Skip to main content

Advertisement

Log in

A review on (Sr,Ca)TiO3-based dielectric materials: crystallography, recent progress and outlook in energy-storage aspects

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In pursuit of developing high-performance lead-free energy storage capacitors, strontium titanate (SrTiO3) and calcium titanate (CaTiO3) are widely recognised as promising dielectric ceramics. Both end members are completely miscible for the entire doping concentration which results in the successful formation of (Sr1 − xCax)TiO3 solid solutions. Most importantly, the Ca dopant irons the electric fields, temperature and frequency stabilities of SrTiO3 ceramic. This review encompasses up to date knowledge of crystallography, dielectric properties and recent progress on energy storage aspects of various (Sr1 − xCax)TiO3 materials. Firstly, the structural phase transition (with special attention to room temperature) behaviour has been discussed which is essential to understand the origin of functional dielectric properties. Thereafter, various strategies to improve the energy storage properties of bulk (Sr1 − xCax)TiO3-based materials have been discussed. Further, leverage of the improved properties in the bulk ceramics into the thin film regime will be essential for creating next-generation high-performance power electronic devices. In this perspective, some interesting developments reported in thin film form are also discussed. Finally, challenges and outlook of (Sr1 − xCax)TiO3-based bulk ceramics and thin films towards future research and the applications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

reproduced with permission from Yang et al. (Prog Mater Sci 102:72, 2019). Copyright ©2018, Elsevier Ltd [18]. Bar chart representation for the number of articles published on energy storage devices and dielectric capacitors between 2010 and 2020 [Source: Scopus database; title, abstract and keywords searched: “energy storage devices” and “dielectric capacitors” (filter: lead-free)] (b), sketch for various applications of capacitors (c) and bar chart representation for the number of papers published between 2011 and 2020 with “SrTiO3” or “strontium titanate” and “CaTiO3” or "calcium titanate" (filter: capacitors) as the topic (d)

Figure 2

reproduced with permission from McCalla et al. (Chem. Mater. 28:7973, 2016). Copyright© 2016, American Chemical Society [86]

Figure 3

reproduced with permission from Anwar et al. (J Phys: Condens Matter 20:325231, 2008). Copyright © 2008, IOP publishing [114]

Figure 4

reproduced with permission from Anwar et al. (Appl Phys Lett 92:212901, 2008). Copyright©2008, American Institute of Physics [109]. Schematic representation of the domain memory effect for occurrence of Pbcm symmetry (c), reproduced with permission from Ren et al. (Phys Rev Lett 85:1016, 2000). Copyright ©2000, American Physical Society [119]. Comparison of XRD data for 0.20⩽x⩽0.35 with (right panel) and without oxygenation (left panel) (d), reproduced with permission from Anwar et al. (Appl Phys Lett 92:212901, 2008). Copyright© 2008, AIP publishing [109]. Pseudocubic sub-cell parameter of Sr1−xCaxTiO3 solid solutions (e)

Figure 5

reproduced with permission from Geneste et al. (Phys Rev B 77:174101, 2008). Copyright©2008, American Physical Society [78]. The specific heat jump caused by the AFD phase transition in SrTiO3 (top) and Sr1−xCaxTiO3 (bottom) (d), reproduced with permission from Lima et al. (Phys Rev B 91:045108, 2015). Copyright ©2015, American Physical Society [79]. The ɛ′(T) curve for three different x with the maximum marks the Curie temperature; FE P-E loops at T = 5 K (inset) (e) and the dielectric loss ε"(T) with three different x in the frequency range, 1 Hz–1 kHz (f), reproduced with permission Lima et al. (Phys Rev B 91:045108, 2015). Copyright ©2015, American Physical Society [79]

Figure 6

reproduced with permission from Bednorz et al. (Phys Rev Lett 52:2289, 1984). Copyright © 1984, American Physical Society [93] and (x = 0.18 ≤ x ≤ 0.40) at 10 kHz (b), reproduced with permission from Ranjan et al. (Phys Rev Lett 84:3726, 2000). Copyright ©2000 American Physical Society [97]. Transition temperature (Tm) curve as a function of composition range, 0 ≤ x ≤ 0.40 (c) and Curie temperature (Tc) curve as a function of composition range, 0 ≤ x ≤ 0.35 (d), reproduced with permission from Ranjan et al. (J Phys: Condens Matter 13:4239, 2001). Copyright © 2001, IOP publishing [76]. The ε′(T) curves for the un-oxygenated (left panel) and oxygenated (right panel) ceramics at 1 kHz of heating–cooling P-E loops (e), reproduced with permission from Anwar et al. (Appl Phys Lett 92(21):212901, 2008). Copyright ©2008, American Institute of Physics [109]

Figure 7
Figure8
Figure 9

reproduced with permission from Cai et al. (J Am Ceram Soc 101:5487, 2018). Copyrights ©2018, American Ceramic Society [179]. The introduction of Zr4+ inhibits grain growth, and grain boundary barrier effects is enhanced via oxygen treatment for Ca0.5Sr0.5Ti0.85Zr0.15O3 ceramics (e), reproduced with permission from Pu et al. (J Mater Chem C 7:14384, 2019). Copyright © 2019, Royal Society of Chemistry [43]. Schematic outline of dielectric breakdown mechanism in various dielectric materials (f), reproduced with permission from Tan et al. (J Appl Polym Sci 137:49379, 2020). Copyright © 2020, Wiley Periodicals LLC [180]

Figure 10

reproduced with permission from Chen et al. (Appl Phys Lett 117:112902, 2020). Copyright ©2020, American Institute of Physics [68]

Figure 11

reproduced with permission from Moriana et al. (J Materiom 4:277, 2018). Copyright © 2018, Elsevier B.V [190]. Schematic of the migration of oxygen vacancies at SrTiO3/LSMO interface (b), reproduced with permission from Hou et al. (ACS Appl Mater Interfaces 9:20484, 2017).Copyright © 2017, American Chemical Society [142]. Three types of interfacial engineering in the epitaxial thin films: (i) buffer layer, (ii) artificial dead layer, and (iii) barrier layer (c)

Similar content being viewed by others

References

  1. Khatib H (2012) Energy Policy 48:737–743

    Article  Google Scholar 

  2. Mohr SH, Wang J, Ellem G, Ward J, Giurco D (2015) Projection of world fossil fuels by country. Fuel 141:120–135

    Article  CAS  Google Scholar 

  3. IEA (2020) World energy outlook 2020. IEA

  4. Graves C, Ebbesen SD, Mogensen M, Lackner KS (2011) Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew Sustain Energy Rev 15(1):1–23. https://doi.org/10.1016/j.rser.2010.07.014

    Article  CAS  Google Scholar 

  5. Manzano-Agugliaro F, Alcayde A, Montoya FG, Zapata-Sierra A, Gil C (2013) Scientific production of renewable energies worldwide: an overview. Renew Sustain Energy Rev 18:134–143. https://doi.org/10.1016/j.rser.2012.10.020

    Article  Google Scholar 

  6. Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15(3):1513–1524. https://doi.org/10.1016/j.rser.2010.11.037

    Article  Google Scholar 

  7. Council WE (2013) World energy scenarios. World Energy Council. https://www.worldenergy.org/publications/entry/world-energy-scenarios-composing-energy-futures-to-2050

  8. IEA. (2019) IEA (International Energy Agency) Global energy & CO2 status report. https://www.iea.org/geco/emissions/

  9. IEA (2021) Global energy review: CO2 emissions in 2020. IEA, Paris. https://www.iea.org/articles/global-energy-review-co2-emissions-in-2020

  10. IEA (2022) SDG7: Data and Projections, IEA, Paris. https://www.iea.org/reports/sdg7-data-and-projections

  11. Guney MS, Tepe Y (2017) Classification and assessment of energy storage systems. Renew Sustain Energy Rev 75:1187–1197. https://doi.org/10.1016/j.rser.2016.11.102

    Article  Google Scholar 

  12. Owusu PA, Asumadu-Sarkodie S (2016) A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng 3(1):1167990. https://doi.org/10.1080/23311916.2016.1167990

    Article  Google Scholar 

  13. Sinsel SR, Riemke RL, Hoffmann VH (2020) Challenges and solution technologies for the integration of variable renewable energy sources—a review. Renew Energy 145:2271–2285. https://doi.org/10.1016/j.renene.2019.06.147

    Article  Google Scholar 

  14. Rahman MM, Oni AO, Gemechu E, Kumar A (2020) Assessment of energy storage technologies: a review. Energy Convers Manag 223:113295. https://doi.org/10.1016/j.enconman.2020.113295

    Article  CAS  Google Scholar 

  15. Aneke M, Wang M (2016) Energy storage technologies and real life applications—a state of the art review. Appl Energy 179:350–377. https://doi.org/10.1016/j.apenergy.2016.06.097

    Article  Google Scholar 

  16. Barton JP, Infield DG (2004) Energy storage and its use with intermittent renewable energy. IEEE Trans Energy Convers 19(2):441–448. https://doi.org/10.1109/TEC.2003.822305

    Article  Google Scholar 

  17. Schoenung SM (2001) Characteristics and technologies for long-vs. short-term energy storage. United States Department of Energy

  18. Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Zhang S (2019) Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 102:72–108. https://doi.org/10.1016/j.pmatsci.2018.12.005

    Article  CAS  Google Scholar 

  19. Lin Z, Goikolea E, Balducci A, Naoi K, Taberna PL, Salanne M, Simon P (2018) When Li-ion battery power is not enough. Mater today 21(4):419–436. https://doi.org/10.1016/j.mattod.2018.01.035

    Article  CAS  Google Scholar 

  20. Cinti G, Desideri U (2015) SOFC fuelled with reformed urea. Appl Energy 154:242–253. https://doi.org/10.1016/j.apenergy.2015.04.126

    Article  CAS  Google Scholar 

  21. Satpathy S, Das S, Bhattacharyya BK (2020) How and where to use super-capacitors effectively, an integration of review of past and new characterization works on super-capacitors. J Energy Storage 27:101044. https://doi.org/10.1016/j.est.2019.101044

    Article  Google Scholar 

  22. Kwon S, Hackenberger W, Alberta E, Furman E, Lanagan M (2011) Nonlinear dielectric ceramics and their applications to capacitors and tunable dielectrics. IEEE Electr Insul Mag 27(2):43–55. https://doi.org/10.1109/MEI.2011.5739422

    Article  Google Scholar 

  23. Pan MJ, Randall CA (2010) A brief introduction to ceramic capacitors. IEEE Electr Insul Mag 26(3):44–50. https://doi.org/10.1109/MEI.2010.5482787

    Article  CAS  Google Scholar 

  24. Hao X, Zhai J, Kong LB, Xu Z (2014) A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog Mater Sci 63:1–57. https://doi.org/10.1016/j.pmatsci.2014.01.002

    Article  CAS  Google Scholar 

  25. Directive EU (2013) Restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). Off J Eur Communities 46:19–23.

  26. Zou K, Dan Y, Xu H, Zhang Q, Lu Y, Huang H, He Y (2019) Recent advances in lead-free dielectric materials for energy storage. Mater Res Bull 113:190–201. https://doi.org/10.1016/j.materresbull.2019.02.002

    Article  CAS  Google Scholar 

  27. Correia TM, McMillen M, Rokosz MK, Weaver PM, Gregg JM, Viola G, Cain MG (2013) A lead-free and high-energy density ceramic for energy storage applications. J Am Ceram Soc 96(9):2699–2702. https://doi.org/10.1111/jace.12508

    Article  CAS  Google Scholar 

  28. Ibn-Mohammed T, Koh SC, Reaney IM, Sinclair DC, Mustapha KB, Wang D (2017) Are lead-free piezoelectrics more environmentally friendly? MrsCommun 70(1):1–7. https://doi.org/10.1557/mrc.2017.10

    Article  CAS  Google Scholar 

  29. Li C, Shi L, Yang W, Zhou Y, Li X, Zhang C, Yang Y (2020) All polymer dielectric films for achieving high energy density film capacitors by blending poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) with aromatic polythiourea. Nanoscale Res Lett 15(1):1–9. https://doi.org/10.1186/s11671-020-3270-x

    Article  CAS  Google Scholar 

  30. Hu Q, Tian Y, Zhu Q, Bian J, Jin L, Du H, Wei X (2020) Achieve ultrahigh energy storage performance in BaTiO3–Bi (Mg1/2Ti1/2) O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy 67:104264. https://doi.org/10.1016/j.nanoen.2019.104264

    Article  CAS  Google Scholar 

  31. Lv J, Li Q, Li Y et al (2021) Significantly improved energy storage performance of NBT-BT based ceramics through domain control and preparation optimization. Chem Eng J 420:129900. https://doi.org/10.1016/j.cej.2021.129900

    Article  CAS  Google Scholar 

  32. Yuan Q, Yao F, Wang Y, Ma R, Wang H (2017) Relaxor ferroelectric 0.9 BaTiO3–0.1 Bi (Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J Mater Chem C 5(37):9552–9558. https://doi.org/10.1039/C7TC02478A

    Article  CAS  Google Scholar 

  33. Dai Z, Xie J, Liu W, Wang X, Zhang L, Zhou Z, Ren X (2020) Effective strategy to achieve excellent energy storage properties in lead-free BaTiO3-based bulk ceramics. ACS Appl Mater Interfaces 12(27):30289–30296. https://doi.org/10.1021/acsami.0c02832

    Article  CAS  Google Scholar 

  34. Bian S, Yue Z, Shi Y, Zhang J, Feng W (2021) Ultrahigh energy storage density and charge-discharge performance in novel sodium bismuth titanate-based ceramics. J Am Ceram Soc 104(2):936–947. https://doi.org/10.1111/jace.17486

    Article  CAS  Google Scholar 

  35. Yang Z, Du H, Qu S, Hou Y, Ma H, Wang J, Xu Z (2016) Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics. J Mater Chem A 4(36):13778–13785. https://doi.org/10.1039/C6TA04107H

    Article  CAS  Google Scholar 

  36. Shao T, Du H, Ma H, Qu S, Wang J, Wang J, Xu Z (2017) Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials. J Mater Chem A 5(2):554–563. https://doi.org/10.1039/C6TA07803F

    Article  CAS  Google Scholar 

  37. Qi H, Zuo R, Xie A, Tian A, Fu J, Zhang Y, Zhang S (2019) Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv Funct Mater 29(35):1903877. https://doi.org/10.1002/adfm.201903877

    Article  CAS  Google Scholar 

  38. Luo N, Han K, Cabral MJ, Liao X, Zhang S, Wei LC, Y, (2020) Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency. Nat Commun 11(1):1–10. https://doi.org/10.1038/s41467-020-18665-5

    Article  CAS  Google Scholar 

  39. Li S, Hu T, Nie H, Fu Z, Xu C, Xu F, Dong X (2021) Giant energy density and high efficiency achieved in silver niobate-based lead-free antiferroelectric ceramic capacitors via domain engineering. Energy Storage Mater 34:417–426. https://doi.org/10.1016/j.ensm.2020.09.021

    Article  Google Scholar 

  40. Yang H, Yan F, Lin Y, Wang T (2017) Novel strontium titanate-based lead-free ceramics for high-energy storage applications. ACS Sustain Chem Eng 5(11):10215–10222. https://doi.org/10.1021/acssuschemeng.7b02203

    Article  CAS  Google Scholar 

  41. Yang H, Yan F, Lin Y, Wang T (2017) Enhanced recoverable energy storage density and high efficiency of SrTiO3-based lead-free ceramics. Appl Phys Lett 111(25):253903. https://doi.org/10.1063/1.5000980

    Article  CAS  Google Scholar 

  42. Jan A, Liu H, Hao H, Yao Z, Emmanuel M, Pan W, Ahmad AS (2020) Enhanced dielectric breakdown strength and ultra-fast discharge performance of novel SrTiO3 based ceramics system. J Alloys Compd 830:154611. https://doi.org/10.1016/j.jallcom.2020.154611

    Article  CAS  Google Scholar 

  43. Pu Y, Wang W, Guo X, Shi R, Yang M, Li J (2019) Enhancing the energy storage properties of Ca0.5Sr0.5TiO3-based lead-free linear dielectric ceramics with excellent stability through regulating grain boundary defects. J Mater Chem C 7(45):14384–14393. https://doi.org/10.1039/C9TC04738G

    Article  CAS  Google Scholar 

  44. Wang W, Pu Y, Guo X, Ouyang T, Shi Y, Yang M, Liu G (2019) Enhanced energy storage properties of lead-free (Ca0.5Sr0.5)1-1.5xLaxTiO3 linear dielectric ceramics within a wide temperature range. Ceram Int 45(12):14684–14690. https://doi.org/10.1016/j.ceramint.2019.04.188

    Article  CAS  Google Scholar 

  45. Luo Q, Yao Z, Zhang G, Zhang L, Xie J, Hao H, Liu H (2018) Unfolding dielectric breakdown effects on energy storage performances of modified (Sr0.98Ca0.02)(Ti1‐xZrx)O3 ceramics. Int J Appl Ceram Technol 15(4):1030–1039. https://doi.org/10.1111/ijac.12847

    Article  CAS  Google Scholar 

  46. Zhou HY, Liu XQ, Zhu XL, Chen XM (2018) CaTiO3 linear dielectric ceramics with greatly enhanced dielectric strength and energy storage density. J Am Ceram Soc 101(5):1999–2008. https://doi.org/10.1111/jace.15371

    Article  CAS  Google Scholar 

  47. Panda PK, Sahoo B (2015) PZT to lead free piezo ceramics: a review. Ferroelectrics 474(1):128–143. https://doi.org/10.1080/00150193.2015.997146

    Article  CAS  Google Scholar 

  48. Malič B, Koruza Hreščak JJ, Bernard J, Wang K, Fisher JG, Benčan (2015) Sintering of lead-free piezoelectric sodium potassium niobate ceramics. Materials 8(12):8117–8146. https://doi.org/10.3390/ma8125449

    Article  CAS  Google Scholar 

  49. Ke W, Li J-F (2012) (K, Na) NbO3-based lead-free piezoceramics: phase transition, sintering and property enhancement. J Adv Ceram 1(1):24–37. https://doi.org/10.1007/s40145-012-0003-3

    Article  CAS  Google Scholar 

  50. Wang Y, Damjanovic D, Klein N, Hollenstein E, Setter N (2007) Compositional inhomogeneity in Li-and Ta-modified (K, Na) NbO3 ceramics. J Am Ceram Soc 90(11):3485–3489. https://doi.org/10.1111/j.1551-2916.2007.01962.x

    Article  CAS  Google Scholar 

  51. Wang Z, Cao M, Yao Z, Song Z, Li G, Hu W, Liu H (2014) Dielectric relaxation behavior and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives. Ceram Int 40(9):14127–14132. https://doi.org/10.1016/j.ceramint.2014.05.147

    Article  CAS  Google Scholar 

  52. Yang H, Yan F, Lin Y, Wang T (2017) Improvement of dielectric and energy storage properties in SrTiO3-based lead-free ceramics. J Alloys Compd 728:780–787. https://doi.org/10.1016/j.jallcom.2017.09.022

    Article  CAS  Google Scholar 

  53. Xiong ZX, Zhou XJ, Baba-Kishi KZ, Chen ST (1999) Development of ferroelectric ceramics with high dielectric constant and low dissipation factor for high-voltage capacitors. J Electroceram 3(3):239–244. https://doi.org/10.1023/A:1009925416878

    Article  CAS  Google Scholar 

  54. Pan W, Cao M, Jan A, Hao H, Yao Z, Liu H (2020) High breakdown strength and energy storage performance in (Nb, Zn) modified SrTiO 3 ceramics via synergy manipulation. J Mater Chem C 8(6):2019–2027. https://doi.org/10.1039/C9TC06256D

    Article  CAS  Google Scholar 

  55. Laasri HA, Fasquelle D, Tachafine A, Tentillier N, Costa LC, Elaatmani M, Carru JC (2018) Investigation of Sr1-x CaxTiO3 ceramics dedicated to high-frequency lead-free components. Funct Mater Lett 11(05):1850005. https://doi.org/10.1142/S1793604718500054

    Article  CAS  Google Scholar 

  56. Yao Z, Luo Q, Zhang G, Hao H, Cao M, Liu H (2017) Improved energy-storage performance and breakdown enhancement mechanism of Mg-doped SrTiO3 bulk ceramics for high energy density capacitor applications. J Mater Sci: Mater Electron 28(15):11491–11499. https://doi.org/10.1007/s10854-017-6945-z

    Article  CAS  Google Scholar 

  57. Shen ZY, Li YM, Hu QG, Luo WQ, Wang ZM (2015) Dielectric properties of B–site charge balanced Dy–doped SrTiO3 ceramics for energy storage. J Electroceram 34(4):236–240. https://doi.org/10.1007/s10832-014-9980-7

    Article  CAS  Google Scholar 

  58. Guo X, Pu Y, Wang W, Ji J, Li J, Shi R, Yang M (2020) Ultrahigh energy storage performance and fast charge-discharge capability in Dy-modified SrTiO3 linear ceramics with high optical transmissivity by defect and interface engineering. Ceram Int 46(13):21719–21727. https://doi.org/10.1016/j.ceramint.2020.05.280

    Article  CAS  Google Scholar 

  59. Guo X, Pu Y, Wang W, Zhang L, Ji J, Shi R, Li J (2019) High insulation resistivity and ultralow dielectric loss in La-doped SrTiO3 colossal permittivity ceramics through defect chemistry optimization. ACS Sustain Chem Eng 7(15):13041–13052. https://doi.org/10.1021/acssuschemeng.9b02143

    Article  CAS  Google Scholar 

  60. Zhang GF, Liu H, Yao Z, Cao M, Hao H (2015) Effects of Ca doping on the energy storage properties of (Sr, Ca) TiO3 paraelectric ceramics. J Mater Sci: Mater Electron 26(5):2726–2732. https://doi.org/10.1007/s10854-015-2749-1

    Article  CAS  Google Scholar 

  61. Zhang L, Hao H, Zhang S, Lanagan MT, Yao Z, Xu Q, Liu H (2017) Defect structure-electrical property relationship in Mn-doped calcium strontium titanate dielectric ceramics. J Am Ceram Soc 100(10):4638–4648. https://doi.org/10.1111/jace.14994

    Article  CAS  Google Scholar 

  62. Zhang L, Yao Z, Lanagan MT, Hao H, Xie J, Xu Q, Liu H (2018) Effect of oxygen treatment on structure and electrical properties of Mn-doped Ca0.6Sr0.4TiO3 ceramics. J Eur Ceram Soc 38(6):2534–2540. https://doi.org/10.1016/j.jeurceramsoc.2018.01.027

    Article  CAS  Google Scholar 

  63. Hu QG, Shen ZY, Li YM, Wang ZM, Luo WQ, Xie ZX (2014) Enhanced energy storage properties of dysprosium doped strontium titanate ceramics. Ceram Int 40(1):2529–2534. https://doi.org/10.1016/j.ceramint.2013.07.126

    Article  CAS  Google Scholar 

  64. Wang W, Pu Y, Guo X, Shi R, Yang M, Li J (2020) Enhanced energy storage and fast charge-discharge capability in Ca0.5Sr0.5TiO3-based linear dielectric ceramic. J Alloys Compd 817:152695. https://doi.org/10.1016/j.jallcom.2019.152695

    Article  CAS  Google Scholar 

  65. Wang W, Pu Y, Guo X, Shi R, Shi Y, Yang M, Li Y (2019) Enhanced energy storage density and high efficiency of lead-free Ca1-xSrxTi1-yZryO3 linear dielectric ceramics. J Eur Ceram Soc 39(16):5236–5242. https://doi.org/10.1016/j.jeurceramsoc.2019.08.020

    Article  CAS  Google Scholar 

  66. Zhang J, Wang J, Gao D, Liu H, Xie J, Hu W (2021) Enhanced energy storage performances of CaTiO3-based ceramic through A-site Sm3+ doping and A-site vacancy. J Eur Ceram Soc 41(1):352–359. https://doi.org/10.1016/j.jeurceramsoc.2020.09.017

    Article  CAS  Google Scholar 

  67. Ang C, Bhalla AS, Cross LE (2001) Dielectric behavior of paraelectric KTaO3, CaTiO3, and (Ln1/2 Na1/2) TiO3 under a dc electric field. Phys Rev B 64(18):184104. https://doi.org/10.1103/PhysRevB.64.184104

    Article  CAS  Google Scholar 

  68. Chen X, Huang B, Liu Y, Wang W, Yu P (2020) High energy density and high efficiency achieved in the Ca0.74Sr0.26Zr0.7Ti0.3O3 linear dielectric thin films on the silicon substrates. Appl Phys Lett 117(11):112902. https://doi.org/10.1063/5.0024307

    Article  CAS  Google Scholar 

  69. Duan S, Shi Q, Huang W, Zhang Y, Qiao S, Xiao Y (2016) High-frequency response in Sr1−xCaxTiO3 powders studied by terahertz time-domain spectroscopy. J Mater Sci: Mater Electron 27(6):6318–6324. https://doi.org/10.1007/s10854-016-4566-6

    Article  CAS  Google Scholar 

  70. Janotti A, Jalan B, Stemmer S, Van de Walle CG (2012) Effects of doping on the lattice parameter of SrTiO3. Appl Phys Lett 25(26):262104. https://doi.org/10.1063/1.4730998

    Article  CAS  Google Scholar 

  71. Cottier RJ, Steinle NA, Currie DA, Theodoropoulou N (2015) Band gap tuning of epitaxial SrTiO3-δ/Si (001) thin films through strain engineering. Appl Phys Lett 30(22):221601. https://doi.org/10.1063/1.4936608

    Article  CAS  Google Scholar 

  72. Son J, Moetakef P, Jalan B, Bierwagen O, Wright NJ, Engel-Herbert R, Stemmer S (2010) Epitaxial SrTiO3 films with electron mobilities exceeding 30,000 cm2 V−1 s−1. Nat Mater 9(6):482–484. https://doi.org/10.1038/nmat2750

    Article  CAS  Google Scholar 

  73. Qi J, Cao M, Chen Y, Fang Y, Pan W, Hao H, Yao Z, Yu Z, Liu H (2008) Effects of sintering temperature on microstructure and dielectric properties of Sr0.985Ce0.01TiO3 ceramics. J Alloys Compd 25(762):950–956. https://doi.org/10.1016/j.jallcom.2018.05.140

    Article  CAS  Google Scholar 

  74. Pradhan J, Mallick HK, Sahoo MP, Pattanaik AK (2021) Enhanced optical and dielectric properties of rare-earth co-doped SrTiO3 ceramics. J Mater Sci: Mater Electron 32(10):13837–13849. https://doi.org/10.1007/s10854-021-05959-7

    Article  CAS  Google Scholar 

  75. Wang X, Hu Q, Li L, Lu X (2012) Effect of Pr substitution on structural and dielectric properties of SrTiO3. J Appl Phys 112(4):044106. https://doi.org/10.1063/1.4747937

    Article  CAS  Google Scholar 

  76. Ranjan R, Pandey D (2001) Antiferroelectric phase transition in (Sr1 − xCax) TiO3 (0.12< x⩽ 0.40): I. Dielectric studies. J Condens Matter Phys 13(19):4239. https://doi.org/10.1088/0953-8984/13/19/305

    Article  CAS  Google Scholar 

  77. Porer M, Fechner M, Bothschafter EM, Rettig L, Savoini M, Esposito V, Staub U (2018) Ultrafast relaxation dynamics of the antiferrodistortive phase in Ca doped SrTiO 3. Phys Rev Lett 121(5):055701. https://doi.org/10.1103/PhysRevLett.121.055701

    Article  CAS  Google Scholar 

  78. Geneste G, Kiat JM (2008) Ground state of ca-doped strontium titanate: ferroelectricity versus polar nanoregions. Phys Rev B 77(17):174101. https://doi.org/10.1103/PhysRevB.77.174101

    Article  CAS  Google Scholar 

  79. De Lima BS, Da Luz MS, Oliveira FS, Alves LMS, Dos Santos CAM, Jomard F, Behnia K (2015) Interplay between antiferrodistortive, ferroelectric, and superconducting instabilities in Sr1−xCaxTiO3−δ. Phys Rev B 91(4):045108. https://doi.org/10.1103/PhysRevB.91.045108

    Article  CAS  Google Scholar 

  80. Cowley RA (1996) The phase transition of strontium titanate. Philos Trans R Soc Lon. Ser A: Math, Phys Eng Sci 354(1720):2799–2814. https://doi.org/10.1098/rsta.1996.0130

    Article  CAS  Google Scholar 

  81. Herranz, G (2019) Orbital symmetry and electronic properties of two-dimensional electron systems in oxide heterointerfaces. In: Oxide spintronics. CRC Press, pp 251–297

  82. Downs RT, Hall-Wallace M (2003) Am Miner 88:247–250

    Article  CAS  Google Scholar 

  83. Salje EKH, Gallardo MC, Jiménez J, Romero FJ, Del Cerro J (1998) The cubic-tetragonal phase transition in strontium titanate: excess specific heat measurements and evidence for a near-tricritical, mean field type transition mechanism. J Condens Matter Phys 10(25):5535. https://doi.org/10.1088/0953-8984/10/25/006

    Article  CAS  Google Scholar 

  84. Glazer AM (1975) Simple ways of determining perovskite structures. Acta Crystallograph Sect A: Cryst Phys, Diffract, Theor Gener Crystallogr 31(6):756–762. https://doi.org/10.1107/S0567739475001635

    Article  Google Scholar 

  85. Ubic R, Tolman K, Chan K, Lundy N, Letourneau S, Kriven WM (2013) Effective size of vacancies in aliovalently doped SrTiO3 perovskites. J Alloys Compd 575:239–245. https://doi.org/10.1016/j.jallcom.2013.04.091

    Article  CAS  Google Scholar 

  86. McCalla E, Walter J, Leighton C (2016) A unified view of the substitution-dependent antiferrodistortive phase transition in SrTiO3. Chem Mater 28(21):7973–7981. https://doi.org/10.1021/acs.chemmater.6b03667

    Article  CAS  Google Scholar 

  87. Abreu YG, Soares JC, Moreira RL, Dias A (2016) Monitoring the structural and vibrational properties in RE-doped SrTiO3 ceramic powders. J Phys Chem C 120(30):16960–16968. https://doi.org/10.1021/acs.jpcc.6b05128

    Article  CAS  Google Scholar 

  88. Durán A, Martínez E, Díaz JA, Siqueiros JM (2005) Ferroelectricity at room temperature in Pr-doped Sr Ti O 3. J Appl Phys 97(10):104109. https://doi.org/10.1063/1.1903100

    Article  CAS  Google Scholar 

  89. Pertsev NA, Tagantsev AK, Setter N (2000) Phase transitions and strain-induced ferroelectricity in SrTiO 3 epitaxial thin films. Phys Rev B 61(2):R825. https://doi.org/10.1103/PhysRevB.61.R825

    Article  CAS  Google Scholar 

  90. Yamanaka T, Hirai N, Komatsu Y (2002) Structure change of Ca1−xSrxTiO3 perovskite with composition and pressure. Am Miner 87(8–9):1183–1189. https://doi.org/10.2138/am-2002-8-917

    Article  CAS  Google Scholar 

  91. Granicher H, Jakits O (1954) Nuovo Cimento 9(suppl.):480

  92. Mitsui T, Westphal WB (1961) Dielectric and X-ray studies of CaxBa1–xTiO3 and CaxSr1–xTiO3. Phys Rev 124(5):1354. https://doi.org/10.1103/PhysRev.124.1354

    Article  CAS  Google Scholar 

  93. Bednorz JG, Müller KA (1984) Sr1–xCaxTiO3: an XY quantum ferroelectric with transition to randomness. Phys Rev Lett 52(25):2289. https://doi.org/10.1103/PhysRevLett.52.2289

    Article  CAS  Google Scholar 

  94. Ceh M, Kolar D, Golic L (1987) The phase diagram of CaTiO3-SrTiO3. J Solid State Chem 68(1):68–72. https://doi.org/10.1016/0022-4596(87)90286-6

    Article  CAS  Google Scholar 

  95. Ball CJ, Begg BD, Cookson DJ, Thorogood GJ, Vance ER (1998) Structures in the system CaTiO3/SrTiO3. J Solid State Chem 139(2):238–247. https://doi.org/10.1006/jssc.1998.7836

    Article  CAS  Google Scholar 

  96. Qin S, Becerro AI, Seifert F, Gottsmann J, Jiang J (2000) Phase transitions in Ca1−xSrxTiO3 perovskites: effects of composition and temperature. J Mater Chem 10(7):1609–1615. https://doi.org/10.1039/B000623H

    Article  CAS  Google Scholar 

  97. Ranjan R, Pandey D, Lalla NP (2000) Novel features of Sr1–xCaxTiO3 phase diagram: evidence for competing antiferroelectric and ferroelectric interactions. Phys Rev Lett 84(16):3726. https://doi.org/10.1103/PhysRevLett.84.3726

    Article  CAS  Google Scholar 

  98. Howard CJ, Withers RL, Kennedy BJ (2001) Space group and structure for the perovskite Ca0.5Sr0.5TiO3. J Solid State Chem 160(1):8–12. https://doi.org/10.1006/jssc.2001.9229

    Article  CAS  Google Scholar 

  99. Ranjan R, Pandey D (2001) Antiferroelectric phase transition in (Sr1 − xCax)TiO3: II. X-ray diffraction studies. J Condens Matter Phys 13(19):4251. https://doi.org/10.1088/0953-8984/13/19/306

    Article  CAS  Google Scholar 

  100. Ranjan R, Pandey D, Schuddinck W, Richard O, De Meulenaere P, Van Landuyt J, Van Tendelo G (2001) Evolution of crystallographic phases in (Sr1−xCax)TiO3 with composition (x). J Solid State Chem 162(1):20–28. https://doi.org/10.1006/jssc.2001.9336

    Article  CAS  Google Scholar 

  101. Mishra SK, Ranjan R, Pandey D, Ouillon R, Pinan-Lucarre JP, Ranson P, Pruzan P (2001) A Raman scattering study of the antiferroelectric phase transition in (Sr0.70Ca0.30)TiO3. Phys Rev B 64(9):092302. https://doi.org/10.1103/PhysRevB.64.092302

    Article  CAS  Google Scholar 

  102. Ouillon R, Pinan-Lucarre JP, Ranson P, Pruzan P, Mishra SK, Ranjan R, Pandey D (2002) A Raman scattering study of the phase transitions in SrTiO3 and in the mixed system (Sr1xCax)TiO3 at ambient pressure from T = 300 K down to 8 K. J Condens Matter Phys. https://doi.org/10.1088/0953-8984/14/8/333

    Article  Google Scholar 

  103. Mishra SK, Ranjan R, Pandey D, Ranson P, Ouillon R, Pinan-Lucarre JP, Pruzan P (2005) A combined X-ray diffraction and Raman scattering study of the phase transitions in Sr1−xCaxTiO3 (x= 0.04, 0.06, and 0.12). J Solid State Chem 178(9):2846–2857. https://doi.org/10.1016/j.jssc.2005.06.036

    Article  CAS  Google Scholar 

  104. Mishra SK, Ranjan R, Pandey D, Stokes HT (2006) Resolving the controversies about the ‘nearly cubic’ and other phases of Sr1−xCaxTiO3 (0≤ x ≤ 1): I. Room temperature structures. J Condens Matter Phys 18(6):1885. https://doi.org/10.1088/0953-8984/18/6/006

    Article  CAS  Google Scholar 

  105. Howard CJ, Withers RL, Zhang Z, Osaka K, Kato K, Takata M (2005) Space-group symmetry for the perovskite Ca0.3Sr0.7TiO3. J Condens Matter Phys 17(44):L459. https://doi.org/10.1088/0953-8984/17/44/L01

    Article  CAS  Google Scholar 

  106. Woodward DI, Wise PL, Lee WE, Reaney IM (2006) Space group symmetry of (CaxSr1−x)TiO3 determined using electron diffraction. J Condens Matter Phys 18(8):2401. https://doi.org/10.1088/0953-8984/18/8/005

    Article  CAS  Google Scholar 

  107. Anwar S, Lalla NP (2007) Space group analysis of Sr1−xCaxTiO3 ceramics with x = 0.20, 0.27 and 0.30 through electron diffraction. J Condens Matter Phys 19(43):436210. https://doi.org/10.1088/0953-8984/19/43/436210

    Article  CAS  Google Scholar 

  108. Anwar S, Lalla NP (2008) Phase coexistence in Sr0.70Ca0.30TiO3 studied through electron diffraction. Solid State Sci 10(3):307–315. https://doi.org/10.1016/j.solidstatesciences.2007.09.015

    Article  CAS  Google Scholar 

  109. Anwar S, Lalla NP (2008) Effect of oxygenation on the structural and dielectric properties of Sr1−xCaxTiO3 with 0.20 ⩽ x ⩽ 040. Appl Phys Lett 92(21):212901. https://doi.org/10.1063/1.2936293

    Article  CAS  Google Scholar 

  110. Anwar S, Lalla NP (2008) Electron microscopic studies of the antiferroelectric phase in Sr0.60Ca0.40TiO3 ceramic. J Solid State Chem 181(5):997–1004. https://doi.org/10.1016/j.jssc.2008.02.004

    Article  CAS  Google Scholar 

  111. Sharma S, Shahee A, Lalla NP (2014) Structural and in-field dielectric studies across the antiferroelectric transition in Sr1−xCaxTiO3. In: AIP conf proc, vol 1591, no 1. American Institute of Physics, pp 42–43. https://doi.org/10.1063/1.4872482

  112. Howard CJ, Withers RL, Knight KS, Zhang Z (2008) (Ca0.37Sr0.63)TiO3 perovskite—an example of an unusual class of tilted perovskites. J Condens Matter Phys 20(13):135202. https://doi.org/10.1088/0953-8984/20/13/135202

    Article  CAS  Google Scholar 

  113. Carpenter MA, Howard CJ, Knight KS, Zhang Z (2006) Structural relationships and a phase diagram for (Ca,Sr)TiO3 perovskites. J Condens Matter Phys 18(48):10725. https://doi.org/10.1088/0953-8984/18/48/002

    Article  CAS  Google Scholar 

  114. Anwar S, Lalla NP (2008) Occurrence of a new superlattice phase across the antiferroelectric phase transition in Sr1−xCaxTiO3 (x = 0.30 and 0.40). J Condens Matter Phys 20(32):325231. https://doi.org/10.1088/0953-8984/20/32/325231

    Article  CAS  Google Scholar 

  115. Yashima M, Ali R (2009) Structural phase transition and octahedral tilting in the calcium titanate perovskite CaTiO3. Solid state Ion 180(2–3):120–126. https://doi.org/10.1016/j.ssi.2008.11.019

    Article  CAS  Google Scholar 

  116. Mishra SK, Pandey D (2009) Low temperature x-ray diffraction study of the phase transitions in Sr1-xCaxTiO3 (x = 0.02, 0.04): evidence for ferrielectric ordering. Appl Phys Lett 95(23):232910. https://doi.org/10.1063/1.3273863

    Article  CAS  Google Scholar 

  117. Mishra SK, Ranjan R, Pandey D, Kennedy BJ (2002) Powder neutron diffraction study of the antiferroelectric phase transition in Sr0.75Ca0.25 TiO3. J Appl Phys 91(7):4447–4452. https://doi.org/10.1063/1.1432475

    Article  CAS  Google Scholar 

  118. Mishra SK, Ranjan R, Pandey D, Ranson P, Ouillon R, Pinan-Lucarre JP, Pruzan P (2006) Resolving the controversies about the ‘nearly cubic’ and other phases of Sr1−xCaxTiO3 (0 ≤ x ≤ 1): II Comparison of phase transition behaviours for x = 0.40 and 0.43. J Condens Matter Phys 18(6):1899. https://doi.org/10.1088/0953-8984/18/6/007

    Article  CAS  Google Scholar 

  119. Ren X, Otsuka K (2000) Universal symmetry property of point defects in crystals. Phys Rev Lett 85(5):1016. https://doi.org/10.1103/PhysRevLett.85.1016

    Article  CAS  Google Scholar 

  120. Johnston KE, Tang CC, Parker JE, Knight KS, Lightfoot P, Ashbrook SE (2010) J Am Chem Soc 132(25):8732–8746. https://doi.org/10.1021/ja101860r

    Article  CAS  Google Scholar 

  121. Carpenter MA, Becerro AI, Seifert F (2001) Strain analysis of phase transitions in (Ca,Sr)TiO3 perovskites. Am Miner 86(3):348–363. https://doi.org/10.2138/am-2001-2-319

    Article  Google Scholar 

  122. Howard CJ, Stokes HT (1998) Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr B 54(6):782–789. https://doi.org/10.1107/S0108768198004200

    Article  Google Scholar 

  123. Darlington CNW (1996) Normal-mode analysis of the structures of perovskites with tilted octahedra. Phys Status Solidi (A) 155(1):31–42. https://doi.org/10.1002/pssa.2211550104

    Article  CAS  Google Scholar 

  124. Palneedi H, Peddigari M, Hwang GT, Jeong DY, Ryu J (2018) High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv Funct Mater 28(42):1803665. https://doi.org/10.1002/adfm.201803665

    Article  CAS  Google Scholar 

  125. Burn I, Smyth DM (1972) Energy storage in ceramic dielectrics. J Mater Sci 7(3):339–343. https://doi.org/10.1007/BF00555636

    Article  CAS  Google Scholar 

  126. Ma Z, Ma Y, Chen Z, Zheng F, Gao H, Liu H, Chen H (2018) Modeling of hysteresis loop and its applications in ferroelectric materials. Ceram Int 44(4):4338–4343. https://doi.org/10.1016/j.ceramint.2017.12.027

    Article  CAS  Google Scholar 

  127. Wang G, Lu Z, Li Y, Li L, Ji H, Feteira A, Reaney IM (2021) Electroceramics for high-energy density capacitors: current status and future perspectives. Chem Rev 121(10):6124–6172. https://doi.org/10.1021/acs.chemrev.0c01264

    Article  CAS  Google Scholar 

  128. Pradhan LK, Kar M. (2021) Relaxor ferroelectric oxides: concept to applications. Multifunctional Ferroelectric Materials. 

  129. Veerapandiyan V, Benes F, Gindel T, Deluca M (2020) Strategies to improve the energy storage properties of perovskite lead-free relaxor ferroelectrics: a review. Materials 13(24):5742. https://doi.org/10.3390/ma13245742

    Article  CAS  Google Scholar 

  130. Peláiz-Barranco A, Calderón-Piñar F, García-Zaldívar O, González-Abreu Y (2012) Relaxor behaviour in ferroelectric ceramics. Adv Ferroelectr. https://doi.org/10.5772/51249

    Article  Google Scholar 

  131. Zhang H, Chen X, Cao F, Wang G, Dong X, Hu Z, Du T (2010) Charge–discharge properties of an antiferroelectric ceramics capacitor under different electric fields. J Am Ceram Soc 93(12):4015–4017. https://doi.org/10.1111/j.1551-2916.2010.04226.x

    Article  CAS  Google Scholar 

  132. Chauhan A, Patel S, Vaish R, Bowen CR (2015) Anti-ferroelectric ceramics for high energy density capacitors. Materials 8(12):8009–8031. https://doi.org/10.3390/ma8125439

    Article  Google Scholar 

  133. Mohapatra P, Johnson DD, Cui J, Tan X (2021) Effect of electric hysteresis on fatigue behavior in antiferroelectric bulk ceramics under bipolar loading. J Mater Chem C 9(43):15542–15551. https://doi.org/10.1039/D1TC03520G

    Article  CAS  Google Scholar 

  134. Nguyen MD (2021) Ultrahigh energy-storage performance in lead-free BZT thin-films by tuning relaxor behavior. Mater Res Bull 133:111072. https://doi.org/10.1016/j.materresbull.2020.111072

    Article  CAS  Google Scholar 

  135. Peng B, Zhang Q, Li X, Sun T, Fan H, Ke S, Huang H (2015) Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv Electron Mater 1(5):1500052. https://doi.org/10.1002/aelm.201500052

    Article  CAS  Google Scholar 

  136. Wang F, Chen J, Tang Z, Guo F, Zhao S (2021) High energy storage properties for the lead-free NBT-0.1 BFO-0.068 La relaxor ferroelectric film. J Alloys Compd 854:157306. https://doi.org/10.1016/j.jallcom.2020.157306

    Article  CAS  Google Scholar 

  137. Zhang Y, Li W, Xu S, Wang Z, Zhao Y, Li J, Fei W (2018) Interlayer coupling to enhance the energy storage performance of Na0.5Bi0.5TiO3–SrTiO3 multilayer films with the electric field amplifying effect. J Mater Chem A 6(47):24550–24559. https://doi.org/10.1039/C8TA09396B

    Article  CAS  Google Scholar 

  138. Wang D, Clark MB Jr, Trolier-McKinstry S (2018) Bismuth niobate thin films for dielectric energy storage applications. J Am Ceram Soc 101(8):3443–3451. https://doi.org/10.1111/jace.15517

    Article  CAS  Google Scholar 

  139. Zhu LF, Zhao L, Yan Y, Leng H, Li X, Cheng LQ, Priya S (2021) Composition and strain engineered AgNbO3-based multilayer capacitors for ultra-high energy storage capacity. J Mater Chem A. https://doi.org/10.1039/D1TA00973G

    Article  Google Scholar 

  140. Luo B, Dong H, Wang D, Jin K (2018) Large recoverable energy density with excellent thermal stability in Mn-modified NaNbO3-CaZrO3 lead-free thin films. J Am Ceram Soc 101(8):3460–3467. https://doi.org/10.1111/jace.15528

    Article  CAS  Google Scholar 

  141. Yang B, Guo M, Tang X, Wei R, Hu L, Yang J, Sun Y (2019) Lead-free A2Bi4Ti5O18 thin film capacitors (A = Ba and Sr) with large energy storage density, high efficiency, and excellent thermal stability. J Mater Chem C 7(7):1888–189537. https://doi.org/10.1039/C8TC05558K

    Article  CAS  Google Scholar 

  142. Hou C, Huang W, Zhao W, Zhang D, Yin Y, Li X (2017) Ultrahigh energy density in SrTiO3 film capacitors. ACS Appl Mater Interfaces 9(24):20484–20490. https://doi.org/10.1021/acsami.7b02225

    Article  CAS  Google Scholar 

  143. Diao C, Liu H, Li Z, Yao Z, Hao H, Cao M (2020) Simultaneously achieved high energy storage density and efficiency in sol-gel-derived amorphous Mn-doped SrTiO3 thin films. J Alloys Compd 845:155636. https://doi.org/10.1016/j.jallcom.2020.155636

    Article  CAS  Google Scholar 

  144. Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, Nan CW (2019) Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365(6453):578–582. https://doi.org/10.1126/science.aaw8109

    Article  CAS  Google Scholar 

  145. Pan Z, Ding J, Hou X, Shi S, Yao L, Liu J, Pan H (2021) Substantially improved energy storage capability of ferroelectric thin films for application in high-temperature capacitors. J Mater Chem A 9281–9290. https://doi.org/10.1039/D0TA08335F

  146. Yang B, Guo M, Jin L, Tang X, Wei R, Hu L, Sun YP (2018) Ultrahigh energy storage in lead-free BiFeO3/Bi3.25La0.75Ti3O12 thin film capacitors by solution processing. Appl Phys Lett 112(3):033904. https://doi.org/10.1063/1.5002143

    Article  CAS  Google Scholar 

  147. Lomenzo PD, Chung CC, Zhou C, Jones JL, Nishida T (2017) Doped Hf0.5Zr0.5O2 for high efficiency integrated supercapacitors. Appl Phys Lett 110(23):232904. https://doi.org/10.1063/1.4985297

    Article  CAS  Google Scholar 

  148. Hao X (2018) Dielectric ceramics and films for electrical energy storage. Ferroelectr Mater Energy Appl 119–168. https://doi.org/10.1002/9783527807505.ch5

  149. Pan H, Kursumovic A, Lin YH, Nan CW, MacManus-Driscoll JL (2020) Dielectric films for high performance capacitive energy storage: multiscale engineering. Nanoscale 12(38):19582–19591. https://doi.org/10.1039/D0NR05709F

    Article  CAS  Google Scholar 

  150. Yao FZ, Yuan Q, Wang Q, Wang H (2020) Multiscale structural engineering of dielectric ceramics for energy storage applications: from bulk to thin films. Nanoscale 12(33):17165–17184. https://doi.org/10.1039/D0NR04479B

    Article  CAS  Google Scholar 

  151. Brahlek M, Gupta AS, Lapano J, Roth J, Zhang HT, Zhang L, Haislmaier R, Engel-Herbert R (2018) Frontiers in the growth of complex oxide thin films: past, present, and future of hybrid MBE. Adv Funct Mater 28(9):1702772

    Article  Google Scholar 

  152. Schlom DG, Haeni JH, Lettieri J, Theis CD, Tian W, Jiang JC, Pan XQ (2001) Oxide nano-engineering using MBE. Mater Sci Eng B 19(3):282–291. https://doi.org/10.1016/S0921-5107(01)00726-7

    Article  Google Scholar 

  153. Eason R (2007) Pulsed laser deposition of thin films: applications-LED growth of functional materials. Wiley, New York

    Google Scholar 

  154. Eom CB, Sun JZ, Yamamoto K, Marshall AF, Luther KE, Geballe TH, Laderman SS (1989) In situ grown YBa2Cu3O7−d thin films from single-target magnetron sputtering. Appl Phys Lett 55(6):595–597. https://doi.org/10.1063/1.102436

    Article  CAS  Google Scholar 

  155. Mei AB, Miao L, Wahila MJ, Khalsa G, Wang Z, Barone M, Schreiber NJ, Noskin LE, Paik H, Tiwald TE, Zheng Q (2019) Phys Rev Mater 3(10):105202. https://doi.org/10.1103/PhysRevMaterials.3.105202

    Article  CAS  Google Scholar 

  156. Theis CD, Yeh J, Schlom DG, Hawley ME, Brown GW (1998) Thin Solid Films 325(1–2):107–114. https://doi.org/10.1016/S0040-6090(98)00507-0

    Article  CAS  Google Scholar 

  157. Jalan B, Engel-Herbert R, Wright NJ, Stemmer S (2009) J Vac Sci Technol, A 27(3): 461–464. https://doi.org/10.1116/1.3106610

  158. Blank DH, Koster G, Rijnders GA, Van Setten E, Slycke P, Rogalla H (2000) Cryst Growth 211:98–105. https://doi.org/10.1016/S0022-0248(99)00880-5

    Article  CAS  Google Scholar 

  159. Blank DH, Dekkers M, Rijnders G (2014) J Phys D: Appl Phys 47(3):034006. https://doi.org/10.1088/0022-3727/47/3/034006

    Article  CAS  Google Scholar 

  160. Kursumovic A, Li WW, Cho S, Curran PJ, Tjhe DH, MacManus-Driscoll JL (2020) Nano Energy 71:104536. https://doi.org/10.1016/j.nanoen.2020.104536

    Article  CAS  Google Scholar 

  161. Grygiel C, McMitchell SR, Xu Z, Yan L, Niu HJ, Giap D, Bacsa J, Chalker PR, Rosseinsky MJ (2010) A-site order control in mixed conductor NdBaCo2O5+δ films through manipulation of growth kinetics. Chem Mater 22(6):1955–1957. https://doi.org/10.1021/cm9037022

    Article  CAS  Google Scholar 

  162. Chakraverty S, Ohtomo A, Kawasaki M (2010) Appl Phys Lett 97(24):243107. https://doi.org/10.1063/1.3525578

    Article  CAS  Google Scholar 

  163. Maret H, Weisberg D, Chan HM, Strandwitz NC (2016) Seeded solid-phase epitaxy of atomic layer deposited aluminum oxide. Cryst Growth Des 3:1662–1666. https://doi.org/10.1021/acs.cgd.5b01744

    Article  CAS  Google Scholar 

  164. Yun C, Choi EM, Li W, Sun X, Maity T, Wu R, Jian J, Xue S, Cho S, Wang H, MacManus-Driscoll JL (2020) Achieving ferromagnetic insulating properties in La0.9Ba0.1MnO3 thin films through nanoengineering. Nanoscale 12(16):9255–9265. https://doi.org/10.1039/C9NR08373A

    Article  CAS  Google Scholar 

  165. MacManus-Driscoll JL, Wells MP, Yun C, Lee JW, Eom CB, Schlom DG (2020) New approaches for achieving more perfect transition metal oxide thin films. APL Mater 8(4):040904. https://doi.org/10.1063/5.0003268

    Article  CAS  Google Scholar 

  166. Li L, Misra S, Gao X, Liu J, Wang H, Huang J, Zhang B, Lu P, Novel WH (2021) vertically aligned nanocomposite of Bi2WO6-Co3O4 with room-temperature multiferroic and anisotropic optical response. Nano Res 14(12):4789–4794. https://doi.org/10.1007/s12274-021-3429-5

    Article  CAS  Google Scholar 

  167. Kim J, Saremi S, Acharya M, Velarde G, Parsonnet E, Donahue P, Qualls A, Garcia D, Martin LW (2020) Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 3(6499):81–84. https://doi.org/10.1126/science.abb0631

    Article  CAS  Google Scholar 

  168. Hodes G (2002) Chemical solution deposition of semiconductor films. Taylor and Francis, CRC Press. https://doi.org/10.1201/9780203909096

    Article  Google Scholar 

  169. Fei L, Naeemi M, Zou G, Luo H (2013) Chemical solution deposition of epitaxial metal-oxide nanocomposite thin films. Chem Rec 13(1):85–101. https://doi.org/10.1002/tcr.201200022

    Article  CAS  Google Scholar 

  170. Wang H, Gazquez J, Frontera C, Chisholm MF, Pomar A, Martinez B, Mestres N (2019) Spontaneous cationic ordering in chemical-solution-grown La2CoMnO6 double perovskite thin films. NPG Asia Mater 2(1):1–8. https://doi.org/10.1038/s41427-019-0144-8

    Article  CAS  Google Scholar 

  171. Yang Z, Du H, Jin L, Poelman D (2021) High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges. J Mater Chem A. https://doi.org/10.1039/D1TA04504K

  172. Peddigari M, Palneedi H, Hwang GT, Lim KW, Kim GY, Jeong DY, Ryu J (2018) Boosting the recoverable energy density of lead-free ferroelectric ceramic thick films through artificially induced quasi-relaxor behavior. ACS Appl Mater Interfaces 10(24):20720–20727. https://doi.org/10.1021/acsami.8b05347

    Article  CAS  Google Scholar 

  173. Pan H, Zeng Y, Shen Y, Lin YH, Nan CW (2016) Thickness-dependent dielectric and energy storage properties of (Pb0.96La0.04)(Zr0.98Ti0.02)O3 antiferroelectric thin films. J Appl Phys 119(12):124106. https://doi.org/10.1063/1.4944802

    Article  CAS  Google Scholar 

  174. He Z, Cao M, Furman E, Lanagan MT, Hao H, Yao Z, Yu Z, Liu H (2022) Abnormal dielectric relaxations and giant permittivity in SrTiO3 ceramic prepared by plasma activated sintering. J Am Ceram Soc 4143–4151. https://doi.org/10.1111/jace.18385

  175. Liu L, Chu B, Li P, Fu P, Du J, Hao J, Li W, Zeng H (2022) Achieving high energy storage performance and ultrafast discharge speed in SrTiO3-based ceramics via a synergistic effect of chemical modification and defect chemistry. Chem Eng J 429:132548. https://doi.org/10.1016/j.cej.2021.132548

    Article  CAS  Google Scholar 

  176. Jongprateep O, Sato N, Boonsalee S, Pee J (2018) Effects of chemical composition on structure and dielectric constants of SrxCa(1–x)TiO3 synthesized by solution combustion technique. Mater Today: Proc 5(7):14992–14997. https://doi.org/10.1016/j.matpr.2018.04.044

    Article  CAS  Google Scholar 

  177. Wang W, Pu Y, Guo X, Shi R, Yang M, Li J (2020) Combining high energy efficiency and fast charge-discharge capability in calcium strontium titanate-based linear dielectric ceramic for energy-storage. Ceram Int 46(8):11484–11491. https://doi.org/10.1016/j.ceramint.2020.01.174

    Article  CAS  Google Scholar 

  178. Zhang L, Hao H, Liu H, Song Z, Yao Z, Xie J, Cao M (2016) Effect of HfO2 addition as intergranular grains on the energy storage behavior of Ca0.6Sr0.4TiO3 ceramics. J Eur Ceram Soc 36(13):3157–3163. https://doi.org/10.1016/j.jeurceramsoc.2016.05.002

    Article  CAS  Google Scholar 

  179. Cai Z, Wang X, Hong W, Luo B, Zhao Q, Li L (2018) Grain-size–dependent dielectric properties in nanograin ferroelectrics. J Am Ceram Soc 101(12):5487–5496. https://doi.org/10.1111/jace.15803

    Article  CAS  Google Scholar 

  180. Tan DQ (2020) The search for enhanced dielectric strength of polymer-based dielectrics: a focused review on polymer nanocomposites. J Appl Polym Sci 137(33):49379. https://doi.org/10.1002/app.49379

    Article  CAS  Google Scholar 

  181. Chakraborty P, Choudhury PR, Krupanidhi SB (2011) J Cryst Growth 337(1):7–12. https://doi.org/10.1016/j.jcrysgro.2011.09.030

    Article  CAS  Google Scholar 

  182. Kim JS, Oh YC (2006) J Semiconduct Display Technol 5(4):5–9

    Google Scholar 

  183. So BM, Bang JH, Kim JS (2005) J Semiconduct Display Technol 4(1):55–59

    Google Scholar 

  184. Kim JS, Lee JU (2000) Trans Korean Inst Electr Eng C 49(10):559–563

    Google Scholar 

  185. Fan Y, Zhou Z, Chen Y, Huang W, Dong X (2020) A novel lead-free and high-performance barium strontium titanate-based thin film capacitor with ultrahigh energy storage density and giant power density. J Mater Chem C 8(1):50–57. https://doi.org/10.1039/C9TC04036F

    Article  CAS  Google Scholar 

  186. Cheng H, Ouyang J, Zhang YX, Ascienzo D, Li Y, Zhao YY, Ren Y (2017) Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films. Nat Commun 8(1):1–7. https://doi.org/10.1038/s41467-017-02040-y

    Article  CAS  Google Scholar 

  187. Kursumovic A, Li WW, Cho S, Curran PJ, Tjhe DHL, MacManus-Driscoll JL (2020) Lead-free relaxor thin films with huge energy density and low loss for high temperature applications. Nano Energy 71:104536. https://doi.org/10.1016/j.nanoen.2020.104536

    Article  CAS  Google Scholar 

  188. Jin EN, Lang AC, Hardy MT, Nepal N, Katzer DS, Storm DF, Meyer DJ (2020) Epitaxial growth of SrCaTiO3 films on GaN by molecular beam epitaxy with a TiO2 buffer layer. J Appl Phys 127(21):214104. https://doi.org/10.1063/5.0007144

    Article  CAS  Google Scholar 

  189. Jin EN, Downey BP, Gokhale VJ, Roussos JA, Hardy MT, Growden TA, Nepal N, Katzer DS, Calame JP, Meyer DJ (2021) Electrical properties of high permittivity epitaxial SrCaTiO3 grown on AlGaN/GaN heterostructures. APL Mater 9(11):111101. https://doi.org/10.1063/5.0063295

    Article  CAS  Google Scholar 

  190. Moriana AD, Zhang S (2018) Lead-free textured piezoceramics using tape casting: a review. J Materiomics 4(4):277–303. https://doi.org/10.1016/j.jmat.2018.09.006

    Article  Google Scholar 

  191. Rödel J (2020) Lead-free textured piezoceramics using tape casting: a review. Nat Mater 19(9):932–934. https://doi.org/10.1038/s41563-020-0745-1

    Article  CAS  Google Scholar 

  192. Li J, Shen Z, Chen X, Yang S, Zhou W, Wang M, Li F (2020) Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat Mater 19(9):999–1005. https://doi.org/10.1038/s41563-020-0704-x

    Article  CAS  Google Scholar 

  193. Brennecka GL, Ihlefeld JF, Maria JP, Tuttle BA, Clem PG (2010) Processing technologies for high-permittivity thin films in capacitor applications. J Am Ceram Soc 93(12):3935–3954. https://doi.org/10.1111/j.1551-2916.2010.04211.x

    Article  CAS  Google Scholar 

  194. Cai Z, Zhu C, Wang H, Zhao P, Chen L, Li L, Wang X (2019) High-temperature lead-free multilayer ceramic capacitors with ultrahigh energy density and efficiency fabricated via two-step sintering. J Mater Chem A 7(24):14575–14582. https://doi.org/10.1039/C9TA04317A

    Article  CAS  Google Scholar 

  195. Först CJ, Ashman CR, Schwarz K, Blöchl PE (2004) The interface between silicon and a high-k oxide. Nature 427(6969):53–56. https://doi.org/10.1038/nature02204

    Article  CAS  Google Scholar 

  196. Niu G, Saint-Girons G, Vilquin B, Delhaye G, Maurice JL, Botella C, Robach Y, Hollinger G (2009) Molecular beam epitaxy of SrTiO 3 on Si (001): Early stages of the growth and strain relaxation. Appl Phys Lett 10(6):062902. https://doi.org/10.1063/1.3193548

    Article  CAS  Google Scholar 

  197. Goncharova LV, Starodub DG, Garfunkel E, Gustafsson T, Vaithyanathan V, Lettieri J, Schlom DG (2006) Interface structure and thermal stability of epitaxial SrTiO3 thin films on Si (001). J Appl Phys 100(1):014912. https://doi.org/10.1063/1.2206710

    Article  CAS  Google Scholar 

  198. Li H, Hu X, Wei Y, Yu Z, Zhang X, Droopad R, Demkov AA, Edwards J Jr, Moore K, Ooms W, Kulik J (2003) Two-dimensional growth of high-quality strontium titanate thin films on Si. J Appl Phys 93(8):4521–4525. https://doi.org/10.1063/1.1562001

    Article  CAS  Google Scholar 

  199. Gao W, Yao M, Yao X (2018) Achieving ultrahigh breakdown strength and energy storage performance through periodic interface modification in SrTiO3 thin film. ACS Appl Mater Interfaces 20(34):28745–28753. https://doi.org/10.1021/acsami.8b07151

    Article  CAS  Google Scholar 

  200. Chen X, Peng B, Ding M, Zhang X, Xie B, Mo T, Zhang Q, Yu P, Wang ZL (2020) Giant energy storage density in lead-free dielectric thin films deposited on Si wafers with an artificial dead-layer. Nano Energy 78:105390. https://doi.org/10.1016/j.nanoen.2020.105390

    Article  CAS  Google Scholar 

  201. Oviroh PO, Akbarzadeh R, Pan D, Coetzee RA, Jen TC (2019) New development of atomic layer deposition: processes, methods and applications. Sci Technol Adv Mater 20(1):465–496. https://doi.org/10.1080/14686996.2019.1599694

    Article  Google Scholar 

  202. Gupta B, Hossain MA, Riaz A, Sharma A, Zhang D, Tan HH, Jagadish C, Catchpole K, Hoex B, Karuturi S (2022) Recent advances in materials design using atomic layer deposition for energy applications. Adv Funct Mater 32(3):2109105. https://doi.org/10.1002/adfm.202109105

    Article  CAS  Google Scholar 

  203. Zhao P, Cai Z, Chen L, Wu L, Huan Y, Guo L, Li L, Wang H, Wang X (2020) Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale optimization strategy. Energy Environ Sci 13(12):4882–4890. https://doi.org/10.1039/D0EE03094E

    Article  CAS  Google Scholar 

  204. Acharya J, Goul R, Romine D, Sakidja R, Wu J (2019) Effect of Al2O3 seed-layer on the dielectric and electrical properties of ultrathin MgO films fabricated using in situ atomic layer deposition. ACS Appl Mater Interfaces 11(33):30368–30375. https://doi.org/10.1021/acsami.9b05601

    Article  CAS  Google Scholar 

  205. Moshe H, Mastai Y (2013) Atomic layer deposition on self-assembled-monolayers. Mater Sci-Adv Top. https://doi.org/10.5772/54814

    Article  Google Scholar 

  206. Bobb-Semple D, Nardi KL, Draeger N, Hausmann DM, Bent SF (2019) Area-selective atomic layer deposition assisted by self-assembled monolayers: a comparison of Cu Co, W, and Ru. Chem Mater 31(5):1635–1645. https://doi.org/10.1021/acs.chemmater.8b04926

    Article  CAS  Google Scholar 

  207. Gyan DS, Sharma P, Dwivedi A (2020) Effect of octahedral tilting on antiferroelectric phase stabilization in (1–x) NaNbO3-xCdTiO3 ceramics. J Phys D Appl Phys 53(33):335305. https://doi.org/10.1088/1361-6463/ab84a6

    Article  CAS  Google Scholar 

  208. Gyan DS, Goyal AA, Tamrakar Y, Dwivedi A (2019) Stabilization of anti-ferroelectric Pbcm phase over ferroelectric P21ma phase in intermittent ferroelectric NaNbO3 by incorporating CaTiO3. J Phys D: Appl Phys 18(16):165304. https://doi.org/10.1088/1361-6463/aaff41

    Article  CAS  Google Scholar 

  209. Wang C, Wang C, Yi S, Chang T, Chou C, Yin Y, Lin H, Chen M (2021) Impact of a TiN capping layer on phase transformation and capacitance enhancement in ZrO2. ACS Appl Electron Mater 3(4):1937–1946. https://doi.org/10.1021/acsaelm.1c00161

    Article  CAS  Google Scholar 

  210. Lente MH, Guerra JDLS, Eiras JA, Mazon T, Andreeta MBR, Hernandes AC (2005) Microwave dielectric relaxation process in doped-incipient ferroelectrics. J Eur Ceram Soc 25(12):2563–2566. https://doi.org/10.1016/j.jeurceramsoc.2005.03.101

    Article  CAS  Google Scholar 

  211. Zhang J, Luo Y, Yue Z, Li L (2018) Temperature stability, low loss and defect relaxation of MgO–TiO2 microwave dielectric ceramics modified by Ca0.8Sr0.2TiO3. Ceram Int 44(1):141–145. https://doi.org/10.1016/j.ceramint.2017.09.149

    Article  CAS  Google Scholar 

  212. Pan CL, Shen CH, Chen PC, Tan TC (2010) Characterization and dielectric behavior of a new dielectric ceramics MgTiO3–Ca0.8Sr0.2TiO3 at microwave frequencies. J Alloys Compd 503(2):365–369. https://doi.org/10.1016/j.jallcom.2010.01.017

    Article  CAS  Google Scholar 

  213. Chen C, Peng Z, Xie L, Bi K, Fu X (2020) Microwave dielectric properties of novel (1–x) MgTiO3–xCa0.5Sr0.5TiO3 ceramics. J Mater Sci: Mater Electron 31(16):13696–13703. https://doi.org/10.1007/s10854-020-03927-1

    Article  CAS  Google Scholar 

  214. Chen C, Peng Z, Xie L, Bi K, Fu X (2020) Effects of adding B2O3 on microwave dielectric properties of 0.9625 MgTiO3-0.0375 (Ca0.5Sr0.5) TiO3 composite ceramics. Int J Appl Ceram Technol 17(6):2545–2552. https://doi.org/10.1111/ijac.13582

    Article  CAS  Google Scholar 

  215. Sebastian MT, Ubic R, Jantunen H (2017) Microwave materials and applications. Wiley

    Book  Google Scholar 

  216. Raveendran A, Sebastian MT, Raman S (2019) Applications of microwave materials: a review. J Electron Mater 48(5):2601–2634. https://doi.org/10.1007/s11664-019-07049-1

    Article  CAS  Google Scholar 

  217. Dhillon SS, Vitiello MS, Linfield EH, Davies AG, Hoffmann MC, Johnston BJ, MB, (2017) The 2017 terahertz science and technology roadmap. J Phys D: Appl Phys 50(4):043001. https://doi.org/10.1088/1361-6463/50/4/043001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Pôle Métropolitain de la Côte d'Opale (PMCO)—Université du Littoral Côte d'Opale (ULCO), France, for the financial support of Parthiban Palani’s PhD Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthiban Palani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palani, P., Fasquelle, D. & Tachafine, A. A review on (Sr,Ca)TiO3-based dielectric materials: crystallography, recent progress and outlook in energy-storage aspects. J Mater Sci 57, 12279–12317 (2022). https://doi.org/10.1007/s10853-022-07350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07350-1

Profiles

  1. Parthiban Palani