Skip to main content
Log in

A theory of Snoek relaxation in iron-carbon bct-martensite

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Martensite is a major constituent of Fe–C alloys. Its metastable body-centered tetragonal structure provides high tensile strength to martensitic steels. Recent experiments highlighted the benefit of large solute carbon content to the strength and ductility of the so-called virgin martensite obtained by sub-zero quench. The results suggest a significant contribution of the elastic and anelastic deformation of the martensite crystals to the rheology of these alloys. In order to shed light on the influence of carbon content on the anelastic response, we investigated theoretically the behavior of solute carbon during Snoek relaxation. Thanks to a linear-response approach, we obtained analytical formulae of the atomic mobilities and the thermodynamic affinities, from which the relaxation strength and time were derived. We unravel the unexpected decrease in the relaxation strength and time when solute carbon content is increased. Relaxation kinetics is explained at the atomic scale by an indirect mechanism of carbon migration in martensite, at variance with ferrite. We emphasize the onset of nonlinear effects when the applied stress is high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Allain S, Danoix F, Goune M, Hoummada K, Mangelinck D (2013) Static and dynamical ageing processes at room temperature in a Fe25Ni0.4C virgin martensite: effect of C redistribution at the nanoscale. Philos Mag Lett 93(2):68–76. https://doi.org/10.1080/09500839.2012.742590

    Article  CAS  Google Scholar 

  2. Bhadeshia HKDH, Honeycombe RWK (2006) Steels: microstructure and properties, 3rd edn. Metallurgy and materials science series, E Arnold, London New York

    Google Scholar 

  3. Blanter M, Golovin I, Neuhauser H, Sinning HR (2007) Internal Friction in Metallic Materials, 1st edn. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  4. Chirkov P, Mirzoev A, Mirzaev D (2015) Molecular-dynamics Simulations of Carbon Ordering in bcc Fe and its Impact on Martensite Transition. Mater. Today Proc. 2S, 553–556 (jan). https://doi.org/10.1016/J.MATPR.2015.07.345, http://www.sciencedirect.com/science/article/pii/S2214785315005908

  5. DeCristofaro N, Kaplow R, Owen WS (1978) The kinetics of carbon clustering in martensite. Metall Trans A 9:821–825

    Article  Google Scholar 

  6. Epp J, Hirsch T, Curfs C (2012) In situ X-Ray diffraction analysis of carbon partitioning during quenching of low carbon steel. Metall Mater Trans A 43(7):2210–2217

    Article  CAS  Google Scholar 

  7. Genderen MJ, Isac M, Böttger A, Mittemeijer EJ (1997) Aging and tempering behavior of iron-nickel-carbon and iron-carbon martensite. Metall Mater Trans A 28(March):545–561. https://doi.org/10.1007/s11661-997-0042-5

    Article  Google Scholar 

  8. Hillert M (1959) The kinetics of the first stage of tempering. Acta Metall 7(10):653–658

    Article  CAS  Google Scholar 

  9. Huang L, Maugis P (2022) Effect of substitutional Ni atoms on the Snoek relaxation in ferrite and martensite Fe-C alloys: an atomisitic investigation. Comput Mater Sci 203:111083. https://doi.org/10.1016/j.commatsci.2021.111083

    Article  CAS  Google Scholar 

  10. Ino H, Takagi S, Sugeno T (1967) On the relaxation strength of the Snoek peak. Acta Metall 15(1):29–34

    Article  CAS  Google Scholar 

  11. Kurdjumov G, Khachaturyan A (1972) Phenomena of carbon atom redistribution in martensite. Metall Trans 3(5):1069–1076. https://doi.org/10.1007/BF02642438

    Article  Google Scholar 

  12. Kurdjumov G, Khachaturyan A (1975) Nature of axial ratio anomalies of the martensite lattice and mechanism of diffusionless gamma to alpha transformation. Acta Metall 23:1077–1088

    Article  Google Scholar 

  13. Lawrence B, Sinclair CW, Perez M (2014) Carbon diffusion in supersaturated ferrite: A comparison of mean-field and atomistic predictions. Model Simul Mater Sci Eng 22:1–17. https://doi.org/10.1088/0965-0393/22/6/065003

    Article  CAS  Google Scholar 

  14. Martin G (1990) Atomic mobility in Cahn’s diffusion model. Phys Rev B 41(4):2279–2283. https://doi.org/10.1103/PhysRevB.41.2279

    Article  CAS  Google Scholar 

  15. Maugis P (2018) Ferrite, martensite and supercritical iron: a coherent elastochemical theory of stress-induced carbon ordering in steel. Acta Mater 158:454–465

    Article  CAS  Google Scholar 

  16. Maugis P (2019) Nonlinear elastic behavior of iron-carbon alloys at the nanoscale. Comput Mater Sci 159:460–469

    Article  CAS  Google Scholar 

  17. Maugis P (2020) A temperature-stress phase diagram of carbon-supersaturated bcc-iron exhibiting “beyond-zener’’ ordering. J Phase Equilibria Diffus 41:269–275. https://doi.org/10.1007/s11669-020-00816-2

    Article  CAS  Google Scholar 

  18. Maugis P (2020) Giant Snoek peak in ferrite due to carbon-carbon strain interactions. Materialia 12(8):100805. https://doi.org/10.1016/j.mtla.2020.100805

    Article  CAS  Google Scholar 

  19. Maugis P, Chentouf S, Connétable D (2018) Stress-controlled carbon diffusion channeling in bct-iron: a mean-field theory. J Alloys Compd 769:1121–1131

    Article  CAS  Google Scholar 

  20. Maugis P, Danoix F, Dumont M, Curelea S, Cazottes S, Zapolsky H, Gouné M (2018) Carbon diffusivity and kinetics of spinodal decomposition of martensite in a model Fe-Ni-C alloy. Mater Lett 214:213–216. https://doi.org/10.1016/j.matlet.2017.12.007

    Article  CAS  Google Scholar 

  21. Maugis P, Danoix F, Zapolsky H, Cazottes S, Gouné M (2017) Temperature hysteresis of the order-disorder transition in carbon-supersaturated \(\alpha \)-Fe. Phys Rev B 96(21):214104

    Article  Google Scholar 

  22. Maugis P, Kandaskalov D (2020) Revisiting the pressure effect on Carbon migration in iron. Mater Lett 270:127725. https://doi.org/10.1016/J.MATLET.2020.127725

    Article  CAS  Google Scholar 

  23. Maugis P (2021) Thermo-kinetic modelling of the giant Snoek effect in carbon-supersaturated iron. J Alloys Compd 877:16236

    Article  Google Scholar 

  24. Maugis P, Huang L (2022) Modeling the Snoek peak in bct-martensite. J Alloys Compd 907:164502. https://doi.org/10.1016/J.JALLCOM.2022.164502https://linkinghub.elsevier.com/retrieve/pii/S0925838822008933

    Article  CAS  Google Scholar 

  25. Nowick AS, Berry B (1972) Anelastic relaxation in crystalline solids. Academic Press, New York, Materials science series

    Google Scholar 

  26. Ruban AV (2014) Self-trapping of carbon atoms in alpha’-Fe during the martensitic transformation: a qualitative picture from ab initio calculations. Phys Rev B - Condens Matter Mater Phys 90(14):144106

    Article  Google Scholar 

  27. Shtremel M, Satdarova F (1971) Ordering kinetics of interstitial solid solutions. Sov Phys Solid State 13(4):835–840

    Google Scholar 

  28. Shtremel M, Satdarova F (1972) Influence of stresses on order in interstitial solutions. Fiz Met Met 34(4):699–708

    CAS  Google Scholar 

  29. Sinclair CW, Perez M, Veiga RGA, Weck A (2010) Molecular dynamics study of the ordering of carbon in highly supersaturated alpha-Fe. Phys Rev B 81(22):224204

    Article  Google Scholar 

  30. Sinclair CW, Perez M (2011) Ordering in highly supersaturated alpha-Fe-C. Solid State Phenom 172–174:996–1001

    Article  Google Scholar 

  31. Snoek J (1941) Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron. Physica 8(7):711–733. https://doi.org/10.1016/S0031-8914(41)90517-7

    Article  CAS  Google Scholar 

  32. Taylor K, Cohen M (1992) Ageing of ferrous martensites. Prog Mater Sci 36:225–272

    CAS  Google Scholar 

  33. Udyansky A, von Pezold J, Dick A, Neugebauer J (2011) Orientational ordering of interstitial atoms and martensite formation in dilute Fe-based solid solutions. Phys Rev B 83(18):184112

    Article  Google Scholar 

  34. Udyansky A, Von Pezold J, Bugaev VN, Friák M, Neugebauer J (2009) Interplay between long-range elastic and short-range chemical interactions in Fe-C martensite formation. Phys Rev B - Condens Matter Mater Phys 79(22):224112

    Article  Google Scholar 

  35. Weller M (2006) The Snoek relaxation in bcc metals-From steel wire to meteorites. Mater Sci Eng A 442(1-2 SPEC ISS), 21–30 https://doi.org/10.1016/j.msea.2006.02.232

  36. Xiao L, Fan Z, Jinxiu Z, Mingxing Z, Mokuang K, Zhenqi G (1995) Lattice-parameter variation with carbon content of martensite. I. X-ray-diffraction experimental study. Phys Rev B 52(14):9970–9978

    Article  CAS  Google Scholar 

  37. Zener C (1948) Theory of strain interaction of solute atoms. Phys Rev 74(6):639–647. https://doi.org/10.1103/PhysRev.74.639

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agence Nationale de la Recherche, France (contract C-TRAM ANR-18-CE92-0021). The paper is dedicated to Georges Martin, who introduced the invaluable Polkowicz’s identity in the mean-field kinetic theory of alloys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Maugis.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maugis, P. A theory of Snoek relaxation in iron-carbon bct-martensite. J Mater Sci 57, 10343–10358 (2022). https://doi.org/10.1007/s10853-022-07250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07250-4

Profiles

  1. Philippe Maugis