Skip to main content

Advertisement

Log in

Review: additive manufacturing of pure tungsten and tungsten-based alloys

  • Metal Additive Manufacturing
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tungsten is a refractory metal that has a wide range of applications in many fields. However, its high ductile-to-brittle transition temperature limits its processing and machining. While additive manufacturing is an emerging tool for manufacturing complex tungsten parts, cracking and low densification are the main challenges with printing W samples. Studies have been done using different additive manufacturing processes to fabricate high dense free of crack samples, without much success. To address this important challenge, extensive efforts have been made to investigate the effect of different processing conditions—such as laser/electron beam power, scanning speed, hatch spacing, and substrate preheating temperature—on the quality of the print. In this contribution, the most recent and relevant literature on the additive manufacturing of W and W-based alloys is reviewed. The literature is critically assessed in order to systematically investigate and report on the effect of different processing parameters on the morphology, densification, and mechanical properties of the additively manufactured W and W-based alloy parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Reproduced with permission from Elsevier

Figure 6

Reproduced with permission from Elsevier

Figure 7

Reproduced with permission from Elsevier

Figure 8
Figure 9
Figure 10

Reproduced with permission from Elsevier

Figure 11
Figure 12

Reproduced with permission from Elsevier

Figure 13
Figure 14

Reproduced with permission from Elsevier

Figure 15
Figure 16

Reproduced with permission from Elsevier

Figure 17

Reproduced with permission from Elsevier

Figure 18
Figure 19
Figure 20

Reproduced with permission from Elsevier

Figure 21

Reproduced with permission from Elsevier

Figure 22

Reproduced with permission from Elsevier

Figure 23

Reproduced with permission from Elsevier

Figure 24

Reproduced with permission from Elsevier

Figure 25

Reproduced with permission from Elsevier

Figure 26

Reproduced with permission from Elsevier

Figure 27

Reproduced with permission from Elsevier

Figure 28

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Habashi F (2001) Historical introduction to refractory metals. Miner Process Extr Metall Rev 22:25–53. https://doi.org/10.1080/08827509808962488

    Article  CAS  Google Scholar 

  2. Vrancken B, King WE, Matthews MJ (2018) In-situ characterization of tungsten microcracking in selective laser melting. Procedia CIRP 74:107–110. https://doi.org/10.1016/j.procir.2018.08.050

    Article  Google Scholar 

  3. Ren C, Fang ZZ, Koopman M, Butler B, Paramore J, Middlemas S (2018) Methods for improving ductility of tungsten—a review. Int J Refract Met Hard Mater 75(April):170–183. https://doi.org/10.1016/j.ijrmhm.2018.04.012

    Article  CAS  Google Scholar 

  4. Liu R et al (2014) Fabricating high performance tungsten alloys through zirconium micro-alloying and nano-sized yttria dispersion strengthening. J Nucl Mater 451(1–3):35–39. https://doi.org/10.1016/j.jnucmat.2014.03.029

    Article  CAS  Google Scholar 

  5. Aguirre MV, Martín A, Pastor JY, Llorca J, Monge MA, Pareja R (2010) Mechanical properties of Y2O3-doped W-Ti alloys. J Nucl Mater 404(3):203–209. https://doi.org/10.1016/j.jnucmat.2010.07.016

    Article  CAS  Google Scholar 

  6. Wurster S et al (2013) Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials. J Nucl Mater 442:181–189. https://doi.org/10.1016/j.jnucmat.2013.02.074

    Article  CAS  Google Scholar 

  7. Sidambe AT, Fox P (2019) Analysis of melt pool during the laser powder bed fusion of tungsten,” In RAPDASA2019 Conference Proceedings, pp 129–139

  8. Demir E, Mirzayev MN, Tuğrul AB, Abdurakhimov BA, Karaaslan SI (2020) An experimental study on microstructure of tungsten alloys. Surf Rev Lett. https://doi.org/10.1142/S0218625X19501695

    Article  Google Scholar 

  9. Gumbsch P (2003) Brittle fracture and the brittle-to-ductile transition of tungsten. J Nucl Mater 323(2–3):304–312. https://doi.org/10.1016/j.jnucmat.2003.08.009

    Article  CAS  Google Scholar 

  10. Giannattasio A, Yao Z, Tarleton E, Roberts SG (2010) Brittle-ductile transitions in polycrystalline tungsten. Philos Mag 90(30):3947–3959. https://doi.org/10.1080/14786435.2010.502145

    Article  CAS  Google Scholar 

  11. Levin ZS, Hartwig KT (2017) Strong ductile bulk tungsten. Mater Sci Eng A 707(June):602–611. https://doi.org/10.1016/j.msea.2017.09.100

    Article  CAS  Google Scholar 

  12. Zhou X, Liu X, Zhang D, Shen Z, Liu W (2015) Balling phenomena in selective laser melted tungsten. J Mater Process Technol 222:33–42. https://doi.org/10.1016/j.jmatprotec.2015.02.032

    Article  CAS  Google Scholar 

  13. Bonnekoh C, Hoffmann A, Reiser J (2018) The brittle-to-ductile transition in cold rolled tungsten: on the decrease of the brittle-to-ductile transition by 600 K to−65 °C. Int J Refract Met Hard Mater 71:181–189. https://doi.org/10.1016/j.ijrmhm.2017.11.017

    Article  CAS  Google Scholar 

  14. Arblaster JW (2018) Thermodynamic properties of tungsten. J Phase Equilibria Diffus 39(6):891–907. https://doi.org/10.1007/s11669-018-0689-1

    Article  CAS  Google Scholar 

  15. Tolias P, EUROfusionTeam (2017) Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications. Nucl Mater Energy 13:42–57. https://doi.org/10.1016/j.nme.2017.08.002

    Article  Google Scholar 

  16. Lassner E, Schubert, WD (1999) Tungsten: Properties, chemistry, technology of the element, alloys, and chemical compounds

  17. Sidambe AT, Fox P (2017) Interaction of pure tungsten powder with processing conditions in selective laser melting,” In Advances in Powder Metallurgy and Particulate Materials 2017 - Proceedings of the 2017 International Conference on Powder Metallurgy and Particulate Materials, 2017, 2017-June, pp 701–711

  18. Tan C, Zhou K, Ma W, Attard B, Zhang P, Kuang T (2018) Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties. Sci Technol Adv Mater 19(1):370–380. https://doi.org/10.1080/14686996.2018.1455154

    Article  CAS  Google Scholar 

  19. Luo A, Jacobson DL, Shin KS (1991) Solution softening mechanism of iridium and rhenium in tungsten at room temperature. Int J Refract Met Hard Mater 10(2):107–114. https://doi.org/10.1016/0263-4368(91)90028-M

    Article  CAS  Google Scholar 

  20. Rieth M, Reiser J, Dafferner B, Baumgärtner S (2012) The impact of refractory material properties on the helium cooled divertor design. Fusion Sci Technol 61:381–384. https://doi.org/10.13182/FST12-1T3

    Article  CAS  Google Scholar 

  21. Wurster S, Gludovatz B, Hoffmann A, Pippan R (2011) Fracture behaviour of tungsten-vanadium and tungsten-tantalum alloys and composites. J Nucl Mater 413(3):166–176. https://doi.org/10.1016/j.jnucmat.2011.04.025

    Article  CAS  Google Scholar 

  22. Lemahieu N, Linke J, Pintsuk G, Van Oost G, Wirtz M, Zhou Z (2014) Performance of yttrium doped tungsten under ’edge localized mode’-like loading conditions. Phys Scr. https://doi.org/10.1088/0031-8949/2014/T159/014035

    Article  Google Scholar 

  23. Jaffee R, Sims C (1958) The effect of rhenium on the fabrication and ductility of molybdenum and tungsten

  24. Li K-L, Chen J-H, Zhao C-C, Shen Z-J, Liu W (2021) A review of tungsten fabricated via laser powder bed fusion. Tungsten 3(2):218–233. https://doi.org/10.1007/s42864-021-00089-3

    Article  Google Scholar 

  25. Omole S, Lunt A, Kirk S, Shokrani A (2022) Advanced processing and machining of tungsten and its alloys. J Manuf Mater Process 6(1):15. https://doi.org/10.3390/jmmp6010015

    Article  CAS  Google Scholar 

  26. Guo M, Gu D, Xi L, Du L, Zhang H, Zhang J (2019) Formation of scanning tracks during Selective Laser Melting (SLM) of pure tungsten powder: Morphology, geometric features and forming mechanisms. Int J Refract Met Hard Mater 79:37–46. https://doi.org/10.1016/j.ijrmhm.2018.11.003

    Article  CAS  Google Scholar 

  27. Zhang J et al (2019) Influence of particle size on laser absorption and scanning track formation mechanisms of pure tungsten powder during selective laser melting. Engineering 5(4):736–745. https://doi.org/10.1016/j.eng.2019.07.003

    Article  CAS  Google Scholar 

  28. Attallah MM, Jennings R, Wang X, Carter LN (2016) Additive manufacturing of Ni-based superalloys: the outstanding issues. MRS Bull 41(10):758–764. https://doi.org/10.1557/mrs.2016.211

    Article  CAS  Google Scholar 

  29. Dutta B, Sam Froes FH (2017) The additive manufacturing (AM) of titanium alloys”. Met Powder Rep 72:96–106. https://doi.org/10.1016/j.mprp.2016.12.062

    Article  Google Scholar 

  30. Adeyemi A, Akinlabi ET, Mahamood RM (2018) Powder bed based laser additive manufacturing process of stainless steel: a review. Mater Today Proc 5(9):18510–18517. https://doi.org/10.1016/j.matpr.2018.06.193

    Article  CAS  Google Scholar 

  31. Guo Y, Jia L, Kong B, Wang N, Zhang H (2018) Single track and single layer formation in selective laser melting of niobium solid solution alloy. Chin J Aeronaut 31(4):860–866. https://doi.org/10.1016/j.cja.2017.08.019

    Article  Google Scholar 

  32. Sahasrabudhe H, Bandyopadhyay A (2018) Laser-based additive manufacturing of zirconium. Appl Sci. https://doi.org/10.3390/app8030393

    Article  Google Scholar 

  33. Livescu V, Knapp CM, Gray GT, Martinez RM, Morrow BM, Ndefru BG (2018) Additively manufactured tantalum microstructures. Materialia 1(March):15–24. https://doi.org/10.1016/j.mtla.2018.06.007

    Article  CAS  Google Scholar 

  34. Adams R, Krause S (2012) Microstructural and mechanical property characterization of laser additive manufactured (LAM) Rhenium,” Arizona State University

  35. Faidel D, Jonas D, Natour G, Behr W (2015) Investigation of the selective laser melting process with molybdenum powder. Addit Manuf 8:88–94. https://doi.org/10.1016/j.addma.2015.09.002

    Article  CAS  Google Scholar 

  36. Madison JD, Aagesen LK (2012) Quantitative characterization of porosity in laser welds of stainless steel. Scr Mater 67(9):783–786. https://doi.org/10.1016/j.scriptamat.2012.06.015

    Article  CAS  Google Scholar 

  37. Ren X, Liu H, Lu F, Huang L, Yi X (2021) Effects of processing parameters on the densification, microstructure and mechanical properties of pure tungsten fabricated by optimized selective laser melting: from single and multiple scan tracks to bulk parts. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2021.105490

    Article  Google Scholar 

  38. Seede R et al (2020) An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: densification, microstructure, and mechanical properties. Acta Mater 186:199–214. https://doi.org/10.1016/j.actamat.2019.12.037

    Article  CAS  Google Scholar 

  39. Zhong M, Liu W, Ning G, Yang L, Chen Y (2004) Laser direct manufacturing of tungsten nickel collimation component. J Mater Process Technol 147(2):167–173. https://doi.org/10.1016/j.jmatprotec.2003.12.009

    Article  CAS  Google Scholar 

  40. Müller AV et al (2019) Additive manufacturing of pure tungsten by means of selective laser beam melting with substrate preheating temperatures up to 1000 °C. Nucl Mater Energy 19:184–188. https://doi.org/10.1016/j.nme.2019.02.034

    Article  Google Scholar 

  41. Wang DZ, Li KL, Yu CF, Ma J, Liu W, Shen ZJ (2019) Cracking behavior in additively manufactured pure tungsten. Acta Metall Sin 32:127–135. https://doi.org/10.1007/s40195-018-0752-2

    Article  CAS  Google Scholar 

  42. Wang D, Wang Z, Li K, Ma J, Liu W, Shen Z (2019) Cracking in laser additively manufactured W: initiation mechanism and a suppression approach by alloying. Mater Des 162:384–393. https://doi.org/10.1016/j.matdes.2018.12.010

    Article  CAS  Google Scholar 

  43. Wang D, Yu C, Zhou X, Ma J, Liu W, Shen Z (2017) Dense pure tungsten fabricated by selective laser melting. Appl Sci. https://doi.org/10.3390/app7040430

    Article  Google Scholar 

  44. Enneti RK, Morgan R, Wolfe T, Harooni A, Volk S (2017) Direct metal laser sintering/selective laser melting of tungsten powders. Int J Powder Metall 53(4):23–31

    CAS  Google Scholar 

  45. Dong J et al (2020) Effect of atmosphere on the microstructure and properties of additively manufactured tungsten. Mater Sci Technol (United Kingdom) 36(18):1988–1996. https://doi.org/10.1080/02670836.2020.1852680

    Article  CAS  Google Scholar 

  46. Enneti RK, Morgan R, Atre SV (2018) Effect of process parameters on the Selective Laser Melting (SLM) of tungsten. Int J Refract Met Hard Mater 71:315–319. https://doi.org/10.1016/j.ijrmhm.2017.11.035

    Article  CAS  Google Scholar 

  47. Sidambe AT, Tian Y, Prangnell PB, Fox P (2019) Effect of processing parameters on the densification, microstructure and crystallographic texture during the laser powder bed fusion of pure tungsten. Int J Refract Met Hard Mater 78:254–263. https://doi.org/10.1016/j.ijrmhm.2018.10.004

    Article  CAS  Google Scholar 

  48. Rebesan P, Bonesso M, Gennari C, Dima R, Pepato A, Vedani M (2021) Tungsten fabricated by laser powder bed fusion. BHM Berg- Huettenmaenn Monatsh 166(5):263–269. https://doi.org/10.1007/s00501-021-01109-y

    Article  CAS  Google Scholar 

  49. Yamamoto T, Hara M, Hatano Y (2021) Effects of fabrication conditions on the microstructure, pore characteristics and gas retention of pure tungsten prepared by laser powder bed fusion. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2020.105410

    Article  Google Scholar 

  50. Gu D, Guo M, Zhang H, Sun Y, Wang R, Zhang L (2020) Effects of laser scanning strategies on selective laser melting of pure tungsten. Int J Extrem Manuf. https://doi.org/10.1088/2631-7990/ab7b00

    Article  Google Scholar 

  51. Zhang D, Cai Q, Liu J (2012) Formation of nanocrystalline tungsten by selective laser melting of tungsten powder. Mater Manuf Process 27(12):1267–1270. https://doi.org/10.1080/10426914.2012.663119

    Article  CAS  Google Scholar 

  52. Wen S et al (2019) High-density tungsten fabricated by selective laser melting: densification, microstructure, mechanical and thermal performance. Opt Laser Technol 116(February):128–138. https://doi.org/10.1016/j.optlastec.2019.03.018

    Article  CAS  Google Scholar 

  53. Huang J, Li M, Wang J, Pei Z, Mclntyre P, Ma C (2021) Selective laser melting of tungsten: effects of hatch distance and point distance on pore formation. J Manuf Process 61:296–302. https://doi.org/10.1016/j.jmapro.2020.11.034

    Article  Google Scholar 

  54. Sidambe AT, Judson DS, Colosimo SJ, Fox P (2019) Laser powder bed fusion of a pure tungsten ultra-fine single pinhole collimator for use in gamma ray detector characterisation. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.104998

    Article  Google Scholar 

  55. Li J, Wu Y, Zhou B, Wei Z (2021) Laser powder bed fusion of pure tungsten: effects of process parameters on morphology, densification, microstructure. Materials (Basel) 14(1):1–14. https://doi.org/10.3390/ma14010165

    Article  CAS  Google Scholar 

  56. Abbas MA, Anru Y, Wang ZY (2021) Micro-structural characteristics of additively manufactured pure tungsten, IOP Conf Ser Earth Environ Sci, 635(1), https://doi.org/10.1088/1755-1315/635/1/012014

  57. Braun J et al (2019) Molybdenum and tungsten manufactured by selective laser melting: analysis of defect structure and solidification mechanisms. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.104999

    Article  Google Scholar 

  58. Guo M et al (2019) Selective laser melting additive manufacturing of pure tungsten: Role of volumetric energy density on densification, microstructure and mechanical properties. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.105025

    Article  Google Scholar 

  59. Chen J et al (2020) The effect of hot isostatic pressing on thermal conductivity of additively manufactured pure tungsten. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.105135

    Article  Google Scholar 

  60. Deprez K, Vandenberghe S, Van Audenhaege K (2013) Rapid additive manufacturing of MR compatible multipinhole collimators, Med Phys, 40(1): 012501-1-012501–11

  61. Yang G et al (2019) Effect of processing parameters on the density, microstructure and strength of pure tungsten fabricated by selective electron beam melting. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.105040

    Article  Google Scholar 

  62. Ellis EAI et al (2021) Processing of tungsten through electron beam melting. J Nucl Mater. https://doi.org/10.1016/j.jnucmat.2021.153041

    Article  Google Scholar 

  63. Ren X, Peng H, Li J, Liu H, Huang L, Yi X (2022) Selective electron beam melting (SEBM) of pure tungsten: metallurgical defects, microstructure, texture and mechanical properties. Materials (Basel). https://doi.org/10.3390/ma15031172

    Article  Google Scholar 

  64. Xie J, Lu H, Lu J, Song X, Wu S, Lei J (2021) Additive manufacturing of tungsten using directed energy deposition for potential nuclear fusion application. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2021.126884

    Article  Google Scholar 

  65. Jeong W, Kwon YS, Kim D (2019) Three-dimensional printing of tungsten structures by directed energy deposition. Mater Manuf Process 34(9):986–992. https://doi.org/10.1080/10426914.2019.1594253

    Article  CAS  Google Scholar 

  66. Li J, Wei Z, Zhou B, Wu Y, Chen SG, Sun Z (2020) Preparation, microstructure, and microhardness of selective laser-melted W-3Ta sample. J Mater Res 35(15):2016–2024. https://doi.org/10.1557/jmr.2020.71

    Article  CAS  Google Scholar 

  67. Zhang H, Xu W, Xu Y, Lu Z, Li D (2018) The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM): experiment and simulation. Int J Adv Manuf Technol 96(1–4):461–474. https://doi.org/10.1007/s00170-017-1331-9

    Article  Google Scholar 

  68. Zhang DQ, Liu ZH, Cai QZ, Liu JH, Chua CK (2014) Influence of Ni content on microstructure of W-Ni alloy produced by selective laser melting. Int J Refract Met Hard Mater 45:15–22. https://doi.org/10.1016/j.ijrmhm.2014.02.007

    Article  CAS  Google Scholar 

  69. Stackhouse NT (2019) Tungsten alloy laser track cracking analysis

  70. Zhang D, Cai Q, Liu J, Li R (2011) Research on process and microstructure formation of W-Ni-Fe alloy fabricated by Selective Laser melting. J Mater Eng Perform 20(6):1049–1054. https://doi.org/10.1007/s11665-010-9720-3

    Article  CAS  Google Scholar 

  71. Wang X, Wraith M, Burke S, Rathbun H, DeVlugt K (2016) Densification of W-Ni-Fe powders using laser sintering. Int J Refract Met Hard Mater 56:145–150. https://doi.org/10.1016/j.ijrmhm.2016.01.006

    Article  CAS  Google Scholar 

  72. Iveković A, Montero-Sistiaga ML, Vanmeensel K, Kruth JP, Vleugels J (2019) Effect of processing parameters on microstructure and properties of tungsten heavy alloys fabricated by SLM. Int J Refract Met Hard Mater 82(January):23–30. https://doi.org/10.1016/j.ijrmhm.2019.03.020

    Article  CAS  Google Scholar 

  73. Xue J, Feng Z, Tang J, Tang C, Zhao Z (2021) Selective laser melting additive manufacturing of tungsten with niobium alloying: microstructure and suppression mechanism of microcracks. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.159879

    Article  Google Scholar 

  74. Li RD, Liu JH, Shi YS, Zhang L, Du MZ (2010) Effects of processing parameters on rapid manufacturing 90W–7Ni-3Fe parts via selective laser melting. Powder Metall 53(4):310–317. https://doi.org/10.1179/174329009X442726

    Article  CAS  Google Scholar 

  75. Iveković A et al (2018) Selective laser melting of tungsten and tungsten alloys. Int J Refract Met Hard Mater 72:27–32. https://doi.org/10.1016/j.ijrmhm.2017.12.005

    Article  CAS  Google Scholar 

  76. Li C et al (2020) Densification, microstructural evolutions of 90W–7Ni-3Fe tungsten heavy alloys during laser melting deposition process. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2020.105254

    Article  Google Scholar 

  77. Bose A et al (2018) Traditional and additive manufacturing of a new Tungsten heavy alloy alternative. Int J Refract Met Hard Mater 73:22–28. https://doi.org/10.1016/j.ijrmhm.2018.01.019

    Article  CAS  Google Scholar 

  78. Su S, Lu Y (2020) Densified W-Cu composite fabricated via laser additive manufacturing. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.105122

    Article  Google Scholar 

  79. Gu D, Dai D, Chen W, Chen H (2016) Selective laser melting additive manufacturing of hard-to-process tungsten-based alloy parts with novel crystalline growth morphology and enhanced performance. J Manuf Sci Eng Trans ASME 138(8):1–11. https://doi.org/10.1115/1.4032192

    Article  Google Scholar 

  80. Li R, Shi Y, Liu J, Xie Z, Wang Z (2010) Selective laser melting W-10 wt% Cu composite powders. Int J Adv Manuf Technol 48(5–8):597–605. https://doi.org/10.1007/s00170-009-2304-4

    Article  CAS  Google Scholar 

  81. Chen H, Zi X, Han Y, Dong J, Liu S, Chen C (2020) Microstructure and mechanical properties of additive manufactured W-Ni-Fe-Co composite produced by selective laser melting. Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.105111

    Article  Google Scholar 

  82. Hu Z, Zhao Y, Guan K, Wang Z, Ma Z (2020) Pure tungsten and oxide dispersion strengthened tungsten manufactured by selective laser melting: microstructure and cracking mechanism. Addit Manuf. https://doi.org/10.1016/j.addma.2020.101579

    Article  Google Scholar 

  83. Wang M et al (2018) Selective laser melting of W-Ni-Cu composite powder: Densification, microstructure evolution and nano-crystalline formation. Int J Refract Met Hard Mater 70:9–18. https://doi.org/10.1016/j.ijrmhm.2017.09.004

    Article  CAS  Google Scholar 

  84. Dorow-Gerspach D, Kirchner A, Loewenhoff T, Pintsuk G, Weißgärber T, Wirtz M (2021) Additive manufacturing of high density pure tungsten by electron beam melting. Nucl Mater Energy. https://doi.org/10.1016/j.nme.2021.101046

    Article  Google Scholar 

  85. Vrancken B, Ganeriwala RK, Matthews MJ (2020) Analysis of laser-induced microcracking in tungsten under additive manufacturing conditions: experiment and simulation. Acta Mater 194:464–472. https://doi.org/10.1016/j.actamat.2020.04.060

    Article  CAS  Google Scholar 

  86. Li K et al (2019) Crack suppression in additively manufactured tungsten by introducing secondary-phase nanoparticles into the matrix. Int J Refract Met Hard Mater 79:158–163. https://doi.org/10.1016/j.ijrmhm.2018.11.013

    Article  CAS  Google Scholar 

  87. Yan A, Wang Z, Yang T, Wang Y, Ma Z (2016) Microstructure, thermal physical property and surface morphology of W-Cu composite fabricated via selective laser melting. Mater Des 109:79–87. https://doi.org/10.1016/j.matdes.2016.07.049

    Article  CAS  Google Scholar 

  88. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  89. Izadi M, Farzaneh A, Mohammed M, Gibson I, Rolfe B (2020) A review of laser engineered net shaping (LENS) build and process parameters of metallic parts. Rapid Prototyp J 26(6):1059–1078. https://doi.org/10.1108/RPJ-04-2018-0088

    Article  Google Scholar 

  90. Wang LZ, Wu JJ, Zhang DJ (2017) Properties evolution of additive manufacture used tungsten powders prepared by radio frequency induction plasma. Int J Refract Met Hard Mater 67:90–97. https://doi.org/10.1016/j.ijrmhm.2017.05.007

    Article  CAS  Google Scholar 

  91. Laitinen V, Piili H, Nyamekye P, Ullakko K, Salminen A (2019) Effect of process parameters on the formation of single track in pulsed laser powder bed fusion. Procedia Manuf 36:176–183. https://doi.org/10.1016/j.promfg.2019.08.023

    Article  Google Scholar 

  92. Ma J, Zhang J, Liu W, Shen Z (2013) Suppressing pore-boundary separation during spark plasma sintering of tungsten. J Nucl Mater 438(1–3):199–203. https://doi.org/10.1016/j.jnucmat.2013.03.042

    Article  CAS  Google Scholar 

  93. Zhang X, Yan Q, Lang S, Wang Y, Ge C (2017) Preparation of pure tungsten via various rolling methods and their influence on macro-texture and mechanical properties. Mater Des 126(March):1–11. https://doi.org/10.1016/j.matdes.2017.04.021

    Article  CAS  Google Scholar 

  94. Yan Q, Zhang X, Wang T, Yang C, Ge C (2013) Effect of hot working process on the mechanical properties of tungsten materials. J Nucl Mater 442(1–3):S233–S236. https://doi.org/10.1016/j.jnucmat.2013.01.307

    Article  CAS  Google Scholar 

  95. Zhang X, Yan Q, Lang S, Xia M, Ge C (2016) Texture evolution and basic thermal-mechanical properties of pure tungsten under various rolling reductions. J Nucl Mater 468:339–347. https://doi.org/10.1016/j.jnucmat.2015.04.001

    Article  CAS  Google Scholar 

  96. Senthilnathan N, Annamalai AR, Venkatachalam G (2018) Synthesis of tungsten through spark plasma and conventional sintering processes. Mater Today Proc 5(2):7954–7959. https://doi.org/10.1016/j.matpr.2017.11.478

    Article  CAS  Google Scholar 

  97. Chen Z, Han W, Yu J, Kecskes L, Zhu K, Wei Q (2016) Microstructure and helium irradiation performance of high purity tungsten processed by cold rolling. J Nucl Mater 479:418–425. https://doi.org/10.1016/j.jnucmat.2016.07.038

    Article  CAS  Google Scholar 

  98. Kim Y, Hong MH, Lee SH, Kim EP, Lee S, Noh JW (2006) The effect of yttrium oxide on the sintering behavior and hardness of tungsten. Met Mater Int 12(3):245–248. https://doi.org/10.1007/BF03027538

    Article  Google Scholar 

  99. Das J, Kiran UR, Chakraborty A, Prasad NE (2009) Hardness and tensile properties of tungsten based heavy alloys prepared by liquid phase sintering technique. Int J Refract Met Hard Mater 27(3):577–583. https://doi.org/10.1016/j.ijrmhm.2008.08.003

    Article  CAS  Google Scholar 

  100. Fan JL, Gong X, Huang BY, Song M, Liu T, Tian JM (2010) Densification behavior of nanocrystalline W-Ni–Fe composite powders prepared by sol-spray drying and hydrogen reduction process. J Alloys Compd 489(1):188–194. https://doi.org/10.1016/j.jallcom.2009.09.050

    Article  CAS  Google Scholar 

  101. Upadhyaya A, Tiwari SK, Mishra P (2007) Microwave sintering of W-Ni–Fe alloy. Scr Mater 56:5–8. https://doi.org/10.1016/j.scriptamat.2006.09.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by NASA-ESI Program under Grant Number 80NSSC21K0223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Morcos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morcos, P., Elwany, A., Karaman, I. et al. Review: additive manufacturing of pure tungsten and tungsten-based alloys. J Mater Sci 57, 9769–9806 (2022). https://doi.org/10.1007/s10853-022-07183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07183-y