Abstract
The application of hydrogels for flexible sensor is gravely hampered due to their poor freezing resistance and fatigue fracture associated with durable deformation, hence hydrogels that can operate correctly at sub-zero temperatures and sustain long-term deformation are urged for wearable electronics and implantable sensors. In this paper, we develop conductive hydrogel (HB-Hydrogel) based on multi-hydrogen-bonded double network of polyvinyl alcohol (PVA) and polyaniline (PANI) via in-situ polymerization and solvent conversion. Tannin in the ethylene/water (EG/H2O) binary solvent induces multiple dynamic hydrogen bonding network that closely connect PVA and PANI together, enduring HB-Hydrogel with outstanding self-healing capability and remarkable mechanical properties. On the other hand, HB-Hydrogel retains good flexibility even at − 20 °C by exchanging the aqueous solvent with EG/H2O binary solvent. In-situ polymerization of conductive PANI conquers the dispersion issue in PVA hydrogel to generate a homogeneous conductive network, resulting in very high sensitivity (GF = ~ 3.52) at low strain and outstanding linear dependence of sensitivity on strain. The assembled strain sensor equipped with the HB-Hydrogel can efficiently collect data of human monitoring, including the joint movements, pulses and voice-prints. Furthermore, a prototype 2D sensor array is built to detect strains or pressures in two dimensions, which is promising for electronic skin, touchpads, biosensors, human–machine interfaces, biomedical implants, wearable electronic devices and other applications.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Cao S, Tong X, Dai K, Xu Q (2019) J Mater Chem A 7:8204. https://doi.org/10.1039/c9ta00618d
Chakraborty P, Guterman T, Adadi N, Yadid M, Brosh T, Adler-Abramovich L, Dvir T, Gazit E (2019) ACS Nano 13:163. https://doi.org/10.1021/acsnano.8b05067
Liang L, Chen X, Yuan W, Chen H, Liao H, Zhang Y (2021) ACS Appl Mater Interfaces 21:25410
Liu S, Lin Y, Wei Y, Chen S, Zhu J, Liu L (2017) Compos Sci Technol 146:110. https://doi.org/10.1016/j.compscitech.2017.03.044
Chung D (2020) J Mater Sci 55:15367. https://doi.org/10.1007/s10853-020-05099-z
Wu L, Fan M, Qu M, Yang S, Nie J, Tang P, Pan L, Wang H, Bin Y (2021) J Mater Chem B 9:3088. https://doi.org/10.1039/d1tb00082a
Wu L, Li L, Pan L, Wang H, Bin Y (2020) J Appl Polym Sci 138:49800. https://doi.org/10.1002/app.49800
Xu J, Wang Z, You J et al (2020) Chem Eng J 392:123788. https://doi.org/10.1016/j.cej.2019.123788
Xu K, Wang Y, Zhang B, Zhang C, Liu T (2021) Compos Commun 24:100677. https://doi.org/10.1016/j.coco.2021.100677
Ren Z, Ke T, Ling Q, Zhao L, Gu H (2021) Carbohydr Polym 273:118533. https://doi.org/10.1016/j.carbpol.2021.118533
Rong Q, Lei W, Chen L, Yin Y, Zhou J, Liu M (2017) Angew Chem Int Ed 56:14159. https://doi.org/10.1002/anie.201708614
Shuai L, Guo ZH, Zhang P, Wan J, Pu X, Wang ZL (2020) Nano Energy 78:105389. https://doi.org/10.1016/j.nanoen.2020.105389
Liao H, Zhong W, Li T, Han J, Sun X, Tong X, Zhang Y (2022) Electrochim Acta 404:139730
Liang L, Yuan W, Chen X, Liao H (2021) Chem Eng J 421:130000
Gao Z, Kong L, Jin R, Liu X, Hu W, Gao G (2020) J Mater Chem C 8:11119. https://doi.org/10.1039/d0tc01094d
Zhao L, Ke T, Ling Q, Liu J, Li Z, Gu H (2021) ACS Appl Polym. Mater 11:5494. https://doi.org/10.1021/acsapm.1c00805
Ling Q, Ke T, Liu W, Ren Z, Zhao L, Gu H (2021) Ind Eng Chem Res 50:18373
Xia S, Song S, Jia F, Gao G (2019) J Mater Chem B 7:4638. https://doi.org/10.1039/c9tb01039d
Yin J, Pan S, Wu L, Tan L, Chen D, Huang S, Zhang Y, He P (2020) J Mater Chem C 8:17349. https://doi.org/10.1039/d0tc04144k
Zhang LM, He Y, Cheng S, Sheng H, Dai K, Zheng WJ, Wang MX, Chen ZS, Chen YM, Suo Z (2019) Small 15:e1804651. https://doi.org/10.1002/smll.201804651
Liu F, Liu X, Gu H (2021) Macromol Mater Eng 307:2100724
Liu J, Bao S, Ling Q, Fan X, Gu H (2022) Polymer 240:124513
Zhao L, Ren Z, Liu X, Ling Q, Li Z, Gu H (2021) ACS Appl Mater Interfaces 9:11344
Liu X, Ren Z, Liu F, Zhao L, Ling Q, Gu H (2021) ACS Appl Mater Interfaces 12:14612
Liu S, Li K, Hussain I et al (2018) Chemistry 24:6632. https://doi.org/10.1002/chem.201800259
Qiao H, Qi P, Zhang X et al (2019) ACS Appl Mater Interfaces 11:7755. https://doi.org/10.1021/acsami.8b20380
Rao VK, Shauloff N, Sui X, Wagner HD, Jelinek R (2020) J Mater Chem C 8:6034. https://doi.org/10.1039/d0tc00576b
Sim HJ, Kim H, Jang Y, Spinks GM, Gambhir S, Officer DL, Wallace GG, Kim SJ (2019) ACS Appl Mater Interfaces 11:46026. https://doi.org/10.1021/acsami.9b10100
Wang J, Tang F, Wang Y, Lu Q, Liu S, Li L (2020) ACS Appl Mater Interfaces 12:1558. https://doi.org/10.1021/acsami.9b18646
Wang M, Chen Y, Khan R, Liu H, Chen C, Chen T, Zhang R, Li H (2019) Colloid Surface A 567:139. https://doi.org/10.1016/j.colsurfa.2019.01.034
Gao Z, Li Y, Shang X, Hu W, Gao G, Duan L (2020) Mater Sci Eng C 106:110168. https://doi.org/10.1016/j.msec.2019.110168
Ge G, Yuan W, Zhao W, Lu Y, Zhang Y, Wang W, Chen P, Huang W, Si W, Dong X (2019) J Mater Chem A 7:5949. https://doi.org/10.1039/c9ta00641a
Robby AI, Lee G, Park SY (2019) Sensor Actuator B-Chem 297:126783. https://doi.org/10.1016/j.snb.2019.126783
Mao J, Zhao C, Li Y, Xiang D, Wang Z (2020) Compos Commun 17:22. https://doi.org/10.1016/j.coco.2019.10.007
Nie J, Huang J, Fan J, Cao L, Xu C, Chen Y (2020) ACS SustainChem Eng 8:13724. https://doi.org/10.1021/acssuschemeng.0c04136
Pei X, Zhang H, Zhou Y, Zhou L, Fu J (2020) Mater Horiz 7:1872. https://doi.org/10.1039/d0mh00361a
Zhu M, Jin H, Shao T, Li Y, Liu J, Gan L, Long M (2020) Mater Design 192:108723. https://doi.org/10.1016/j.matdes.2020.108723
Xu J, Wang G, Wu Y, Ren X, Gao G (2019) ACS Appl Mater Interfaces 11:25613. https://doi.org/10.1021/acsami.9b08369
Zhang Z, Tang L, Chen C, Yu H, Bai H, Wang L, Qin M, Feng Y, Feng W (2021) J Mater Chem A 9:875. https://doi.org/10.1039/d0ta09730f
Li D, Yao D, Gao X, Lu C, Zhang M, Fang H (2021) J Mater Sci 32:2735. https://doi.org/10.1007/s108594-021-07100-0
Xiao G, Wang Y, Zhang H, Zhu Z, Fu S (2021) Int J Biol Macromol 170:272. https://doi.org/10.1016/j.ijbiomac.2020.12.156
Zhang D, Tang Y, Zhang Y, Yang F, Liu Y, Wang X, Yang J, Gong X, Zheng J (2020) J Mater Chem A 8:20474. https://doi.org/10.1039/d0ta07390c
Zheng C, Yue Y, Gan L, Xu X, Mei C, Han J (2019) Nanomaterials (Basel) 9:937. https://doi.org/10.3390/nano9070937
Wang Y, Li W, Zhou Y, Jiang L, Ma J, Chen S, Jerrams S, Zhou F (2020) J Mater Sci 55:12592. https://doi.org/10.1007/s10853-020-04852-8
Duan J, Liang X, Guo J, Zhu K, Zhang L (2016) Adv Mater 28:8037. https://doi.org/10.1007/adma.201602126
Liao H, Zhou F, Zhang Z, Yang J (2019) Chem Eng J 357:428–434. https://doi.org/10.1016/j.cej.2018.09.153
Zhang Y, Ren E, Li A, Cui C, Guo R, Tang H, Xiao H, Zhou M, Qin W, Wang X, Liu L (2021) J Mater Chem B 9:719. https://doi.org/10.1039/d0tb01926g
Zhang Z, Gao Z, Wang Y, Guo L, Yin C, Zhang X, Hao J, Zhang G, Chen L (2019) Macromolecules 52:2531. https://doi.org/10.1021/acs.macromol.8b02466
Zheng H, Lin N, He Y, Zuo B (2021) ACS Appl Mater Interfaces 13:40013. https://doi.org/10.1021/acsami.1c08395
Acknowledgements
This work was supported by the Natural Science Foundation of Hunan Province (2019JJ50116, 2020JJ6078, and 2022JJ30227). Hunan Provincial Education Department Innovation (CX20201030)
Author information
Authors and Affiliations
Corresponding authors
Additional information
Handling Editor: Jaime Grunlan.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Sun, X., Zhong, W., Zhang, Z. et al. Stretchable, self-healable and anti-freezing conductive hydrogel based on double network for strain sensors and arrays. J Mater Sci 57, 12511–12521 (2022). https://doi.org/10.1007/s10853-022-07379-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-022-07379-2


