Skip to main content

Advertisement

Log in

Synthesis, properties, and applications of MBenes (two-dimensional metal borides) as emerging 2D materials: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials like conventional graphene, hexagonal boron nitride (h-BN, monolayer), and transition metal dichalcogenides (2D TMDCs) have gotten a lot of attention lately because of their unparalleled possibilities for a variety of applications. MBenes, a family of two-dimensional (2D) transition metal borides, have recently attracted significant attention. Their elemental compositions, surface terminations, geometrical forms, and properties (chemical and physical) are unique and fascinating. These two-dimensional compounds hold promising potential for environmental applications because of their exceptional electrical conductivity, high hydrophilicity, rich surface chemistry, and outstanding stability. The newly discovered MBenes are incredibly stable, with isotropic and ultrahigh Young's modulus. Furthermore, MBenes have superior catalytic activity, optical and thermal properties. Given many potential MBenes, theoretical and experimental applications are expected soon. This review presents the synthetic approaches, properties (optical, thermal, mechanical, and electrochemical), and diverse applications of MBenes-based heterostructures. The numerous strategies for further investigation MBenes for applications in the energy sector (storage and conversion) are highlighted.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Source Clarivate Web of Science

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jiang H et al (2020) Two-dimensional materials: from mechanical properties to flexible mechanical sensors. InfoMat 2(6):1077–1094

    Article  CAS  Google Scholar 

  2. Yang S et al (2020) Emerging 2D materials produced via electrochemistry. Adv. Mater. 32(10):1907857

    Article  CAS  Google Scholar 

  3. Gonzalez-Julian J (2021) Processing of MAX phases: from synthesis to applications. J. Am. Ceram. Soc. 104(2):659–690

    Article  CAS  Google Scholar 

  4. Guo Z et al (2015) Microscopic origin of MXenes derived from layered MAX phases. RSC. Adv. 5(32):25403–25408

    Article  CAS  Google Scholar 

  5. Guo Z et al (2015) Flexible two-dimensional Ti n+ 1 C n (n= 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys. Chem. Chem. Phys. 17(23):15348–15354

    Article  CAS  Google Scholar 

  6. Joshi R, Ningthoujam RS (2021) Synthesis, characterization, physical properties and applications of metal borides. Handbook on Synthesis Strategies for Advanced Materials. Springer, pp 251–305

    Chapter  Google Scholar 

  7. Guo Z, Zhou J, Sun Z (2017) New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A 5(45):23530–23535

    Article  CAS  Google Scholar 

  8. Miao N et al (2020) Computational prediction of boron-based MAX phases and MXene derivatives. Chem. Mater. 32(16):6947–6957

    Article  CAS  Google Scholar 

  9. James AL et al (2020) Processable dispersions of photocatalytically active nanosheets derived from titanium diboride: self assembly into hydrogels and paper-like macrostructures. Nanoscale 12(32):17121–17131

    Article  CAS  Google Scholar 

  10. Patidar R et al (2020) Co-solvent exfoliation of layered titanium diboride into few-layer-thick nanosheets. Ceram. Int. 46(18):28324–28331

    Article  CAS  Google Scholar 

  11. Das SK, Jasuja K (2018) Chemical exfoliation of layered magnesium diboride to yield functionalized nanosheets and nanoaccordions for potential flame retardant applications. ACS Appl. Nano. Mater. 1(4):1612–1622

    Article  CAS  Google Scholar 

  12. Gunda H, Das SK, Jasuja K (2018) Simple, green, and high-yield production of boron-based nanostructures with diverse morphologies by dissolution and recrystallization of layered magnesium diboride crystals in water. ChemPhysChem 19(7):880–891

    Article  CAS  Google Scholar 

  13. Gunda H et al (2021) Progress, challenges, and opportunities in the synthesis, characterization, and application of metal-boride-derived two-dimensional nanostructures. ACS Mater. Lett. 3(5):535–556

    Article  CAS  Google Scholar 

  14. Hu M et al (2020) Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 49(18):6666–6693

    Article  CAS  Google Scholar 

  15. Zhou S et al (2020) MXene and MBene as efficient catalysts for energy conversion: roles of surface, edge and interface. J. Phys. Energy 3(1):012002

    Article  CAS  Google Scholar 

  16. Li B et al (2020) Single-metal atoms supported on MBenes for robust electrochemical hydrogen evolution. ACS Appl. Mater. Interfaces 12(8):9261–9267

    Article  CAS  Google Scholar 

  17. Yang X et al (2020) MBenes: emerging 2D materials as efficient electrocatalysts for the nitrogen reduction reaction. Nanoscale Horiz. 5(7):1106–1115

    Article  CAS  Google Scholar 

  18. Khazaei M et al (2019) Novel MAB phases and insights into their exfoliation into 2D MBenes. Nanoscale 11(23):11305–11314

    Article  CAS  Google Scholar 

  19. Alameda LT et al (2017) Partial etching of Al from MoAlB single crystals to expose catalytically active basal planes for the hydrogen evolution reaction. Chem. Mater. 29(21):8953–8957

    Article  CAS  Google Scholar 

  20. Alameda LT et al (2018) Topochemical deintercalation of Al from MoAlB: stepwise etching pathway, layered intergrowth structures, and two-dimensional MBene. J. Am. Chem. Soc. 140(28):8833–8840

    Article  CAS  Google Scholar 

  21. Zhang H et al (2018) First demonstration of possible two-dimensional MBene CrB derived from MAB phase Cr2AlB2. J. Mater. Sci. Technol. 34(11):2022–2026

    Article  CAS  Google Scholar 

  22. Zhang H et al (2019) Phase pure and well crystalline Cr2AlB2: A key precursor for two-dimensional CrB. J. Mater. Sci. Technol. 35(8):1593–1600

    Article  CAS  Google Scholar 

  23. Naguib M et al (2014) One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem. Commun. 50(56):7420–7423

    Article  CAS  Google Scholar 

  24. Choi MS et al (2021) High carrier mobility in graphene doped using a monolayer of tungsten oxyselenide. Nat. Electron. 4(10):731–739

    Article  CAS  Google Scholar 

  25. Gupta SK, Mao Y (2021) A review on molten salt synthesis of metal oxide nanomaterials: Status, opportunity, and challenge. Prog. Mater. Sci. 117:100734

    Article  CAS  Google Scholar 

  26. Dinh KN et al (2019) Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion. Nano Today 25:99–121

    Article  CAS  Google Scholar 

  27. Das SK et al (2015) Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation. Sci. Rep. 5(1):1–11

    Google Scholar 

  28. Kuzmenko A (2007) Multiband and impurity effects in infrared and optical spectra of MgB2. Physica C 456(1–2):63–74

    Article  CAS  Google Scholar 

  29. Guritanu V et al (2006) Anisotropic optical conductivity and two colors of MgB 2. Phys. Rev. B 73(10):104509

    Article  CAS  Google Scholar 

  30. Fudamoto Y, Lee S (2003) Anisotropic electrodynamics of MgB 2 detected by optical reflectance. Phys. Rev. B 68(18):184514

    Article  CAS  Google Scholar 

  31. Housecroft CE (1995) Transition metal boride clusters at the molecular level. Coord. Chem. Rev. 143:297–330

    Article  CAS  Google Scholar 

  32. Jiang Y, Lu Y (2020) Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting. Nanoscale 12(17):9327–9351

    Article  CAS  Google Scholar 

  33. Khaledialidusti R et al (2021) Exploring structural, electronic, and mechanical properties of 2D hexagonal MBenes. J. Phys. Condens. Matter 33(15):155503

    Article  CAS  Google Scholar 

  34. Fahrenholtz WG, Binner J, Zou J (2016) Synthesis of ultra-refractory transition metal diboride compounds. J. Mater. Res. 31(18):2757–2772

    Article  CAS  Google Scholar 

  35. Liu D et al (2019) Synthesis of high-purity high-entropy metal diboride powders by boro/carbothermal reduction. J. Am. Ceram. Soc. 102(12):7071–7076

    Article  CAS  Google Scholar 

  36. Park H et al (2019) High-Current-Density HER Electrocatalysts: Graphene-like Boron Layer and Tungsten as Key Ingredients in Metal Diborides. Chemsuschem 12(16):3726–3731

    Article  CAS  Google Scholar 

  37. Yousaf A et al (2021) Exfoliation of quasi-two-dimensional nanosheets of metal diborides. J. Phys. Chem. C 125(12):6787–6799

    Article  CAS  Google Scholar 

  38. Senkowicz B et al (2008) Nanoscale grains, high irreversibility field and large critical current density as a function of high-energy ball milling time in C-doped magnesium diboride. Supercond. Sci. Technol. 21(3):035009

    Article  CAS  Google Scholar 

  39. Rodrigues D et al (2009) Flux pinning optimization of MgB2 bulk samples prepared using high-energy ball milling and addition of TaB2. IEEE Trans. Appl. Supercond. 19(3):2797–2801

    Article  CAS  Google Scholar 

  40. Guo F et al (2019) A class of metal diboride electrocatalysts synthesized by a molten salt-assisted reaction for the hydrogen evolution reaction. Chem. Commun. 55(59):8627–8630

    Article  CAS  Google Scholar 

  41. Wen T et al (2019) Synthesis and characterization of the ternary metal diboride solid-solution nanopowders. J. Am. Ceram. Soc. 102(8):4956–4962

    Article  CAS  Google Scholar 

  42. Gild J et al (2020) Thermal conductivity and hardness of three single-phase high-entropy metal diborides fabricated by borocarbothermal reduction and spark plasma sintering. Ceram. Int. 46(5):6906–6913

    Article  CAS  Google Scholar 

  43. Shi Y et al (2015) Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44(19):6684–6696

    Article  CAS  Google Scholar 

  44. Pomerantseva E et al (2019) Energy storage: the future enabled by nanomaterials. Science 366(6468):eaan82850

  45. Li R et al (2020) A First-Principles Study of MBene as Anode Material for Mg-Ion Battery. J. Electrochem. Energy Convers. Storage 17(4):041002

    Article  CAS  Google Scholar 

  46. Xiao Y et al (2021) Functionalized Mo2B2 MBenes: promising anchoring and electrocatalysis materials for Lithium-Sulfur battery. Appl. Surf. Sci. 566:150634

    Article  CAS  Google Scholar 

  47. Jia J et al (2019) Monolayer MBenes: prediction of anode materials for high-performance lithium/sodium ion batteries. Nanoscale 11(42):20307–20314

    Article  CAS  Google Scholar 

  48. Pu Z et al (2021) Nanostructured metal borides for energy-related electrocatalysis: recent progress, challenges, and perspectives. Small Methods 5(10):2100699

    Article  CAS  Google Scholar 

  49. Yuan H, Li Z, Yang J (2019) Transition-metal diboride: a new family of two-dimensional materials designed for selective CO2 electroreduction. J. Phys. Chem. C 123(26):16294–16299

    Article  CAS  Google Scholar 

  50. Li Y et al (2021) Carbon doped hexagonal boron nitride nanoribbon as efficient metal-free electrochemical nitrogen reduction catalyst. Chem. Eng. J. 410:128419

    Article  CAS  Google Scholar 

  51. Guo X et al (2021) Establishing a theoretical landscape for identifying basal plane active 2D metal borides (MBenes) toward nitrogen electroreduction. Adv. Func. Mater. 31(6):2008056

    Article  CAS  Google Scholar 

  52. Xiao Y, Shen C, Long T (2021) Theoretical establishment and screening of an efficient catalyst for N2 electroreduction on two-dimensional transition-metal borides (MBenes). Chem. Mater. 33(11):4023–4034

    Article  CAS  Google Scholar 

  53. Xiao Y, Shen C (2021) Transition-metal borides (MBenes) as new high-efficiency catalysts for nitric oxide electroreduction to ammonia by a high-throughput approach. Small 17(24):2100776

    Article  CAS  Google Scholar 

  54. Zhang B et al (2020) Two-dimensional chromium boride MBenes with high HER catalytic activity. Appl. Surf. Sci. 500:144248

    Article  CAS  Google Scholar 

  55. Zhang T et al (2021) Mo 2 B 2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts. J. Mater. Chem. A 9(1):433–441

    Article  CAS  Google Scholar 

  56. Jothi PR et al (2017) Molybdenum diboride nanoparticles as a highly efficient electrocatalyst for the hydrogen evolution reaction. Sustain. Energy Fuels 1(9):1928–1934

    Article  CAS  Google Scholar 

  57. Li H et al (2017) Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting. Adv. Energy. Mater. 7(17):1700513

    Article  CAS  Google Scholar 

  58. Masa J et al (2017) Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv. Energy. Mater. 7(17):1700381

    Article  CAS  Google Scholar 

  59. Chen Z et al (2018) Study of cobalt boride-derived electrocatalysts for overall water splitting. Int. J. Hydrog. Energy 43(12):6076–6087

    Article  CAS  Google Scholar 

  60. Farrow CL et al (2013) Intermediate-range structure of self-assembled cobalt-based oxygen-evolving catalyst. J. Am. Chem. Soc. 135(17):6403–6406

    Article  CAS  Google Scholar 

  61. Nsanzimana JMV et al (2019) Tailoring of metal boride morphology via anion for efficient water oxidation. Adv. Energy. Mater. 9(28):1901503

    Article  CAS  Google Scholar 

  62. Jiang Y et al (2019) Amorphous cobalt boride nanosheets directly grown on nickel foam: controllable alternately dipping deposition for efficient oxygen evolution. ChemElectroChem 6(14):3684–3689

    Article  CAS  Google Scholar 

  63. Chen X et al (2019) Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 7(2):764–774

    Article  CAS  Google Scholar 

  64. Vrubel H, Hu X (2012) Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem. Int. Ed. 51(51):12703–12706. https://doi.org/10.1002/anie.201207111

    Article  CAS  Google Scholar 

  65. Zeng M et al (2016) Nanostructured amorphous nickel boride for high-efficiency electrocatalytic hydrogen evolution over a broad pH range. ChemCatChem 8(4):708–712

    Article  CAS  Google Scholar 

  66. Li Q et al (2020) ZrB 2 as an earth-abundant metal diboride catalyst for electroreduction of dinitrogen to ammonia. Chem Commun 56(85):13009–13012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AT acknowledges Early Career Fellowship (Grant No.: MIS/IITGN/R&D/KJ/202122/028) received from the Indian Institute of Technology, Gandhinagar. AT also acknowledges Director, Prof. Kabeer Jasuja, and the group at the Indian Institute of Technology, Gandhinagar, for needful support and guidance. AS acknowledges the support received from the Department of Physics, Himachal Pradesh University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupma Thakur.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Rangra, V.S. & Thakur, A. Synthesis, properties, and applications of MBenes (two-dimensional metal borides) as emerging 2D materials: a review. J Mater Sci 57, 12738–12751 (2022). https://doi.org/10.1007/s10853-022-07378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07378-3

Navigation