties. Macromolecules 50(5):1892–1901. https://doi.org/10.1021/acs.macromol.7b00097

    Article  CAS  Google Scholar 

  21. Qian Z, Zheng Y, Li Q, Wang L, Fu F, Liu X (2021) Amidation way of diphenolic acid for preparing biopolybenzoxazine resin with outstanding thermal performance. ACS Sustain Chem Eng 9(12):4668–4680. https://doi.org/10.1021/acssuschemeng.1c00554

    Article  CAS  Google Scholar 

  22. Dai J, Peng Y, Teng N, Liu Y, Liu C, Shen X et al (2018) High performing and fire resistant biobased epoxy resin from renewable sources. ACS Sustain Chem Eng 6(6):7589–7599. https://doi.org/10.1021/acssuschemeng.8b00439

    Article  CAS  Google Scholar 

  23. Deng L, Shen M, Yu J, Wu K, Ha C (2012) Preparation, characterization, and flame retardancy of novel rosin-based siloxane epoxy resins. Ind Eng Chem Res 51(24):8178–8184. https://doi.org/10.1021/ie201364q

    Article  CAS  Google Scholar 

  24. Ménard R, Negrell C, Fache M, Ferry L, Sonnier R, David G (2015) From a bio-based phosphorus-containing epoxy monomer to fully bio-based flame-retardant thermosets. RSC Adv 5(87):70856–70867. https://doi.org/10.1039/c5ra12859e

    Article  Google Scholar 

  25. Mauerer O (2005) New reactive, halogen-free flame retardant system for epoxy resins. Polym Degrad Stab 88(1):70–73. https://doi.org/10.1016/j.polymdegradstab.2004.01.027

    Article  CAS  Google Scholar 

  26. Chao P, Li Y, Gu X, Han D, Jia X, Wang M et al (2015) Novel phosphorus–nitrogen–silicon flame retardants and their application in cycloaliphatic epoxy systems. Polym Chem 6(15):2977–2985. https://doi.org/10.1021/ie5008745

    Article  CAS  Google Scholar 

  27. Liu L, Xu Y, Xu M, Li Z, Hu Y, Li B (2019) Economical and facile synthesis of a highly efficient flame retardant for simultaneous improvement of fire retardancy, smoke suppression and moisture resistance of epoxy resins. Compos B Eng 167:422–433. https://doi.org/10.1016/j.compositesb.2019.03.017

    Article  CAS  Google Scholar 

  28. Zhao B, Liang W-J, Wang J-S, Li F, Liu Y-Q (2016) Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin. Polym Degrad Stab 133:162–173. https://doi.org/10.1016/j.polymdegradstab.2016.08.013

    Article  CAS  Google Scholar 

  29. Tao X, Duan H, Dong W, Wang X, Yang S (2018) Synthesis of an acrylate constructed by phosphaphenanthrene and triazine-trione and its application in intrinsic flame retardant vinyl ester resin. Polym Degrad Stab 154:285–294. https://doi.org/10.1016/j.polymdegradstab.2018.06.015

    Article  CAS  Google Scholar 

  30. Xu M-J, Xu G-R, Leng Y, Li B (2016) Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins. Polym Degrad Stab 123:105–114. https://doi.org/10.1016/j.polymdegradstab.2015.11.018

    Article  CAS  Google Scholar 

  31. Jin S, Qian L, Qiu Y, Chen Y, Xin F (2019) High-efficiency flame retardant behavior of bi-DOPO compound with hydroxyl group on epoxy resin. Polym Degrad Stab 166:344–352. https://doi.org/10.1016/j.polymdegradstab.2019.06.024

    Article  CAS  Google Scholar 

  32. Chi Z, Guo Z, Xu Z, Zhang M, Li M, Shang L et al (2020) A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: synthesis, flame-retardant behavior and mechanism. Polym Degrad Stab 176:109151. https://doi.org/10.1016/j.polymdegradstab.2020.109151

    Article  CAS  Google Scholar 

  33. Lu C, Ye R, Yang Y, Ren X, Cai X (2010) Chemical modification of polyamide 6 by chain extension with terephthaloyl-biscaprolactam. J Macromol Sci Part B 50(2):350–362. https://doi.org/10.1080/00222341003772225

    Article  CAS  Google Scholar 

  34. Xu MJ, Liu HC, Ma K, Li B, Zhang ZY (2018) New strategy towards flame retardancy through design, synthesis, characterization, and fire performance of a chain extender in polyamide 6 composites. Polym Eng Sci. 59:E206–E215. https://doi.org/10.1002/pen.25030

    Article  CAS  Google Scholar 

  35. Cui M, Zhang L, Lou P, Zhang X, Han X, Zhang Z et al (2020) Study on thermal degradation mechanism of heat-resistant epoxy resin modified with carboranes. Polym Degrad Stab 176:109143. https://doi.org/10.1016/j.polymdegradstab.2020.109143

    Article  CAS  Google Scholar 

  36. Wang P, Cai Z (2017) Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: Thermal stability, flame retardancy and mechanism. Polym Degrad Stab 137:138–150. https://doi.org/10.1016/j.polymdegradstab.2017.01.014

    Article  CAS  Google Scholar 

  37. Qi Y, Wang J, Kou Y, Pang H, Zhang S, Li N et al (2019) Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock. Nat Commun 10(1):2107. https://doi.org/10.1038/s41467-019-10178-0

    Article  CAS  Google Scholar 

  38. Kasemsiri P, Neramittagapong A, Chindaprasirt P (2015) Curing kinetic, thermal and adhesive properties of epoxy resin cured with cashew nut shell liquid. Thermochim Acta 600:20–27. https://doi.org/10.1016/j.tca.2014.11.031

    Article  CAS  Google Scholar 

  39. Xu G-R, Xu M-J, Li B (2014) Synthesis and characterization of a novel epoxy resin based on cyclotriphosphazene and its thermal degradation and flammability performance. Polym Degrad Stab 109:240–248. https://doi.org/10.1016/j.polymdegradstab.2014.07.020

    Article  CAS  Google Scholar 

  40. Fu X-L, Wang X, Xing W, Zhang P, Song L, Hu Y (2018) Two-dimensional cardanol-derived zirconium phosphate hybrid as flame retardant and smoke suppressant for epoxy resin. Polym Degrad Stab 151:172–180. https://doi.org/10.1016/j.polymdegradstab.2018.03.006

    Article  CAS  Google Scholar 

  41. Liu B-W, Zhao H-B, Tan Y, Chen L, Wang Y-Z (2015) Novel crosslinkable epoxy resins containing phenylacetylene and azobenzene groups: from thermal crosslinking to flame retardance. Polym Degrad Stab 122:66–76. https://doi.org/10.1016/j.polymdegradstab.2015.10.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Youth Growth Science and technology plan project of science and Technology Department of Jilin Province (20210508051RQ)Science and technology research project of Jilin Provincial Department of Education (JJKH20210755KJ).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: LS, YA. Contributed reagents/materials /analysis tools: YA. Performed the experiments: LS, ML, JM, GY and LS: contributed significantly to analysis and manuscript preparation. LS: performed the data analyses and wrote the manuscript. LS and YA: helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Yuhui Ao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, R., Yuan, Y., Sun, P. et al. Design of epoxy resin with sustainability, high adhesion and excellent flame retardancy based on bio-based molecules. J Mater Sci 57, 13078–13096 (2022). https://doi.org/10.1007/s10853-022-07399-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07399-y

Navigation