Skip to main content

Advertisement

Log in

Poly (5-carboxyindole)–β-cyclodextrin composite material for enhanced formaldehyde gas sensing

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Formaldehyde, a compound commonly employed in many construction materials, paints, and plastics, has been linked to deleterious health effects. Thus, monitoring the presence of formaldehyde in interior locations is increasingly important when it comes to public health. Currently, there is a crucial need for a low-cost, small-scale, selective, and sensitive indoor sensor capable of real-time formaldehyde detection. To meet these performance metrics, materials need to be incorporated onto existing gas sensor platforms to act as chemically selective recognition layers. A main challenge when addressing this issue is creating a material that can remain easily processable, can be easily synthesized, and can operate in practical environments (i.e., at common temperatures, humidity values, and in the presence of distractant analytes). Here, we show the unique properties of poly(5-carboxyindole) (P5C), an easily synthesized polymer, for practical indoor air monitoring of formaldehyde gas at concentrations as low as 25 ppm with rapid response and recovery times characterized by time constants of 27 s and 16 s, respectively. Importantly, we demonstrate that β-cyclodextrin (BCD), when blended into P5C to create a poly(5-carboxyindole) with β-cyclodextrin composite (P5C–BCD), offers distinct properties that enhance the response to formaldehyde gas in common operational conditions. Specifically, BCD adds features into the P5C such as its ability to form strong host–guest interactions with formaldehyde, its ability to buffer P5C protonation states to allow for more protonated carboxylic acid moieties on P5C which can hydrogen bond more effectively with formaldehyde, as well as creating a cylindrical morphology with the polymer film to assist the diffusion of formaldehyde into the polymer matrix. Additionally, these materials provide for chemically selective adsorption to formaldehyde gas in environments where interfering analytes exist. Due to the practical advantages these materials offer, they have the potential to unlock new avenues for future formaldehyde sensor materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Chung PR, Tzeng CT, Ke MT, Lee CY (2013) Formaldehyde gas sensors: a review. Sens (Switzerl) 13:4468–4484

    Article  CAS  Google Scholar 

  2. Castro-Hurtado I, Mandayo GG, Castaño E (2013) Conductometric formaldehyde gas sensors. A review: from conventional films to nanostructured materials. Thin Solid Films 548:665–676

    Article  CAS  Google Scholar 

  3. Flueckiger J, Ko FK, Cheung KC (2009) Microfabricated formaldehyde gas sensors. Sensors 9:9196–9215

    Article  CAS  Google Scholar 

  4. Chan WH, Xie TY (1997) Determination of sub-ppbv levels of formaldehyde in ambient air using Girard’s reagent T-coated glass fiber filters and adsorption voltammetry. Anal Chim Acta 349:349–357

    Article  CAS  Google Scholar 

  5. Meyer B, Andrews BAK, Reinhardt RM (1986) Formaldehyde release from wood products. Anal Chem 58:1364

    Article  Google Scholar 

  6. Cincinelli A, Martellini T (2017) Indoor air quality and health. Int J Environ Res Public Health 14:1286

    Article  Google Scholar 

  7. Kawamura K, Kerman K, Fujihara M et al (2005) Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome. Sens Actuat B Chem 105:495–501

    Article  CAS  Google Scholar 

  8. Sekine Y, Nishimura A (2001) Removal of formaldehyde from indoor air by passive type air-cleaning materials. Atmos Environ 35:2001–2007

    Article  CAS  Google Scholar 

  9. Hu J, Wu X, Zeng W (2011) Formaldehyde sensor based on polypyrrole/β-cyclodextrin. J Control Release 152:e211–e213

    Article  CAS  Google Scholar 

  10. Partanen T, Kauppinen T, Hernberg S et al (1990) Formaldehyde exposure and respiratory cancer among woodworkers: an update. Scand J Work Environ Health 16:394–400

    Article  CAS  Google Scholar 

  11. Gupta KC, Ulsamer AG, Preuss PW (1982) Formaldehyde in indoor air: sources and toxicity. Environ Int 8:349–358

    Article  CAS  Google Scholar 

  12. Kim WJ, Terada N, Nomura T et al (2002) Effect of formaldehyde on the expression of adhesion molecules in nasal microvascular endothelial cells: the role of formaldehyde in the pathogenesis of sick building syndrome. Clin Exp Allergy 32:287–295

    Article  CAS  Google Scholar 

  13. Hauptmann M (2003) Mortality from lymphohematopoietic malignancies among workers in formaldehyde industries. Cancer Spect Knowl Environ 95:1615–1623

    CAS  Google Scholar 

  14. Pinkerton LE, Hein MJ, Stayner LT (2004) Mortality among a cohort of garment workers exposed to formaldehyde: an update. Occup Environ Med 61:193–200

    Article  CAS  Google Scholar 

  15. Zhang L, Steinmaus C, Eastmond DA et al (2009) Formaldehyde exposure and leukemia: a new meta-analysis and potential mechanisms. Mutat Res Mutat Res 681:150–168

    Article  CAS  Google Scholar 

  16. Wang R, Zhang Y, Lan Q et al (2009) Occupational exposure to solvents and risk of non-Hodgkin lymphoma in Connecticut women. Am J Epidemiol 169:176–185

    Article  Google Scholar 

  17. Air Quality Guidelines, 2nd ed.; WHO Regional Office for Europe: Copenhagen, Denmark, 2001. 15.

  18. Occupational Safety and Health Guideline for Formaldehyde Potential Human Carcinogen; US Department of Health and Human Services: Washington, DC, USA, 1988. 16.

  19. Chen D, Yuan YJ (2015) Thin-film sensors for detection of formaldehyde: a review. IEEE Sens J 15:6749–6760

    Article  CAS  Google Scholar 

  20. Dojahn JG, Wentworth WE, Stearns SD (2001) Characterization of formaldehyde by gas chromatography using multiple pulsed-discharge photoionization detectors and a flame ionization detector. J Chromatogr Sci 39:54–58

    Article  CAS  Google Scholar 

  21. Davenport JJ, Hodgkinson J, Saffell JR, Tatam RP (2014) Formaldehyde sensor using non-dispersive UV spectroscopy at 340nm. 9141:91410K.

  22. Septon JC, Ku JC (1982) Workplace air sampling and polarographic determination of formaldehyde. Am Ind Hyg Assoc J 43:845–852

    Article  CAS  Google Scholar 

  23. Möhlmann GR (1985) Formaldehyde detection in air by laser-induced fluorescence. Appl Spectrosc 39:98–101

    Article  Google Scholar 

  24. van den Broek J, Klein Cerrejon D, Pratsinis SE, Güntner AT (2020) Selective formaldehyde detection at ppb in indoor air with a portable sensor. J Hazard Mater 399:123052

    Article  Google Scholar 

  25. Tian H, Fan H, Li M, Ma L (2016) Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS Sens 1:243–250

    Article  CAS  Google Scholar 

  26. Wang Z, Hou C, De Q et al (2018) One-step synthesis of Co-doped In2O3 nanorods for high response of formaldehyde sensor at low temperature. ACS Sens 3:468–475

    Article  CAS  Google Scholar 

  27. Ishihara S, Labuta J, Nakanishi T et al (2017) Amperometric detection of sub-ppm formaldehyde using single-walled carbon nanotubes and hydroxylamines: a referenced chemiresistive system. ACS Sens 2:1405–1409

    Article  CAS  Google Scholar 

  28. Wang YH, Lee CY, Lin CH, Fu LM (2008) Enhanced sensing characteristics in MEMS-based formaldehyde gas sensors. Microsyst Technol 14:995–1000

    Article  CAS  Google Scholar 

  29. Asri MIA, Hasan MN, Fuaad MRA et al (2021) MEMS gas sensors: a review. IEEE Sens J 21:18381–18397

    Article  CAS  Google Scholar 

  30. Zhou Z-L, Kang T-F, Zhang Y, Cheng S-Y (2009) Electrochemical sensor for formaldehyde based on Pt–Pd nanoparticles and a Nafion-modified glassy carbon electrode. Microchim Acta 164:133–138

    Article  CAS  Google Scholar 

  31. Chen T, Liu QJ, Zhou ZL, Wang YD (2008) The fabrication and gas-sensing characteristics of the formaldehyde gas sensors with high sensitivity. Sens Actuat B Chem 131:301–305

    Article  CAS  Google Scholar 

  32. Dirksen JA, Duval K, Ring TA (2001) NiO thin-film formaldehyde gas sensor. Sens Actuat B Chem 80:106–115

    Article  CAS  Google Scholar 

  33. Knake R, Jacquinot P, Hodgson AWE, Hauser PC (2005) Amperometric sensing in the gas-phase. Anal Chim Acta 549:1–9

    Article  CAS  Google Scholar 

  34. Wang H, Chi Y, Gao X et al (2017) Amperometric formaldehyde sensor based on a Pd nanocrystal modified C/Co2P electrode. J Chem 2017:2346895

    Article  Google Scholar 

  35. McGinn CK, Lamport ZA, Kymissis I (2020) Review of gravimetric sensing of volatile organic compounds. ACS Sens 5:1514–1534

    Article  CAS  Google Scholar 

  36. Choi N-J, Lee H-K, Moon SE et al (2014) Ultrafast response sensor to formaldehyde gas based on metal oxide. J Nanosci Nanotechnol 14:5807–5810

    Article  CAS  Google Scholar 

  37. Zhou W, Wu Y-P, Zhao J et al (2017) Efficient gas-sensing for formaldehyde with 3D hierarchical Co3O4 derived from Co5-based MOF microcrystals. Inorg Chem 56:14111–14117

    Article  CAS  Google Scholar 

  38. Bouchikhi B, Chludziński T, Saidi T et al (2020) Formaldehyde detection with chemical gas sensors based on WO3 nanowires decorated with metal nanoparticles under dark conditions and UV light irradiation. Sens Actuat B Chem 320:128331

    Article  CAS  Google Scholar 

  39. Zhang D, Liu J, Jiang C et al (2017) Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sens Actuat B Chem 240:55–65

    Article  CAS  Google Scholar 

  40. Zaki M, Hashim U, Arshad MKM, et al (2016) Sensitivity and selectivity of metal oxides based sensor towards detection of formaldehyde. In: Proceedings of the 2016 IEEE international conference on semiconductor electronics (ICSE). pp 312–315

  41. Diltemiz SE, Ecevit K (2019) High-performance formaldehyde adsorption on CuO/ZnO composite nanofiber coated QCM sensors. J Alloys Compd 783:608–616.

  42. Hussain M, Kotova K, Lieberzeit PA (2016) Molecularly imprinted polymer nanoparticles for formaldehyde sensing with QCM. Sensors 16:1011

    Article  Google Scholar 

  43. Feng L, Feng L, Li Q et al (2021) Sensitive formaldehyde detection with QCM sensor based on PAAm/MWCNTs and PVAm/MWCNTs. ACS Omega 6:14004–14014

    Article  CAS  Google Scholar 

  44. Tai H, Jiang Y, Duan C et al (2013) Development of a novel formaldehyde OTFT sensor based on P3HT/Fe2O3 nanocomposite thin film. Integr Ferroelectr 144:15–21

    Article  CAS  Google Scholar 

  45. Tang X, Raskin J-P, Lahem D et al (2017) A formaldehyde sensor based on molecularly-imprinted polymer on a TiO2 nanotube array. Sensors (Basel) 17:675

    Article  Google Scholar 

  46. Rovina K, Vonnie JM, Shaeera SN et al (2020) Development of biodegradable hybrid polymer film for detection of formaldehyde in seafood products. Sens Bio-Sens Res 27:100310

    Article  Google Scholar 

  47. Zhang D, Zhang M, Ding F et al (2020) Efficient removal of formaldehyde by polyethyleneimine modified activated carbon in a fixed bed. Environ Sci Pollut Res 27:18109–18116

    Article  CAS  Google Scholar 

  48. Tai H, Bao X, He Y et al (2015) Enhanced formaldehyde-sensing performances of mixed polyethyleneimine-multiwalled carbon nanotubes composite films on quartz crystal microbalance. IEEE Sens J 15:6904–6911

    Article  CAS  Google Scholar 

  49. Ariyageadsakul P, Vchirawongkwin V, Kritayakornupong C (2017) Role and impact of differently charged polypyrrole on formaldehyde sensing behavior. Synth Met 230:27–38

    Article  CAS  Google Scholar 

  50. Lee CY, Hsieh PR, Lin CH et al (2006) MEMS-based formaldehyde gas sensor integrated with a micro-hotplate. Microsystem Technologies. pp 893–898.

  51. Hodul JN, Murray AK, Carneiro NF et al (2020) Modifying the surface chemistry and nanostructure of carbon nanotubes facilitates the detection of aromatic hydrocarbon gases. ACS Appl Nano Mater 3:10389–10398

    Article  CAS  Google Scholar 

  52. Bartlett PN, Ling-Chung SK (1989) Conducting polymer gas sensors part III: results for four different polymers and five different vapours. Sens Actuat 20:287–292

    Article  CAS  Google Scholar 

  53. Bartlett PN, Archer PBM, Ling-Chung SK (1989) Conducting polymer gas sensors part I: fabrication and characterization. Sens Actuat 19:125–140

    Article  CAS  Google Scholar 

  54. Noreña-Caro D, Álvarez-Láinez M (2016) Functionalization of polyacrylonitrile nanofibers with β-cyclodextrin for the capture of formaldehyde. Mater Des 95:632–640

    Article  Google Scholar 

  55. Wang L, Kang Y, Xing C-Y et al (2019) β-Cyclodextrin based air filter for high-efficiency filtration of pollution sources. J Hazard Mater 373:197–203

    Article  CAS  Google Scholar 

  56. Kadam V, Truong YB, Schutz J et al (2021) Gelatin/β–Cyclodextrin Bio-Nanofibers as respiratory filter media for filtration of aerosols and volatile organic compounds at low air resistance. J Hazard Mater 403:123841

    Article  CAS  Google Scholar 

  57. Kadam V, Truong YB, Easton C et al (2018) Electrospun polyacrylonitrile/β-cyclodextrin composite membranes for simultaneous air filtration and adsorption of volatile organic compounds. ACS Appl Nano Mater 1:4268–4277

    Article  CAS  Google Scholar 

  58. Joshi L, Gupta B, Prakash R (2010) Chemical synthesis of poly(5-carboxyindole) and poly(5-carboxyindole)/carboxylated multiwall carbon nanotube nanocomposite. Thin Solid Films 519:218–222

    Article  CAS  Google Scholar 

  59. Gupta B, Chauhan DS, Prakash R (2010) Controlled morphology of conducting polymers: Formation of nanorods and microspheres of polyindole. Mater Chem Phys 120:625–630

    Article  CAS  Google Scholar 

  60. Joshi L, Prakash R (2013) Synthesis of conducting poly(5-carboxyindole)/Au nanocomposite: investigation of structural and nanoscale electrical properties. Thin Solid Films 534:120–125

    Article  CAS  Google Scholar 

  61. Abarca RL, Rodríguez FJ, Guarda A et al (2016) Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem 196:968–975

    Article  CAS  Google Scholar 

  62. Wang X, Xing W, Wang B et al (2013) Comparative study on the effect of beta-cyclodextrin and polypseudorotaxane As carbon sources on the thermal stability and flame retardance of polylactic acid. Ind Eng Chem Res 52:3287–3294

    Article  CAS  Google Scholar 

  63. Mbhele ZH, Salemane MG, van Sittert CGCE et al (2003) Fabrication and characterization of silver−polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024

    Article  CAS  Google Scholar 

  64. Afzal AB, Akhtar MJ, Nadeem M, Hassan MM (2009) Investigation of structural and electrical properties of polyaniline/gold nanocomposites. J Phys Chem C 113:17560–17565

    Article  CAS  Google Scholar 

  65. Yan X, Xu T, Chen G et al (2004) Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. J Phys D Appl Phys 37:907–913

    Article  CAS  Google Scholar 

  66. Chen X, Wang X, Fang D (2020) A review on C1s XPS-spectra for some kinds of carbon materials. Fuller Nanotub Carbon Nanostruct 28:1048–1058

    Article  CAS  Google Scholar 

  67. Neoh KG, Kang ET, Tan KL (1993) Protonation and deprotonation behaviour of amine units in polyaniline. Polymer (Guildf) 34:1630–1636

    Article  CAS  Google Scholar 

  68. Tong Z, Yang Y, Wang J et al (2014) Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors. J Mater Chem A 2:4642–4651

    Article  CAS  Google Scholar 

  69. Wang L, Liang X-Y, Chang Z-Y et al (2018) Effective formaldehyde capture by green cyclodextrin-based metal–organic framework. ACS Appl Mater Interf 10:42–46

    Article  CAS  Google Scholar 

  70. Yang Z, Miao H, Rui Z, Ji H (2019) Enhanced formaldehyde removal from air using fully biodegradable chitosan grafted β-cyclodextrin adsorbent with weak chemical interaction. Polymers (Basel) 11:276

    Article  Google Scholar 

  71. Kadam V, Kyratzis IL, Truong YB et al (2020) Air filter media functionalized with β-cyclodextrin for efficient adsorption of volatile organic compounds. J Appl Polym Sci 137:49228

    Article  CAS  Google Scholar 

  72. Liu Z, Yan A, Miao R (2010) Removal of indoor pollutants by nano TiO2/beta-cyclodextrin coated paper under UV irradiation. In: Proceedings of the 2010 4th international conference on bioinformatics and biomedical engineering, pp 1–4.

  73. Yu X, Qi H, Huang Z et al (2017) Preparation and characterization of spherical β-cyclodextrin/urea–formaldehyde microcapsules modified by nano-titanium oxide. RSC Adv 7:7857–7863

    Article  CAS  Google Scholar 

  74. Zhao W, Shi B, Hu C (2007) Adsorption properties of β-cyclodextrin for adsorbing aromatic hydrocarbons from the gas phase and water. J Macromol Sci B 47:211–216

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Center for High Performance Buildings at Purdue University (Grant Number: CHPB-44-2019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bryan W. Boudouris or Jeffrey F. Rhoads.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 527 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodul, J.N., Carneiro, N.F., Murray, A.K. et al. Poly (5-carboxyindole)–β-cyclodextrin composite material for enhanced formaldehyde gas sensing. J Mater Sci 57, 11460–11474 (2022). https://doi.org/10.1007/s10853-022-07285-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07285-7