Skip to main content

Advertisement

Log in

Stretchable, self-healable and anti-freezing conductive hydrogel based on double network for strain sensors and arrays

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The application of hydrogels for flexible sensor is gravely hampered due to their poor freezing resistance and fatigue fracture associated with durable deformation, hence hydrogels that can operate correctly at sub-zero temperatures and sustain long-term deformation are urged for wearable electronics and implantable sensors. In this paper, we develop conductive hydrogel (HB-Hydrogel) based on multi-hydrogen-bonded double network of polyvinyl alcohol (PVA) and polyaniline (PANI) via in-situ polymerization and solvent conversion. Tannin in the ethylene/water (EG/H2O) binary solvent induces multiple dynamic hydrogen bonding network that closely connect PVA and PANI together, enduring HB-Hydrogel with outstanding self-healing capability and remarkable mechanical properties. On the other hand, HB-Hydrogel retains good flexibility even at − 20 °C by exchanging the aqueous solvent with EG/H2O binary solvent. In-situ polymerization of conductive PANI conquers the dispersion issue in PVA hydrogel to generate a homogeneous conductive network, resulting in very high sensitivity (GF =  ~ 3.52) at low strain and outstanding linear dependence of sensitivity on strain. The assembled strain sensor equipped with the HB-Hydrogel can efficiently collect data of human monitoring, including the joint movements, pulses and voice-prints. Furthermore, a prototype 2D sensor array is built to detect strains or pressures in two dimensions, which is promising for electronic skin, touchpads, biosensors, human–machine interfaces, biomedical implants, wearable electronic devices and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Cao S, Tong X, Dai K, Xu Q (2019) J Mater Chem A 7:8204. https://doi.org/10.1039/c9ta00618d

    Article  CAS  Google Scholar 

  2. Chakraborty P, Guterman T, Adadi N, Yadid M, Brosh T, Adler-Abramovich L, Dvir T, Gazit E (2019) ACS Nano 13:163. https://doi.org/10.1021/acsnano.8b05067

    Article  CAS  Google Scholar 

  3. Liang L, Chen X, Yuan W, Chen H, Liao H, Zhang Y (2021) ACS Appl Mater Interfaces 21:25410

    Article  Google Scholar 

  4. Liu S, Lin Y, Wei Y, Chen S, Zhu J, Liu L (2017) Compos Sci Technol 146:110. https://doi.org/10.1016/j.compscitech.2017.03.044

    Article  CAS  Google Scholar 

  5. Chung D (2020) J Mater Sci 55:15367. https://doi.org/10.1007/s10853-020-05099-z

    Article  CAS  Google Scholar 

  6. Wu L, Fan M, Qu M, Yang S, Nie J, Tang P, Pan L, Wang H, Bin Y (2021) J Mater Chem B 9:3088. https://doi.org/10.1039/d1tb00082a

    Article  CAS  Google Scholar 

  7. Wu L, Li L, Pan L, Wang H, Bin Y (2020) J Appl Polym Sci 138:49800. https://doi.org/10.1002/app.49800

    Article  CAS  Google Scholar 

  8. Xu J, Wang Z, You J et al (2020) Chem Eng J 392:123788. https://doi.org/10.1016/j.cej.2019.123788

    Article  CAS  Google Scholar 

  9. Xu K, Wang Y, Zhang B, Zhang C, Liu T (2021) Compos Commun 24:100677. https://doi.org/10.1016/j.coco.2021.100677

    Article  Google Scholar 

  10. Ren Z, Ke T, Ling Q, Zhao L, Gu H (2021) Carbohydr Polym 273:118533. https://doi.org/10.1016/j.carbpol.2021.118533

    Article  CAS  Google Scholar 

  11. Rong Q, Lei W, Chen L, Yin Y, Zhou J, Liu M (2017) Angew Chem Int Ed 56:14159. https://doi.org/10.1002/anie.201708614

    Article  CAS  Google Scholar 

  12. Shuai L, Guo ZH, Zhang P, Wan J, Pu X, Wang ZL (2020) Nano Energy 78:105389. https://doi.org/10.1016/j.nanoen.2020.105389

    Article  CAS  Google Scholar 

  13. Liao H, Zhong W, Li T, Han J, Sun X, Tong X, Zhang Y (2022) Electrochim Acta 404:139730

    Article  CAS  Google Scholar 

  14. Liang L, Yuan W, Chen X, Liao H (2021) Chem Eng J 421:130000

    Article  CAS  Google Scholar 

  15. Gao Z, Kong L, Jin R, Liu X, Hu W, Gao G (2020) J Mater Chem C 8:11119. https://doi.org/10.1039/d0tc01094d

    Article  CAS  Google Scholar 

  16. Zhao L, Ke T, Ling Q, Liu J, Li Z, Gu H (2021) ACS Appl Polym. Mater 11:5494. https://doi.org/10.1021/acsapm.1c00805

    Article  CAS  Google Scholar 

  17. Ling Q, Ke T, Liu W, Ren Z, Zhao L, Gu H (2021) Ind Eng Chem Res 50:18373

    Article  Google Scholar 

  18. Xia S, Song S, Jia F, Gao G (2019) J Mater Chem B 7:4638. https://doi.org/10.1039/c9tb01039d

    Article  CAS  Google Scholar 

  19. Yin J, Pan S, Wu L, Tan L, Chen D, Huang S, Zhang Y, He P (2020) J Mater Chem C 8:17349. https://doi.org/10.1039/d0tc04144k

    Article  CAS  Google Scholar 

  20. Zhang LM, He Y, Cheng S, Sheng H, Dai K, Zheng WJ, Wang MX, Chen ZS, Chen YM, Suo Z (2019) Small 15:e1804651. https://doi.org/10.1002/smll.201804651

    Article  CAS  Google Scholar 

  21. Liu F, Liu X, Gu H (2021) Macromol Mater Eng 307:2100724

    Article  Google Scholar 

  22. Liu J, Bao S, Ling Q, Fan X, Gu H (2022) Polymer 240:124513

    Article  CAS  Google Scholar 

  23. Zhao L, Ren Z, Liu X, Ling Q, Li Z, Gu H (2021) ACS Appl Mater Interfaces 9:11344

    Article  Google Scholar 

  24. Liu X, Ren Z, Liu F, Zhao L, Ling Q, Gu H (2021) ACS Appl Mater Interfaces 12:14612

    Article  Google Scholar 

  25. Liu S, Li K, Hussain I et al (2018) Chemistry 24:6632. https://doi.org/10.1002/chem.201800259

    Article  CAS  Google Scholar 

  26. Qiao H, Qi P, Zhang X et al (2019) ACS Appl Mater Interfaces 11:7755. https://doi.org/10.1021/acsami.8b20380

    Article  CAS  Google Scholar 

  27. Rao VK, Shauloff N, Sui X, Wagner HD, Jelinek R (2020) J Mater Chem C 8:6034. https://doi.org/10.1039/d0tc00576b

    Article  CAS  Google Scholar 

  28. Sim HJ, Kim H, Jang Y, Spinks GM, Gambhir S, Officer DL, Wallace GG, Kim SJ (2019) ACS Appl Mater Interfaces 11:46026. https://doi.org/10.1021/acsami.9b10100

    Article  CAS  Google Scholar 

  29. Wang J, Tang F, Wang Y, Lu Q, Liu S, Li L (2020) ACS Appl Mater Interfaces 12:1558. https://doi.org/10.1021/acsami.9b18646

    Article  CAS  Google Scholar 

  30. Wang M, Chen Y, Khan R, Liu H, Chen C, Chen T, Zhang R, Li H (2019) Colloid Surface A 567:139. https://doi.org/10.1016/j.colsurfa.2019.01.034

    Article  CAS  Google Scholar 

  31. Gao Z, Li Y, Shang X, Hu W, Gao G, Duan L (2020) Mater Sci Eng C 106:110168. https://doi.org/10.1016/j.msec.2019.110168

    Article  CAS  Google Scholar 

  32. Ge G, Yuan W, Zhao W, Lu Y, Zhang Y, Wang W, Chen P, Huang W, Si W, Dong X (2019) J Mater Chem A 7:5949. https://doi.org/10.1039/c9ta00641a

    Article  CAS  Google Scholar 

  33. Robby AI, Lee G, Park SY (2019) Sensor Actuator B-Chem 297:126783. https://doi.org/10.1016/j.snb.2019.126783

    Article  CAS  Google Scholar 

  34. Mao J, Zhao C, Li Y, Xiang D, Wang Z (2020) Compos Commun 17:22. https://doi.org/10.1016/j.coco.2019.10.007

    Article  Google Scholar 

  35. Nie J, Huang J, Fan J, Cao L, Xu C, Chen Y (2020) ACS SustainChem Eng 8:13724. https://doi.org/10.1021/acssuschemeng.0c04136

    Article  CAS  Google Scholar 

  36. Pei X, Zhang H, Zhou Y, Zhou L, Fu J (2020) Mater Horiz 7:1872. https://doi.org/10.1039/d0mh00361a

    Article  CAS  Google Scholar 

  37. Zhu M, Jin H, Shao T, Li Y, Liu J, Gan L, Long M (2020) Mater Design 192:108723. https://doi.org/10.1016/j.matdes.2020.108723

    Article  CAS  Google Scholar 

  38. Xu J, Wang G, Wu Y, Ren X, Gao G (2019) ACS Appl Mater Interfaces 11:25613. https://doi.org/10.1021/acsami.9b08369

    Article  CAS  Google Scholar 

  39. Zhang Z, Tang L, Chen C, Yu H, Bai H, Wang L, Qin M, Feng Y, Feng W (2021) J Mater Chem A 9:875. https://doi.org/10.1039/d0ta09730f

    Article  CAS  Google Scholar 

  40. Li D, Yao D, Gao X, Lu C, Zhang M, Fang H (2021) J Mater Sci 32:2735. https://doi.org/10.1007/s108594-021-07100-0

    Article  Google Scholar 

  41. Xiao G, Wang Y, Zhang H, Zhu Z, Fu S (2021) Int J Biol Macromol 170:272. https://doi.org/10.1016/j.ijbiomac.2020.12.156

    Article  CAS  Google Scholar 

  42. Zhang D, Tang Y, Zhang Y, Yang F, Liu Y, Wang X, Yang J, Gong X, Zheng J (2020) J Mater Chem A 8:20474. https://doi.org/10.1039/d0ta07390c

    Article  CAS  Google Scholar 

  43. Zheng C, Yue Y, Gan L, Xu X, Mei C, Han J (2019) Nanomaterials (Basel) 9:937. https://doi.org/10.3390/nano9070937

    Article  CAS  Google Scholar 

  44. Wang Y, Li W, Zhou Y, Jiang L, Ma J, Chen S, Jerrams S, Zhou F (2020) J Mater Sci 55:12592. https://doi.org/10.1007/s10853-020-04852-8

    Article  CAS  Google Scholar 

  45. Duan J, Liang X, Guo J, Zhu K, Zhang L (2016) Adv Mater 28:8037. https://doi.org/10.1007/adma.201602126

    Article  CAS  Google Scholar 

  46. Liao H, Zhou F, Zhang Z, Yang J (2019) Chem Eng J 357:428–434. https://doi.org/10.1016/j.cej.2018.09.153

  47. Zhang Y, Ren E, Li A, Cui C, Guo R, Tang H, Xiao H, Zhou M, Qin W, Wang X, Liu L (2021) J Mater Chem B 9:719. https://doi.org/10.1039/d0tb01926g

    Article  CAS  Google Scholar 

  48. Zhang Z, Gao Z, Wang Y, Guo L, Yin C, Zhang X, Hao J, Zhang G, Chen L (2019) Macromolecules 52:2531. https://doi.org/10.1021/acs.macromol.8b02466

    Article  CAS  Google Scholar 

  49. Zheng H, Lin N, He Y, Zuo B (2021) ACS Appl Mater Interfaces 13:40013. https://doi.org/10.1021/acsami.1c08395

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hunan Province (2019JJ50116, 2020JJ6078, and 2022JJ30227). Hunan Provincial Education Department Innovation (CX20201030)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyang Liao or Changfan Zhang.

Additional information

Handling Editor: Jaime Grunlan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1522 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhong, W., Zhang, Z. et al. Stretchable, self-healable and anti-freezing conductive hydrogel based on double network for strain sensors and arrays. J Mater Sci 57, 12511–12521 (2022). https://doi.org/10.1007/s10853-022-07379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07379-2