Skip to main content

Chemical preintercalation synthesis approach for the formation of new layered tungsten oxides

Abstract

Tungsten oxide, WO3·nH2O, is a unique layered oxide material that offers enhanced performance in electrochromic and energy storage applications. Herein, we report the formation of a new, never previously synthesized, Na-containing layered tungsten oxide phase, Na0.20WO3·0.81H2O, using a chemical preintercalation approach. The structure and composition of this novel phase were investigated via microscopy, spectroscopy, and diffraction methods. Electrochemical cycling of Na0.20WO3·0.81H2O electrodes revealed initial discharge capacities of 37.43 mAh g−1, 480.8 mAh g−1, and 253.2 mAh g−1 in aqueous H2SO4 cells (potential window of − 0.2–0.8 V vs. Ag/AgCl), non-aqueous Li-ion cells (potential window of 0.1–4.0 V vs. Li/Li+), and non-aqueous Na-ion cells (potential window of 0.1–4.0 V vs. Na/Na+), respectively. Additionally, a reversible, pressure-induced color change from pale yellow to dark brown/black was observed for the Na0.20WO3·0.81H2O sample when it was placed under pressures of 1000 psi or higher. Our results demonstrate the viability of chemical preintercalation synthesis approach to produce new oxide phases with interesting functional properties.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. Costa C, Pinheiro C, Henriques I, Laia CAT (2012) Inkjet printing of sol-gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices. ACS Appl Mater Interfaces 4(3):1330–1340

    CAS  Article  Google Scholar 

  2. Deepa M, Joshi AG, Srivastava AK, Shivaprasad SM, Agnihotry SA (2006) Electrochromic nanostructured tungsten oxide films by sol-gel: structure and intercalation properties. J Electrochem Soc 153(5):C365

    CAS  Article  Google Scholar 

  3. Gu G, Zheng B, Han WQ, Roth S, Liu J (2002) Tungsten oxide nanowires on tungsten substrates. Nano Lett 2(8):849–851

    CAS  Article  Google Scholar 

  4. Alsawafta M, Golestani YM, Phonemac T, Badilescu S, Stancovski V, Truong V-V (2014) Electrochromic properties of sol-gel synthesized macroporous tungsten oxide films doped with gold nanoparticles. J Electrochem Soc 161(5):H276–H283

    CAS  Article  Google Scholar 

  5. Augustyn V (2017) Tuning the interlayer of transition metal oxides for electrochemical energy storage. J Mater Res 32(1):2–15

    CAS  Article  Google Scholar 

  6. Augustyn V, Gogotsi Y (2017) 2D materials with nanoconfined fluids for electrochemical energy storage. Joule 1(3):443–452

    CAS  Article  Google Scholar 

  7. Mitchell JB, Geise NR, Paterson AR, Osti NC, Sun Y, Fleischmann S, Zhang R, Madsen LA, Toney MF, Jiang D-E, Kolesnikov AI, Mamontov E, Augustyn V (2019) Confined interlayer water promotes structural stability for high-rate electrochemical proton intercalation in tungsten oxide hydrates. ACS Energy Lett 4(12):2805–2812

    CAS  Article  Google Scholar 

  8. Mitchell JB, Lo WC, Genc A, LeBeau J, Augustyn V (2017) Transition from battery to pseudocapacitor behavior via structural water in tungsten oxide. Chem Mater 29(9):3928–3937

    CAS  Article  Google Scholar 

  9. Wang R, Mitchell JB, Gao Q, Tsai W-Y, Boyd S, Pharr M, Balke N, Augustyn V (2018) Operando atomic force microscopy reveals mechanics of structural water driven battery-to-pseudocapacitor transition. ACS Nano 12(6):6032–6039

    CAS  Article  Google Scholar 

  10. Vidmar T, Topj M, Dzik P, Krbaovec UO (2014) Inkjet printing of soŒ gel derived tungsten oxide inks. Sol Energy Mater Sol Cells 125:87–95

    CAS  Article  Google Scholar 

  11. Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-zadeh K (2011) Nanostructured tungsten oxide – properties, synthesis, and applications. Adv Funct Mater 21(12):2175–2196

    CAS  Article  Google Scholar 

  12. Wang Z, Gong W, Wang X, Chen Z, Chen X, Chen J, Sun H, Song G, Cong S, Geng F, Zhao Z (2020) Remarkable near-infrared electrochromism in tungsten oxide driven by interlayer water-induced battery-to-pseudocapacitor transition. ACS Appl Mater Interfaces 12(30):33917–33925

    CAS  Article  Google Scholar 

  13. Kim E, Suzuki S, Miyayama M (2014) Electrode properties of layered tungsten-based oxides for electrochemical capacitors. J Ceram Soc Jpn 122(1426):426–429

    Article  Google Scholar 

  14. Yoon S, Jo C, Noh SY, Lee CW, Song JH, Lee J (2011) Development of a high-performance anode for lithium ion batteries using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Phys Chem Chem Phys 13(23):11060–11066

    CAS  Article  Google Scholar 

  15. Li W-J, Fu Z-W (2010) Nanostructured WO3 thin film as a new anode material for lithium-ion batteries. Appl Surf Sci 256(8):2447–2452

    CAS  Article  Google Scholar 

  16. Kim D-M, Kim S-J, Lee Y-W, Kwak D-H, Park H-C, Kim M-C, Hwang B-M, Lee S, Choi J-H, Hong S, Park K-W (2015) Two-dimensional nanocomposites based on tungsten oxide nanoplates and graphene nanosheets for high-performance lithium ion batteries. Electrochim Acta 163:132–139

    CAS  Article  Google Scholar 

  17. Ryu W-H, Wilson H, Sohn S, Li J, Tong X, Shaulsky E, Schroers J, Elimelech M, Taylor AD (2016) Heterogeneous WSx/WO3 thorn-bush nanofiber electrodes for sodium-ion batteries. ACS Nano 10(3):3257–3266

    CAS  Article  Google Scholar 

  18. Santhosha AL, Das SK, Bhattacharyya AJ (2016) Tungsten trioxide (WO3) nanoparticles as a new anode material for sodium-ion batteries. J Nanosci Nanotechnol 16(4):4131–4135

    CAS  Article  Google Scholar 

  19. Clites M, Byles BW, Pomerantseva E (2016) Effect of aging and hydrothermal treatment on electrochemical performance of chemically pre-intercalated Na–V–O nanowires for Na-ion batteries. J Mater Chem A 4(20):7754–7761

    CAS  Article  Google Scholar 

  20. Clites M, Hart JL, Taheri ML, Pomerantseva E (2018) Chemically preintercalated bilayered KxV2O5·nH2O nanobelts as a high-performing cathode material for K-ion batteries. ACS Energy Lett 3(3):562–567

    CAS  Article  Google Scholar 

  21. Clites M, Pomerantseva E (2018) Bilayered vanadium oxides by chemical pre-intercalation of alkali and alkali-earth ions as battery electrodes. Energy Storage Mater 11:30–37

    Article  Google Scholar 

  22. Dong Y, Xu X, Li S, Han C, Zhao K, Zhang L, Niu C, Huang Z, Mai L (2015) Inhibiting effect of Na+ pre-intercalation in MoO3 nanobelts with enhanced electrochemical performance. Nano Energy 15:145–152

    Article  Google Scholar 

  23. Yao X, Zhao Y, Castro FA, Mai L (2019) Rational design of preintercalated electrodes for rechargeable batteries. ACS Energy Lett 4(3):771–778

    CAS  Article  Google Scholar 

  24. Mai LQ, Hu B, Chen W, Qi YY, Lao CS, Yang RS, Dai Y, Wang ZL (2007) Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv Mater 19(21):3712–3716

    CAS  Article  Google Scholar 

  25. Clites M, Andris R, Cullen DA, More KL, Pomerantseva E (2020) Improving electronic conductivity of layered oxides through the formation of two-dimensional heterointerface for intercalation batteries. ACS Appl Energy Mater 3(4):3835–3844

    CAS  Article  Google Scholar 

  26. Clites M, Pomerantseva E (2018) Synthesis of hybrid layered electrode materials via chemical pre-intercalation of linear organic molecules. SPIE Nanosci Eng 10725:107250

    Google Scholar 

  27. Wei Q, Jiang Z, Tan S, Li Q, Huang L, Yan M, Zhou L, An Q, Mai L (2015) Lattice breathing inhibited layered vanadium oxide ultrathin nanobelts for enhanced sodium storage. ACS Appl Mater Interfaces 7(33):18211–18217

    CAS  Article  Google Scholar 

  28. Mukherjee S, Quilty CD, Yao S, Stackhouse CA, Wang L, Takeuchi KJ, Takeuchi ES, Wang F, Marschilok AC, Pomerantseva E (2020) The effect of chemically preintercalated alkali ions on the structure of layered titanates and their electrochemistry in aqueous energy storage systems. J Mater Chem A 8(35):18220–18231

    Article  Google Scholar 

  29. Supothina S, Seeharaj P, Yoriya S, Sriyudthsak M (2007) Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceram Int 33(6):931–936

    CAS  Article  Google Scholar 

  30. Ingham B, Chong SV, Tallon JL (2006) Layered tungsten oxide-based hybrid materials incorporating transition metal ions. Curr Appl Phys 6(3):553–556

    Article  Google Scholar 

  31. Park CY, Seo JM, Jo H, Park J, Ok KM, Park TJ (2017) Hexagonal tungsten oxide nanoflowers as enzymatic mimetics and electrocatalysts. Sci Rep 7(1):40928

    CAS  Article  Google Scholar 

  32. Moretti A, Giuli G, Trapananti A, Passerini S (2018) Electrochemical and structural investigation of transition metal doped V2O5 sono-aerogel cathodes for lithium metal batteries. Solid State Ion 319:46–52

    CAS  Article  Google Scholar 

  33. Petkov V, Trikalitis PN, Bozin ES, Billinge SJL, Vogt T, Kanatzidis MG (2002) Structure of V2O5·nH2O xerogel solved by the atomic pair distribution function technique. J Am Chem Soc 124(34):10157–10162

    CAS  Article  Google Scholar 

  34. Daniel MF, Desbat B, Lassegues JC, Gerand B, Figlarz M (1987) Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates. J Solid State Chem 67(2):235–247

    CAS  Article  Google Scholar 

  35. Pang H-F, Xiang X, Li Z-J, Fu Y-Q, Zu X-T (2012) Hydrothermal synthesis and optical properties of hexagonal tungsten oxide nanocrystals assisted by ammonium tartrate. Phys Status Solidi A 209(3):537–544

    CAS  Article  Google Scholar 

  36. Kalantar-zadeh K, Vijayaraghavan A, Ham M-H, Zheng H, Breedon M, Strano MS (2010) Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide. Chem Mater 22(19):5660–5666

    CAS  Article  Google Scholar 

  37. Xu L, Yin M-L, Liu S (2014) Agx@WO3 core-shell nanostructure for LSP enhanced chemical sensors. Sci Rep 4(1):6745

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the National Science Foundation (award numbers: DMR-1609272 and DMR-1752623) for funding. We acknowledge Drexel’s Centralized Research Facilities as well as Bryan Byles from the Materials Electrochemistry Group at Drexel for assistance with materials characterization. STEM imaging was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Contributions

EP developed the concept and designed the experiments. AB developed the altered chemical pre-intercalation synthesis method, carried out synthesis of all materials, ran XRD measurements, and performed aqueous-based electrochemical testing. MC oversaw experiments, characterized material via SEM, EDS, Raman, and FTIR, and performed non-aqueous electrochemical testing. DAC performed STEM imaging. All authors contributed to writing of this manuscript.

Corresponding author

Correspondence to Ekaterina Pomerantseva.

Ethics declarations

Conflict of interest

The authors declare that they have no known relationships or interests that could potentially influence or bias the submitted work.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 644 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clites, M., Blickley, A., Cullen, D.A. et al. Chemical preintercalation synthesis approach for the formation of new layered tungsten oxides. J Mater Sci 57, 7814–7826 (2022). https://doi.org/10.1007/s10853-022-07190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07190-z