Costa C, Pinheiro C, Henriques I, Laia CAT (2012) Inkjet printing of sol-gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices. ACS Appl Mater Interfaces 4(3):1330–1340
CAS
Article
Google Scholar
Deepa M, Joshi AG, Srivastava AK, Shivaprasad SM, Agnihotry SA (2006) Electrochromic nanostructured tungsten oxide films by sol-gel: structure and intercalation properties. J Electrochem Soc 153(5):C365
CAS
Article
Google Scholar
Gu G, Zheng B, Han WQ, Roth S, Liu J (2002) Tungsten oxide nanowires on tungsten substrates. Nano Lett 2(8):849–851
CAS
Article
Google Scholar
Alsawafta M, Golestani YM, Phonemac T, Badilescu S, Stancovski V, Truong V-V (2014) Electrochromic properties of sol-gel synthesized macroporous tungsten oxide films doped with gold nanoparticles. J Electrochem Soc 161(5):H276–H283
CAS
Article
Google Scholar
Augustyn V (2017) Tuning the interlayer of transition metal oxides for electrochemical energy storage. J Mater Res 32(1):2–15
CAS
Article
Google Scholar
Augustyn V, Gogotsi Y (2017) 2D materials with nanoconfined fluids for electrochemical energy storage. Joule 1(3):443–452
CAS
Article
Google Scholar
Mitchell JB, Geise NR, Paterson AR, Osti NC, Sun Y, Fleischmann S, Zhang R, Madsen LA, Toney MF, Jiang D-E, Kolesnikov AI, Mamontov E, Augustyn V (2019) Confined interlayer water promotes structural stability for high-rate electrochemical proton intercalation in tungsten oxide hydrates. ACS Energy Lett 4(12):2805–2812
CAS
Article
Google Scholar
Mitchell JB, Lo WC, Genc A, LeBeau J, Augustyn V (2017) Transition from battery to pseudocapacitor behavior via structural water in tungsten oxide. Chem Mater 29(9):3928–3937
CAS
Article
Google Scholar
Wang R, Mitchell JB, Gao Q, Tsai W-Y, Boyd S, Pharr M, Balke N, Augustyn V (2018) Operando atomic force microscopy reveals mechanics of structural water driven battery-to-pseudocapacitor transition. ACS Nano 12(6):6032–6039
CAS
Article
Google Scholar
Vidmar T, Topj M, Dzik P, Krbaovec UO (2014) Inkjet printing of soŒ gel derived tungsten oxide inks. Sol Energy Mater Sol Cells 125:87–95
CAS
Article
Google Scholar
Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-zadeh K (2011) Nanostructured tungsten oxide – properties, synthesis, and applications. Adv Funct Mater 21(12):2175–2196
CAS
Article
Google Scholar
Wang Z, Gong W, Wang X, Chen Z, Chen X, Chen J, Sun H, Song G, Cong S, Geng F, Zhao Z (2020) Remarkable near-infrared electrochromism in tungsten oxide driven by interlayer water-induced battery-to-pseudocapacitor transition. ACS Appl Mater Interfaces 12(30):33917–33925
CAS
Article
Google Scholar
Kim E, Suzuki S, Miyayama M (2014) Electrode properties of layered tungsten-based oxides for electrochemical capacitors. J Ceram Soc Jpn 122(1426):426–429
Article
Google Scholar
Yoon S, Jo C, Noh SY, Lee CW, Song JH, Lee J (2011) Development of a high-performance anode for lithium ion batteries using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Phys Chem Chem Phys 13(23):11060–11066
CAS
Article
Google Scholar
Li W-J, Fu Z-W (2010) Nanostructured WO3 thin film as a new anode material for lithium-ion batteries. Appl Surf Sci 256(8):2447–2452
CAS
Article
Google Scholar
Kim D-M, Kim S-J, Lee Y-W, Kwak D-H, Park H-C, Kim M-C, Hwang B-M, Lee S, Choi J-H, Hong S, Park K-W (2015) Two-dimensional nanocomposites based on tungsten oxide nanoplates and graphene nanosheets for high-performance lithium ion batteries. Electrochim Acta 163:132–139
CAS
Article
Google Scholar
Ryu W-H, Wilson H, Sohn S, Li J, Tong X, Shaulsky E, Schroers J, Elimelech M, Taylor AD (2016) Heterogeneous WSx/WO3 thorn-bush nanofiber electrodes for sodium-ion batteries. ACS Nano 10(3):3257–3266
CAS
Article
Google Scholar
Santhosha AL, Das SK, Bhattacharyya AJ (2016) Tungsten trioxide (WO3) nanoparticles as a new anode material for sodium-ion batteries. J Nanosci Nanotechnol 16(4):4131–4135
CAS
Article
Google Scholar
Clites M, Byles BW, Pomerantseva E (2016) Effect of aging and hydrothermal treatment on electrochemical performance of chemically pre-intercalated Na–V–O nanowires for Na-ion batteries. J Mater Chem A 4(20):7754–7761
CAS
Article
Google Scholar
Clites M, Hart JL, Taheri ML, Pomerantseva E (2018) Chemically preintercalated bilayered KxV2O5·nH2O nanobelts as a high-performing cathode material for K-ion batteries. ACS Energy Lett 3(3):562–567
CAS
Article
Google Scholar
Clites M, Pomerantseva E (2018) Bilayered vanadium oxides by chemical pre-intercalation of alkali and alkali-earth ions as battery electrodes. Energy Storage Mater 11:30–37
Article
Google Scholar
Dong Y, Xu X, Li S, Han C, Zhao K, Zhang L, Niu C, Huang Z, Mai L (2015) Inhibiting effect of Na+ pre-intercalation in MoO3 nanobelts with enhanced electrochemical performance. Nano Energy 15:145–152
Article
Google Scholar
Yao X, Zhao Y, Castro FA, Mai L (2019) Rational design of preintercalated electrodes for rechargeable batteries. ACS Energy Lett 4(3):771–778
CAS
Article
Google Scholar
Mai LQ, Hu B, Chen W, Qi YY, Lao CS, Yang RS, Dai Y, Wang ZL (2007) Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv Mater 19(21):3712–3716
CAS
Article
Google Scholar
Clites M, Andris R, Cullen DA, More KL, Pomerantseva E (2020) Improving electronic conductivity of layered oxides through the formation of two-dimensional heterointerface for intercalation batteries. ACS Appl Energy Mater 3(4):3835–3844
CAS
Article
Google Scholar
Clites M, Pomerantseva E (2018) Synthesis of hybrid layered electrode materials via chemical pre-intercalation of linear organic molecules. SPIE Nanosci Eng 10725:107250
Google Scholar
Wei Q, Jiang Z, Tan S, Li Q, Huang L, Yan M, Zhou L, An Q, Mai L (2015) Lattice breathing inhibited layered vanadium oxide ultrathin nanobelts for enhanced sodium storage. ACS Appl Mater Interfaces 7(33):18211–18217
CAS
Article
Google Scholar
Mukherjee S, Quilty CD, Yao S, Stackhouse CA, Wang L, Takeuchi KJ, Takeuchi ES, Wang F, Marschilok AC, Pomerantseva E (2020) The effect of chemically preintercalated alkali ions on the structure of layered titanates and their electrochemistry in aqueous energy storage systems. J Mater Chem A 8(35):18220–18231
Article
Google Scholar
Supothina S, Seeharaj P, Yoriya S, Sriyudthsak M (2007) Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceram Int 33(6):931–936
CAS
Article
Google Scholar
Ingham B, Chong SV, Tallon JL (2006) Layered tungsten oxide-based hybrid materials incorporating transition metal ions. Curr Appl Phys 6(3):553–556
Article
Google Scholar
Park CY, Seo JM, Jo H, Park J, Ok KM, Park TJ (2017) Hexagonal tungsten oxide nanoflowers as enzymatic mimetics and electrocatalysts. Sci Rep 7(1):40928
CAS
Article
Google Scholar
Moretti A, Giuli G, Trapananti A, Passerini S (2018) Electrochemical and structural investigation of transition metal doped V2O5 sono-aerogel cathodes for lithium metal batteries. Solid State Ion 319:46–52
CAS
Article
Google Scholar
Petkov V, Trikalitis PN, Bozin ES, Billinge SJL, Vogt T, Kanatzidis MG (2002) Structure of V2O5·nH2O xerogel solved by the atomic pair distribution function technique. J Am Chem Soc 124(34):10157–10162
CAS
Article
Google Scholar
Daniel MF, Desbat B, Lassegues JC, Gerand B, Figlarz M (1987) Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates. J Solid State Chem 67(2):235–247
CAS
Article
Google Scholar
Pang H-F, Xiang X, Li Z-J, Fu Y-Q, Zu X-T (2012) Hydrothermal synthesis and optical properties of hexagonal tungsten oxide nanocrystals assisted by ammonium tartrate. Phys Status Solidi A 209(3):537–544
CAS
Article
Google Scholar
Kalantar-zadeh K, Vijayaraghavan A, Ham M-H, Zheng H, Breedon M, Strano MS (2010) Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide. Chem Mater 22(19):5660–5666
CAS
Article
Google Scholar
Xu L, Yin M-L, Liu S (2014) Agx@WO3 core-shell nanostructure for LSP enhanced chemical sensors. Sci Rep 4(1):6745
CAS
Article
Google Scholar