Skip to main content
Log in

A universal green coating strategy on textiles for simultaneous color and thermal management

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Colored textiles with thermal management capabilities have attracted increasing attention for satisfying aesthetics, comfort, and energy saving demands. In this work, we report a universal approach based on physical vapor deposition of TiO2/SiO2/Si (cool) and Ag/Si (warm) nanophotonic structures, which enables various types of textiles with similar color but different thermal management capabilities. By controlling the thickness of the Si layer in the cool and warm nanophotonic structures, cool and or warm nylon textiles with different colors, such as yellow, orange, pink, purplish red, violet grey, indigo and grey, were obtained. Compared with IR-opaque conventional blank nylon, the temperature of artificial skin increased by 10.2 °C/1.7 °C and 2.4 °C/0 °C under mid-day sunlight exposure/indoor conditions, respectively, for similar rose-brown warm and cool nanophotonic-structured nylon textiles; compared with IR-transparent blank nanoporous polyethylene (nanoPE) textiles, the temperature of artificial skin increased by 19.8 °C/3.6 °C and 4.1°C/0 °C under mid-day sunlight exposure/indoor conditions, respectively, for similar pink warm and cool nanophotonic-structured nanoPE textiles. Moreover, the developed nanophotonic structures and materials used here endowed the textile with excellent anti-UV and antibacterial properties. This work provides a green strategy for dye-free coloring, thermal management, and textile multifunctionalization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Hu R, Liu Y, Shin S et al (2020) Emerging materials and strategies for personal thermal management. Adv Energy Mater 10:1903921. https://doi.org/10.1002/aenm.201903921

    Article  CAS  Google Scholar 

  2. Yue X, Zhang T, Yang D et al (2019) Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy 63:103808. https://doi.org/10.1016/j.nanoen.2019.06.004

    Article  CAS  Google Scholar 

  3. Wang QW, Bin ZH, Liu J et al (2019) Multifunctional and water-resistant mxene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv Funct Mater 29:1806819. https://doi.org/10.1002/adfm.201806819

    Article  CAS  Google Scholar 

  4. Liu Q, Huang J, Zhang J et al (2018) Thermal, waterproof, breathable, and antibacterial cloth with a nanoporous structure. ACS Appl Mater Interfaces 10:2026–2032. https://doi.org/10.1021/acsami.7b16422

    Article  CAS  Google Scholar 

  5. Hazarika A, Deka BK, Jeong C et al (2019) Biomechanical energy-harvesting wearable textile-based personal thermal management device containing epitaxially grown aligned Ag-tipped-NixCo1−xSe nanowires/reduced graphene oxide. Adv Funct Mater 29:1903144. https://doi.org/10.1002/adfm.201903144

    Article  CAS  Google Scholar 

  6. Gao T, Yang Z, Chen C et al (2017) Three-dimensional printed thermal regulation textiles. ACS Nano 11:11513–11520. https://doi.org/10.1021/acsnano.7b06295

    Article  CAS  Google Scholar 

  7. Peng Y, Cui Y (2020) Advanced textiles for personal thermal management and energy. Joule 4:724–742. https://doi.org/10.1016/j.joule.2020.02.011

    Article  CAS  Google Scholar 

  8. Steketee J (1973) Spectral emissivity of skin and pericardium. Phys Med Biol 18:686–694. https://doi.org/10.1088/0031-9155/18/5/307

    Article  CAS  Google Scholar 

  9. Hardy JD, DuBois EF (1937) Regulation of heat loss from the human body. Proc Natl Acad Sci 23:624–631. https://doi.org/10.1073/pnas.23.12.624

    Article  CAS  Google Scholar 

  10. Song YN, Li Y, Yan DX et al (2020) Novel passive cooling composite textile for both outdoor and indoor personal thermal management. Compos Part A Appl Sci Manuf 130:105738. https://doi.org/10.1016/j.compositesa.2019.105738

    Article  CAS  Google Scholar 

  11. Belliveau RG, DeJong SA, Boltin ND et al (2020) Mid-infrared emissivity of nylon, cotton, acrylic, and polyester fabrics as a function of moisture content. Text Res J 90:1431–1445. https://doi.org/10.1177/0040517519888825

    Article  CAS  Google Scholar 

  12. Hsu PC, Song AY, Catrysse PB et al (2016) Radiative human body cooling by nanoporous polyethylene textile. Science 353:1019–1023. https://doi.org/10.1126/science.aaf5471

    Article  CAS  Google Scholar 

  13. Peng Y, Chen J, Song AY et al (2018) Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat Sustain 1:105–112. https://doi.org/10.1038/s41893-018-0023-2

    Article  Google Scholar 

  14. Cai L, Song AY, Li W et al (2018) Spectrally selective nanocomposite textile for outdoor personal cooling. Adv Mater 30:1802152. https://doi.org/10.1002/adma.201802152

    Article  CAS  Google Scholar 

  15. Cai L, Song AY, Wu P et al (2017) Warming up human body by nanoporous metallized polyethylene textile. Nat Commun 8:496. https://doi.org/10.1038/s41467-017-00614-4

    Article  CAS  Google Scholar 

  16. Luo H, Zhu Y, Xu Z et al (2021) Outdoor personal thermal management with simultaneous electricity generation. Nano Lett 21:3879–3886. https://doi.org/10.1021/acs.nanolett.1c00400

    Article  CAS  Google Scholar 

  17. Cai L, Peng Y, Xu J et al (2019) Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3:1478–1486. https://doi.org/10.1016/j.joule.2019.03.015

    Article  CAS  Google Scholar 

  18. Luo H, Li Q, Du K et al (2019) An ultra-thin colored textile with simultaneous solar and passive heating abilities. Nano Energy 65:103998. https://doi.org/10.1016/j.nanoen.2019.103998

    Article  CAS  Google Scholar 

  19. Gita S, Hussan A, Choudhury TG (2017) Impact of textile dyes waste on aquatic environments and its treatment. Environ Ecol 35:2349–2353

    Google Scholar 

  20. Kishor R, Purchase D, Saratale GD et al (2021) Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J Environ Chem Eng 9:105012. https://doi.org/10.1016/j.jece.2020.105012

    Article  CAS  Google Scholar 

  21. Matsuoka M (1990) Infrared absorbing dyes, 1st edn. Springer, US, New York

    Book  Google Scholar 

  22. Lee J, Kang MH, Lee KB, Lee Y (2013) Characterization of natural dyes and traditional korean silk fabric by surface analytical techniques. Materials 6:2007–2025. https://doi.org/10.3390/ma6052007

    Article  Google Scholar 

  23. Swann S (1988) Magnetron sputtering. Phys Technol 19:67–75. https://doi.org/10.1088/0305-4624/19/2/304

    Article  CAS  Google Scholar 

  24. Jiang S, Miao D, Yang G et al (2015) Fabrication of Ag thin film on polyester fabric by roll to roll magnetron sputtering system. J Mater Sci Mater Electron 26:3364–3369. https://doi.org/10.1007/s10854-015-2841-6

    Article  CAS  Google Scholar 

  25. Depla D, Segers S, Leroy W et al (2011) Smart textiles: an explorative study of the use of magnetron sputter deposition. Text Res J 81:1808–1817. https://doi.org/10.1177/0040517511411966

    Article  CAS  Google Scholar 

  26. Tan XQ, Liu JY, Niu JR et al (2018) Recent progress in magnetron sputtering technology used on fabrics. Materials 11:1953. https://doi.org/10.3390/ma11101953

    Article  CAS  Google Scholar 

  27. Sun J, Bhushan B, Tong J (2013) Structural coloration in nature RSC Adv 3:14862–14889. https://doi.org/10.1039/c3ra41096j

    Article  CAS  Google Scholar 

  28. Huang M, Lu SG, Ren Y et al (2020) Structural coloration and its application to textiles: a review. J Text Inst 111:756–764. https://doi.org/10.1080/00405000.2019.1663623

    Article  CAS  Google Scholar 

  29. Yuan X, Xu W, Huang F et al (2017) Structural colors of fabric from Ag/TiO2 composite films prepared by magnetron sputtering deposition. Int J Cloth Sci Technol 29:427–435. https://doi.org/10.1108/IJCST-04-2016-0038

    Article  Google Scholar 

  30. Yuan X, Ye Y, Lian M, Wei Q (2018) Structural coloration of polyester fabrics coated with Al/TiO2 composite films and their anti-ultraviolet properties. Materials 11:1011. https://doi.org/10.3390/ma11061011

    Article  CAS  Google Scholar 

  31. Yuan X, Wei Q, Ke H et al (2019) Structural color and photocatalytic property of polyester fabrics coated with Ag/ZnO composite films. Int J Cloth Sci Technol 31:487–494. https://doi.org/10.1108/IJCST-09-2018-0112

    Article  Google Scholar 

  32. Zhang X, Jiang S, Cai M et al (2020) Magnetron sputtering deposition of Ag/Ag2O bilayer films for highly efficient color generation on fabrics. Ceram Int 46:13342–13349. https://doi.org/10.1016/j.ceramint.2020.02.113

    Article  CAS  Google Scholar 

  33. Huang ML, Cai Z, Wu YZ et al (2020) Metallic coloration on polyester fabric with sputtered copper and copper oxides films. Vacuum 178:109489. https://doi.org/10.1016/j.vacuum.2020.109489

    Article  CAS  Google Scholar 

  34. Li W, Shi Y, Chen Z, Fan S (2018) Photonic thermal management of coloured objects. Nat Commun 9:4240. https://doi.org/10.1038/s41467-018-06535-0

    Article  CAS  Google Scholar 

  35. Kats MA, Capasso F (2016) Optical absorbers based on strong interference in ultra-thin films. Laser Photonics Rev 10:735–749. https://doi.org/10.1002/lpor.201600098

    Article  CAS  Google Scholar 

  36. Li Y, Zhou L, Zhang G et al (2017) Study on the effects of the characteristics of textile substrates on the photonic crystal films and the related structural colors. Surf Coat Technol 319:267–276. https://doi.org/10.1016/j.surfcoat.2017.04.017

    Article  CAS  Google Scholar 

  37. Bennett HE, Porteus JO (1961) Relation between surface roughness and specular reflectance at normal incidence. J Opt Soc Am 51:123–129. https://doi.org/10.1364/josa.51.000123

    Article  CAS  Google Scholar 

  38. AATCC Test Method 183–2010 Transmittance or blocking of erythemally weighted ultraviolet radiation through fabrics (2010). AATCC Tech Man 317–320

  39. AS/NZS 4399:1996 Sun protective clothing–Evaluation and classification. Australian/New Zealand Standard

  40. Müller J, Rech B, Springer J, Vanecek M (2004) TCO and light trapping in silicon thin film solar cells. Sol Energy 77:917–930. https://doi.org/10.1016/j.solener.2004.03.015

    Article  CAS  Google Scholar 

  41. Alizadehgiashi M, Nemr CR, Chekini M et al (2021) Multifunctional 3D-printed wound dressings. ACS Nano 15:12375–12387. https://doi.org/10.1021/acsnano.1c04499

    Article  CAS  Google Scholar 

  42. Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10:339–354. https://doi.org/10.1016/j.nantod.2015.04.002

    Article  CAS  Google Scholar 

  43. Shaheen TI, Salem SS, Zaghloul S (2019) A new facile strategy for multifunctional textiles development through in situ deposition of SiO2/TiO2 nanosols hybrid. Ind Eng Chem Res 58:20203–20212. https://doi.org/10.1021/acs.iecr.9b04655

    Article  CAS  Google Scholar 

  44. Dhineshbabu NR, Arunmetha S, Manivasakan P et al (2016) Enhanced functional properties of cotton fabrics using TiO2/SiO2 nanocomposites. J Ind Text 45:674–692. https://doi.org/10.1177/1528083714538684

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Nos. 61774160 and 61875209), Natural Science Foundation of Zhejiang Province (No. LY19F040003), Ningbo Key Laboratory of Silicon and Organic Thin Film Optoelectronic Technologies.

Author information

Authors and Affiliations

Corresponding authors

Correspondence to Jia Li, Yuehui Lu or Weijie Song.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18815 KB)

Supplementary file2 (MP4 33640 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Huang, J., Wang, J. et al. A universal green coating strategy on textiles for simultaneous color and thermal management. J Mater Sci 57, 11477–11490 (2022). https://doi.org/10.1007/s10853-022-07286-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07286-6