Abstract
Tungsten is a refractory metal that has a wide range of applications in many fields. However, its high ductile-to-brittle transition temperature limits its processing and machining. While additive manufacturing is an emerging tool for manufacturing complex tungsten parts, cracking and low densification are the main challenges with printing W samples. Studies have been done using different additive manufacturing processes to fabricate high dense free of crack samples, without much success. To address this important challenge, extensive efforts have been made to investigate the effect of different processing conditions—such as laser/electron beam power, scanning speed, hatch spacing, and substrate preheating temperature—on the quality of the print. In this contribution, the most recent and relevant literature on the additive manufacturing of W and W-based alloys is reviewed. The literature is critically assessed in order to systematically investigate and report on the effect of different processing parameters on the morphology, densification, and mechanical properties of the additively manufactured W and W-based alloy parts.





Reproduced with permission from Elsevier

Reproduced with permission from Elsevier

Reproduced with permission from Elsevier



Reproduced with permission from Elsevier


Reproduced with permission from Elsevier


Reproduced with permission from Elsevier


Reproduced with permission from Elsevier

Reproduced with permission from Elsevier



Reproduced with permission from Elsevier

Reproduced with permission from Elsevier

Reproduced with permission from Elsevier

Reproduced with permission from Elsevier

Reproduced with permission from Elsevier

Reproduced with permission from Elsevier

Reproduced with permission from Elsevier

Reproduced with permission from Elsevier

Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Habashi F (2001) Historical introduction to refractory metals. Miner Process Extr Metall Rev 22:25–53. https://doi.org/10.1080/08827509808962488
Vrancken B, King WE, Matthews MJ (2018) In-situ characterization of tungsten microcracking in selective laser melting. Procedia CIRP 74:107–110. https://doi.org/10.1016/j.procir.2018.08.050
Ren C, Fang ZZ, Koopman M, Butler B, Paramore J, Middlemas S (2018) Methods for improving ductility of tungsten—a review. Int J Refract Met Hard Mater 75(April):170–183. https://doi.org/10.1016/j.ijrmhm.2018.04.012
Liu R et al (2014) Fabricating high performance tungsten alloys through zirconium micro-alloying and nano-sized yttria dispersion strengthening. J Nucl Mater 451(1–3):35–39. https://doi.org/10.1016/j.jnucmat.2014.03.029
Aguirre MV, Martín A, Pastor JY, Llorca J, Monge MA, Pareja R (2010) Mechanical properties of Y2O3-doped W-Ti alloys. J Nucl Mater 404(3):203–209. https://doi.org/10.1016/j.jnucmat.2010.07.016
Wurster S et al (2013) Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials. J Nucl Mater 442:181–189. https://doi.org/10.1016/j.jnucmat.2013.02.074
Sidambe AT, Fox P (2019) Analysis of melt pool during the laser powder bed fusion of tungsten,” In RAPDASA2019 Conference Proceedings, pp 129–139
Demir E, Mirzayev MN, Tuğrul AB, Abdurakhimov BA, Karaaslan SI (2020) An experimental study on microstructure of tungsten alloys. Surf Rev Lett. https://doi.org/10.1142/S0218625X19501695
Gumbsch P (2003) Brittle fracture and the brittle-to-ductile transition of tungsten. J Nucl Mater 323(2–3):304–312. https://doi.org/10.1016/j.jnucmat.2003.08.009
Giannattasio A, Yao Z, Tarleton E, Roberts SG (2010) Brittle-ductile transitions in polycrystalline tungsten. Philos Mag 90(30):3947–3959. https://doi.org/10.1080/14786435.2010.502145
Levin ZS, Hartwig KT (2017) Strong ductile bulk tungsten. Mater Sci Eng A 707(June):602–611. https://doi.org/10.1016/j.msea.2017.09.100
Zhou X, Liu X, Zhang D, Shen Z, Liu W (2015) Balling phenomena in selective laser melted tungsten. J Mater Process Technol 222:33–42. https://doi.org/10.1016/j.jmatprotec.2015.02.032
Bonnekoh C, Hoffmann A, Reiser J (2018) The brittle-to-ductile transition in cold rolled tungsten: on the decrease of the brittle-to-ductile transition by 600 K to−65 °C. Int J Refract Met Hard Mater 71:181–189. https://doi.org/10.1016/j.ijrmhm.2017.11.017
Arblaster JW (2018) Thermodynamic properties of tungsten. J Phase Equilibria Diffus 39(6):891–907. https://doi.org/10.1007/s11669-018-0689-1
Tolias P, EUROfusionTeam (2017) Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications. Nucl Mater Energy 13:42–57. https://doi.org/10.1016/j.nme.2017.08.002
Lassner E, Schubert, WD (1999) Tungsten: Properties, chemistry, technology of the element, alloys, and chemical compounds
Sidambe AT, Fox P (2017) Interaction of pure tungsten powder with processing conditions in selective laser melting,” In Advances in Powder Metallurgy and Particulate Materials 2017 - Proceedings of the 2017 International Conference on Powder Metallurgy and Particulate Materials, 2017, 2017-June, pp 701–711
Tan C, Zhou K, Ma W, Attard B, Zhang P, Kuang T (2018) Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties. Sci Technol Adv Mater 19(1):370–380. https://doi.org/10.1080/14686996.2018.1455154
Luo A, Jacobson DL, Shin KS (1991) Solution softening mechanism of iridium and rhenium in tungsten at room temperature. Int J Refract Met Hard Mater 10(2):107–114. https://doi.org/10.1016/0263-4368(91)90028-M
Rieth M, Reiser J, Dafferner B, Baumgärtner S (2012) The impact of refractory material properties on the helium cooled divertor design. Fusion Sci Technol 61:381–384. https://doi.org/10.13182/FST12-1T3
Wurster S, Gludovatz B, Hoffmann A, Pippan R (2011) Fracture behaviour of tungsten-vanadium and tungsten-tantalum alloys and composites. J Nucl Mater 413(3):166–176. https://doi.org/10.1016/j.jnucmat.2011.04.025
Lemahieu N, Linke J, Pintsuk G, Van Oost G, Wirtz M, Zhou Z (2014) Performance of yttrium doped tungsten under ’edge localized mode’-like loading conditions. Phys Scr. https://doi.org/10.1088/0031-8949/2014/T159/014035
Jaffee R, Sims C (1958) The effect of rhenium on the fabrication and ductility of molybdenum and tungsten
Li K-L, Chen J-H, Zhao C-C, Shen Z-J, Liu W (2021) A review of tungsten fabricated via laser powder bed fusion. Tungsten 3(2):218–233. https://doi.org/10.1007/s42864-021-00089-3
Omole S, Lunt A, Kirk S, Shokrani A (2022) Advanced processing and machining of tungsten and its alloys. J Manuf Mater Process 6(1):15. https://doi.org/10.3390/jmmp6010015
Guo M, Gu D, Xi L, Du L, Zhang H, Zhang J (2019) Formation of scanning tracks during Selective Laser Melting (SLM) of pure tungsten powder: Morphology, geometric features and forming mechanisms. Int J Refract Met Hard Mater 79:37–46. https://doi.org/10.1016/j.ijrmhm.2018.11.003
Zhang J et al (2019) Influence of particle size on laser absorption and scanning track formation mechanisms of pure tungsten powder during selective laser melting. Engineering 5(4):736–745. https://doi.org/10.1016/j.eng.2019.07.003
Attallah MM, Jennings R, Wang X, Carter LN (2016) Additive manufacturing of Ni-based superalloys: the outstanding issues. MRS Bull 41(10):758–764. https://doi.org/10.1557/mrs.2016.211
Dutta B, Sam Froes FH (2017) The additive manufacturing (AM) of titanium alloys”. Met Powder Rep 72:96–106. https://doi.org/10.1016/j.mprp.2016.12.062
Adeyemi A, Akinlabi ET, Mahamood RM (2018) Powder bed based laser additive manufacturing process of stainless steel: a review. Mater Today Proc 5(9):18510–18517. https://doi.org/10.1016/j.matpr.2018.06.193
Guo Y, Jia L, Kong B, Wang N, Zhang H (2018) Single track and single layer formation in selective laser melting of niobium solid solution alloy. Chin J Aeronaut 31(4):860–866. https://doi.org/10.1016/j.cja.2017.08.019
Sahasrabudhe H, Bandyopadhyay A (2018) Laser-based additive manufacturing of zirconium. Appl Sci. https://doi.org/10.3390/app8030393
Livescu V, Knapp CM, Gray GT, Martinez RM, Morrow BM, Ndefru BG (2018) Additively manufactured tantalum microstructures. Materialia 1(March):15–24. https://doi.org/10.1016/j.mtla.2018.06.007
Adams R, Krause S (2012) Microstructural and mechanical property characterization of laser additive manufactured (LAM) Rhenium,” Arizona State University
Faidel D, Jonas D, Natour G, Behr W (2015) Investigation of the selective laser melting process with molybdenum powder. Addit Manuf 8:88–94. https://doi.org/10.1016/j.addma.2015.09.002
Madison JD, Aagesen LK (2012) Quantitative characterization of porosity in laser welds of stainless steel. Scr Mater 67(9):783–786. https://doi.org/10.1016/j.scriptamat.2012.06.015
Ren X, Liu H, Lu F, Huang L, Yi X (2021) Effects of processing parameters on the densification, microstructure and mechanical properties of pure tungsten fabricated by optimized selective laser melting: from single and multiple scan tracks to bulk parts. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2021.105490
Seede R et al (2020) An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: densification, microstructure, and mechanical properties. Acta Mater 186:199–214. https://doi.org/10.1016/j.actamat.2019.12.037
Zhong M, Liu W, Ning G, Yang L, Chen Y (2004) Laser direct manufacturing of tungsten nickel collimation component. J Mater Process Technol 147(2):167–173. https://doi.org/10.1016/j.jmatprotec.2003.12.009
Müller AV et al (2019) Additive manufacturing of pure tungsten by means of selective laser beam melting with substrate preheating temperatures up to 1000 °C. Nucl Mater Energy 19:184–188. https://doi.org/10.1016/j.nme.2019.02.034
Wang DZ, Li KL, Yu CF, Ma J, Liu W, Shen ZJ (2019) Cracking behavior in additively manufactured pure tungsten. Acta Metall Sin 32:127–135. https://doi.org/10.1007/s40195-018-0752-2
Wang D, Wang Z, Li K, Ma J, Liu W, Shen Z (2019) Cracking in laser additively manufactured W: initiation mechanism and a suppression approach by alloying. Mater Des 162:384–393. https://doi.org/10.1016/j.matdes.2018.12.010
Wang D, Yu C, Zhou X, Ma J, Liu W, Shen Z (2017) Dense pure tungsten fabricated by selective laser melting. Appl Sci. https://doi.org/10.3390/app7040430
Enneti RK, Morgan R, Wolfe T, Harooni A, Volk S (2017) Direct metal laser sintering/selective laser melting of tungsten powders. Int J Powder Metall 53(4):23–31
Dong J et al (2020) Effect of atmosphere on the microstructure and properties of additively manufactured tungsten. Mater Sci Technol (United Kingdom) 36(18):1988–1996. https://doi.org/10.1080/02670836.2020.1852680
Enneti RK, Morgan R, Atre SV (2018) Effect of process parameters on the Selective Laser Melting (SLM) of tungsten. Int J Refract Met Hard Mater 71:315–319. https://doi.org/10.1016/j.ijrmhm.2017.11.035
Sidambe AT, Tian Y, Prangnell PB, Fox P (2019) Effect of processing parameters on the densification, microstructure and crystallographic texture during the laser powder bed fusion of pure tungsten. Int J Refract Met Hard Mater 78:254–263. https://doi.org/10.1016/j.ijrmhm.2018.10.004
Rebesan P, Bonesso M, Gennari C, Dima R, Pepato A, Vedani M (2021) Tungsten fabricated by laser powder bed fusion. BHM Berg- Huettenmaenn Monatsh 166(5):263–269. https://doi.org/10.1007/s00501-021-01109-y
Yamamoto T, Hara M, Hatano Y (2021) Effects of fabrication conditions on the microstructure, pore characteristics and gas retention of pure tungsten prepared by laser powder bed fusion. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2020.105410
Gu D, Guo M, Zhang H, Sun Y, Wang R, Zhang L (2020) Effects of laser scanning strategies on selective laser melting of pure tungsten. Int J Extrem Manuf. https://doi.org/10.1088/2631-7990/ab7b00
Zhang D, Cai Q, Liu J (2012) Formation of nanocrystalline tungsten by selective laser melting of tungsten powder. Mater Manuf Process 27(12):1267–1270. https://doi.org/10.1080/10426914.2012.663119
Wen S et al (2019) High-density tungsten fabricated by selective laser melting: densification, microstructure, mechanical and thermal performance. Opt Laser Technol 116(February):128–138. https://doi.org/10.1016/j.optlastec.2019.03.018
Huang J, Li M, Wang J, Pei Z, Mclntyre P, Ma C (2021) Selective laser melting of tungsten: effects of hatch distance and point distance on pore formation. J Manuf Process 61:296–302. https://doi.org/10.1016/j.jmapro.2020.11.034
Sidambe AT, Judson DS, Colosimo SJ, Fox P (2019) Laser powder bed fusion of a pure tungsten ultra-fine single pinhole collimator for use in gamma ray detector characterisation. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.104998
Li J, Wu Y, Zhou B, Wei Z (2021) Laser powder bed fusion of pure tungsten: effects of process parameters on morphology, densification, microstructure. Materials (Basel) 14(1):1–14. https://doi.org/10.3390/ma14010165
Abbas MA, Anru Y, Wang ZY (2021) Micro-structural characteristics of additively manufactured pure tungsten, IOP Conf Ser Earth Environ Sci, 635(1), https://doi.org/10.1088/1755-1315/635/1/012014
Braun J et al (2019) Molybdenum and tungsten manufactured by selective laser melting: analysis of defect structure and solidification mechanisms. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.104999
Guo M et al (2019) Selective laser melting additive manufacturing of pure tungsten: Role of volumetric energy density on densification, microstructure and mechanical properties. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.105025
Chen J et al (2020) The effect of hot isostatic pressing on thermal conductivity of additively manufactured pure tungsten. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.105135
Deprez K, Vandenberghe S, Van Audenhaege K (2013) Rapid additive manufacturing of MR compatible multipinhole collimators, Med Phys, 40(1): 012501-1-012501–11
Yang G et al (2019) Effect of processing parameters on the density, microstructure and strength of pure tungsten fabricated by selective electron beam melting. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.105040
Ellis EAI et al (2021) Processing of tungsten through electron beam melting. J Nucl Mater. https://doi.org/10.1016/j.jnucmat.2021.153041
Ren X, Peng H, Li J, Liu H, Huang L, Yi X (2022) Selective electron beam melting (SEBM) of pure tungsten: metallurgical defects, microstructure, texture and mechanical properties. Materials (Basel). https://doi.org/10.3390/ma15031172
Xie J, Lu H, Lu J, Song X, Wu S, Lei J (2021) Additive manufacturing of tungsten using directed energy deposition for potential nuclear fusion application. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2021.126884
Jeong W, Kwon YS, Kim D (2019) Three-dimensional printing of tungsten structures by directed energy deposition. Mater Manuf Process 34(9):986–992. https://doi.org/10.1080/10426914.2019.1594253
Li J, Wei Z, Zhou B, Wu Y, Chen SG, Sun Z (2020) Preparation, microstructure, and microhardness of selective laser-melted W-3Ta sample. J Mater Res 35(15):2016–2024. https://doi.org/10.1557/jmr.2020.71
Zhang H, Xu W, Xu Y, Lu Z, Li D (2018) The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM): experiment and simulation. Int J Adv Manuf Technol 96(1–4):461–474. https://doi.org/10.1007/s00170-017-1331-9
Zhang DQ, Liu ZH, Cai QZ, Liu JH, Chua CK (2014) Influence of Ni content on microstructure of W-Ni alloy produced by selective laser melting. Int J Refract Met Hard Mater 45:15–22. https://doi.org/10.1016/j.ijrmhm.2014.02.007
Stackhouse NT (2019) Tungsten alloy laser track cracking analysis
Zhang D, Cai Q, Liu J, Li R (2011) Research on process and microstructure formation of W-Ni-Fe alloy fabricated by Selective Laser melting. J Mater Eng Perform 20(6):1049–1054. https://doi.org/10.1007/s11665-010-9720-3
Wang X, Wraith M, Burke S, Rathbun H, DeVlugt K (2016) Densification of W-Ni-Fe powders using laser sintering. Int J Refract Met Hard Mater 56:145–150. https://doi.org/10.1016/j.ijrmhm.2016.01.006
Iveković A, Montero-Sistiaga ML, Vanmeensel K, Kruth JP, Vleugels J (2019) Effect of processing parameters on microstructure and properties of tungsten heavy alloys fabricated by SLM. Int J Refract Met Hard Mater 82(January):23–30. https://doi.org/10.1016/j.ijrmhm.2019.03.020
Xue J, Feng Z, Tang J, Tang C, Zhao Z (2021) Selective laser melting additive manufacturing of tungsten with niobium alloying: microstructure and suppression mechanism of microcracks. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.159879
Li RD, Liu JH, Shi YS, Zhang L, Du MZ (2010) Effects of processing parameters on rapid manufacturing 90W–7Ni-3Fe parts via selective laser melting. Powder Metall 53(4):310–317. https://doi.org/10.1179/174329009X442726
Iveković A et al (2018) Selective laser melting of tungsten and tungsten alloys. Int J Refract Met Hard Mater 72:27–32. https://doi.org/10.1016/j.ijrmhm.2017.12.005
Li C et al (2020) Densification, microstructural evolutions of 90W–7Ni-3Fe tungsten heavy alloys during laser melting deposition process. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2020.105254
Bose A et al (2018) Traditional and additive manufacturing of a new Tungsten heavy alloy alternative. Int J Refract Met Hard Mater 73:22–28. https://doi.org/10.1016/j.ijrmhm.2018.01.019
Su S, Lu Y (2020) Densified W-Cu composite fabricated via laser additive manufacturing. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.105122
Gu D, Dai D, Chen W, Chen H (2016) Selective laser melting additive manufacturing of hard-to-process tungsten-based alloy parts with novel crystalline growth morphology and enhanced performance. J Manuf Sci Eng Trans ASME 138(8):1–11. https://doi.org/10.1115/1.4032192
Li R, Shi Y, Liu J, Xie Z, Wang Z (2010) Selective laser melting W-10 wt% Cu composite powders. Int J Adv Manuf Technol 48(5–8):597–605. https://doi.org/10.1007/s00170-009-2304-4
Chen H, Zi X, Han Y, Dong J, Liu S, Chen C (2020) Microstructure and mechanical properties of additive manufactured W-Ni-Fe-Co composite produced by selective laser melting. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.105111
Hu Z, Zhao Y, Guan K, Wang Z, Ma Z (2020) Pure tungsten and oxide dispersion strengthened tungsten manufactured by selective laser melting: microstructure and cracking mechanism. Addit Manuf. https://doi.org/10.1016/j.addma.2020.101579
Wang M et al (2018) Selective laser melting of W-Ni-Cu composite powder: Densification, microstructure evolution and nano-crystalline formation. Int J Refract Met Hard Mater 70:9–18. https://doi.org/10.1016/j.ijrmhm.2017.09.004
Dorow-Gerspach D, Kirchner A, Loewenhoff T, Pintsuk G, Weißgärber T, Wirtz M (2021) Additive manufacturing of high density pure tungsten by electron beam melting. Nucl Mater Energy. https://doi.org/10.1016/j.nme.2021.101046
Vrancken B, Ganeriwala RK, Matthews MJ (2020) Analysis of laser-induced microcracking in tungsten under additive manufacturing conditions: experiment and simulation. Acta Mater 194:464–472. https://doi.org/10.1016/j.actamat.2020.04.060
Li K et al (2019) Crack suppression in additively manufactured tungsten by introducing secondary-phase nanoparticles into the matrix. Int J Refract Met Hard Mater 79:158–163. https://doi.org/10.1016/j.ijrmhm.2018.11.013
Yan A, Wang Z, Yang T, Wang Y, Ma Z (2016) Microstructure, thermal physical property and surface morphology of W-Cu composite fabricated via selective laser melting. Mater Des 109:79–87. https://doi.org/10.1016/j.matdes.2016.07.049
Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
Izadi M, Farzaneh A, Mohammed M, Gibson I, Rolfe B (2020) A review of laser engineered net shaping (LENS) build and process parameters of metallic parts. Rapid Prototyp J 26(6):1059–1078. https://doi.org/10.1108/RPJ-04-2018-0088
Wang LZ, Wu JJ, Zhang DJ (2017) Properties evolution of additive manufacture used tungsten powders prepared by radio frequency induction plasma. Int J Refract Met Hard Mater 67:90–97. https://doi.org/10.1016/j.ijrmhm.2017.05.007
Laitinen V, Piili H, Nyamekye P, Ullakko K, Salminen A (2019) Effect of process parameters on the formation of single track in pulsed laser powder bed fusion. Procedia Manuf 36:176–183. https://doi.org/10.1016/j.promfg.2019.08.023
Ma J, Zhang J, Liu W, Shen Z (2013) Suppressing pore-boundary separation during spark plasma sintering of tungsten. J Nucl Mater 438(1–3):199–203. https://doi.org/10.1016/j.jnucmat.2013.03.042
Zhang X, Yan Q, Lang S, Wang Y, Ge C (2017) Preparation of pure tungsten via various rolling methods and their influence on macro-texture and mechanical properties. Mater Des 126(March):1–11. https://doi.org/10.1016/j.matdes.2017.04.021
Yan Q, Zhang X, Wang T, Yang C, Ge C (2013) Effect of hot working process on the mechanical properties of tungsten materials. J Nucl Mater 442(1–3):S233–S236. https://doi.org/10.1016/j.jnucmat.2013.01.307
Zhang X, Yan Q, Lang S, Xia M, Ge C (2016) Texture evolution and basic thermal-mechanical properties of pure tungsten under various rolling reductions. J Nucl Mater 468:339–347. https://doi.org/10.1016/j.jnucmat.2015.04.001
Senthilnathan N, Annamalai AR, Venkatachalam G (2018) Synthesis of tungsten through spark plasma and conventional sintering processes. Mater Today Proc 5(2):7954–7959. https://doi.org/10.1016/j.matpr.2017.11.478
Chen Z, Han W, Yu J, Kecskes L, Zhu K, Wei Q (2016) Microstructure and helium irradiation performance of high purity tungsten processed by cold rolling. J Nucl Mater 479:418–425. https://doi.org/10.1016/j.jnucmat.2016.07.038
Kim Y, Hong MH, Lee SH, Kim EP, Lee S, Noh JW (2006) The effect of yttrium oxide on the sintering behavior and hardness of tungsten. Met Mater Int 12(3):245–248. https://doi.org/10.1007/BF03027538
Das J, Kiran UR, Chakraborty A, Prasad NE (2009) Hardness and tensile properties of tungsten based heavy alloys prepared by liquid phase sintering technique. Int J Refract Met Hard Mater 27(3):577–583. https://doi.org/10.1016/j.ijrmhm.2008.08.003
Fan JL, Gong X, Huang BY, Song M, Liu T, Tian JM (2010) Densification behavior of nanocrystalline W-Ni–Fe composite powders prepared by sol-spray drying and hydrogen reduction process. J Alloys Compd 489(1):188–194. https://doi.org/10.1016/j.jallcom.2009.09.050
Upadhyaya A, Tiwari SK, Mishra P (2007) Microwave sintering of W-Ni–Fe alloy. Scr Mater 56:5–8. https://doi.org/10.1016/j.scriptamat.2006.09.010
Acknowledgements
This research was supported by NASA-ESI Program under Grant Number 80NSSC21K0223.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Handling Editor: M. Grant Norton.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Morcos, P., Elwany, A., Karaman, I. et al. Review: additive manufacturing of pure tungsten and tungsten-based alloys. J Mater Sci 57, 9769–9806 (2022). https://doi.org/10.1007/s10853-022-07183-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-022-07183-y


