Abstract
Understanding the deformation behavior of metallic materials at high strain rates requires the characterization of plasticity contributors, such as twins, phase transformed regions, and dislocations. However, predicting the contributions from phase transformation and twinning relies on a complete understanding of the selection of variants for various loading orientations and the evolution of their volume fractions. This manuscript presents a new virtual texture (VirTex) analysis approach to characterize phase transformation and twinning variants in deformed microstructures generated using molecular dynamics (MD) simulations. The VirTex method involves the construction of a rotation matrix to calculate the angle/axis pairs and misorientation angles for each atom in the microstructure. Any changes in the orientation angle from angle/axis pairs and/or structure types are analyzed to determine the nucleation and evolution of variants in the microstructure. The study uses shock deformed single-crystal Fe, Ta, and Cu to analyze the variant selections for phase transformation or twinning or both in BCC and FCC systems. In addition, the VirTex analysis is able to characterize the phase transformation and twinning variants in nanocrystalline Fe and Ta microstructures. Besides characterizing variants, orientation mapping also provides an accelerated and on-the-fly approach for quantifying twin fractions in MD microstructures.
Graphical abstract

This is a preview of subscription content,
to check access.









Similar content being viewed by others

References
Murr LE, Esquivel EV (2004) Observations of common microstructural issues associated with dynamic deformation phenomena: twins, microbands, grain size effects, shear bands, and dynamic recrystallization. J Mater Sci 39:1153–1168. https://doi.org/10.1023/B:JMSC.0000013870.09241.c0
Meyers MA, Andrade UR, Chokshi AH (1995) The effect of grain size on the high-strain, high-strain-rate behavior of copper. Metall and Mater Trans A 26:2881–2893. https://doi.org/10.1007/BF02669646
Wongwiwat K, Murr LE (1978) Effect of shock pressure, pulse duration, and grain size on shock-deformation twinning in molybdenum. Mater Sci Eng 35:273–285. https://doi.org/10.1016/0025-5416(78)90129-5
Murr LE, Meyers MA, Niou CS, Chen YJ, Pappu S, Kennedy C (1997) Shock-induced deformation twinning in tantalum. Acta Mater 45:157–175. https://doi.org/10.1016/S1359-6454(96)00145-0
Barker LM, Hollenbach RE (1974) Shock wave study of the α ⇄ ε phase transition in iron. J Appl Phys 45:4872–4887. https://doi.org/10.1063/1.1663148
Crowhurst JC, Reed BW, Armstrong MR et al (2014) The α→ϵ phase transition in iron at strain rates up to ∼109 s−1. J Appl Phys 115:113506. https://doi.org/10.1063/1.4868676
Garkushin GV, Naumova NS, Atroshenko SA, Razorenov SV (2016) Influence of the reversible α–ε phase transition and preliminary shock compression on the spall strength of Armco iron. Tech Phys 61:84–90. https://doi.org/10.1134/s1063784216010102
Beason MT, Mandal A, Jensen BJ (2020) Direct observation of the hcp-bcc phase transition and melting along the principal Hugoniot of Mg. Phys Rev B 101:024110. https://doi.org/10.1103/PhysRevB.101.024110
Jones DR, Morrow BM, Trujillo CP, GrayIII GT, Cerreta EK (2017) The α–ω phase transition in shock-loaded titanium. J Appl Phys 122:045902. https://doi.org/10.1063/1.4987146
Milathianaki D, Boutet S, Williams GJ et al (2013) Femtosecond visualization of lattice dynamics in shock-compressed matter. Science 342:220–223. https://doi.org/10.1126/science.1239566
Wehrenberg CE, McGonegle D, Bolme C et al (2017) In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics. Nature 550:496–499. https://doi.org/10.1038/nature24061
Turneaure SJ, Renganathan P, Winey JM, Gupta YM (2018) Twinning and dislocation evolution during shock compression and release of single crystals: real-time X-ray diffraction. Phys Rev Lett 120:265503. https://doi.org/10.1103/PhysRevLett.120.265503
Loveridge-Smith A, Allen A, Belak J et al (2001) Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales. Phys Rev Lett 86:2349–2352. https://doi.org/10.1103/PhysRevLett.86.2349
McGonegle D, Milathianaki D, Remington BA, Wark JS, Higginbotham A (2015) Simulations of in situ X-ray diffraction from uniaxially compressed highly textured polycrystalline targets. J Appl Phys. https://doi.org/10.1063/1.4927275
Chen S, Li YX, Zhang NB et al (2019) Capture deformation twinning in mg during shock compression with ultrafast synchrotron X-ray diffraction. Phys Rev Lett 123:255501. https://doi.org/10.1103/PhysRevLett.123.255501
Williams CL, Kale C, Turnage SA et al (2020) Real-time observation of twinning-detwinning in shock-compressed magnesium via time-resolved in situ synchrotron XRD experiments. Phys Rev Mater 4:83603. https://doi.org/10.1103/PhysRevMaterials.4.083603
Morrow BM, Jones DR, Rigg PA, Gray GT, Cerreta EK (2018) In-situ experiments to capture the evolution of microstructure during phase transformation of titanium under dynamic loading. EPJ Web Conf 183:03020
Albertazzi B, Ozaki N, Zhakhovsky V et al (2017) Dynamic fracture of tantalum under extreme tensile stress. Sci Adv 3:e1602705. https://doi.org/10.1126/sciadv.1602705
Hwang H, Galtier E, Cynn H et al (2020) Subnanosecond phase transition dynamics in laser-shocked iron. Sci Adv. https://doi.org/10.1126/sciadv.aaz5132
Kalantar DH, Belak JF, Collins GW et al (2005) Direct observation of the $\ensuremath{\alpha}\mathrm{\text{\ensuremath{-}}}\ensuremath{\epsilon}$ transition in shock-compressed iron via nanosecond X-ray diffraction. Phys Rev Lett 95:075502. https://doi.org/10.1103/PhysRevLett.95.075502
Burgers W (1934) On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1:561–586
Wang FM, Ingalls R (1998) Iron bcc-hcp transition: local structure from x-ray-absorption fine structure. Phys Rev B 57:5647–5654. https://doi.org/10.1103/PhysRevB.57.5647
Takahashi T, Bassett WA (1964) High-pressure polymorph of iron. Science 145:483–486. https://doi.org/10.1126/science.145.3631.483
Bassett W, Huang E (1987) Mechanism of the body-centered cubic—hexagonal close-packed phase transition in iron. Science 238:780–783
Ishimatsu N, Miyashita D, Kawaguchi SI (2020) Strong variant selection observed in the α−ε martensitic transition of iron under quasihydrostatic compression along [111]α. Phys Rev B 102:054106. https://doi.org/10.1103/PhysRevB.102.054106
Mishra A, Lind J, Kumar M, Dongare AM (2021) Understanding the phase transformation mechanisms that affect the dynamic response of Fe-based microstructures at the atomic scales. J Appl Phys. https://doi.org/10.1063/5.0069935
Smith RF, Eggert JH, Swift DC et al (2013) Time-dependence of the alpha to epsilon phase transformation in iron. J Appl Phys. https://doi.org/10.1063/1.4839655
Liu H, Lin F, Liu P et al (2021) Variant selection of primary–secondary extension twin pairs in magnesium: an analytical calculation study. Acta Mater 219:117221
Dougherty LM, Gray Iii GT, Cerreta EK, McCabe RJ, Field RD, Bingert JF (2009) Rare twin linked to high-pressure phase transition in iron. Scripta Mater 60:772–775. https://doi.org/10.1016/j.scriptamat.2009.01.014
Mackenchery K, Valisetty RR, Namburu RR, Stukowski A, Rajendran AM, Dongare AM (2016) Dislocation evolution and peak spall strengths in single crystal and nanocrystalline Cu. J Appl Phys 119:044301. https://doi.org/10.1063/1.4939867
Agarwal G, Dongare AM (2018) Defect and damage evolution during spallation of single crystal Al: comparison between molecular dynamics and quasi-coarse-grained dynamics simulations. Comput Mater Sci 145:68–79. https://doi.org/10.1016/j.commatsci.2017.12.032
Germann TC, Holian BL, Lomdahl PS, Ravelo R (2000) Orientation dependence in molecular dynamics simulations of shocked single crystals. Phys Rev Lett 84:5351–5354. https://doi.org/10.1103/PhysRevLett.84.5351
Davila LP, Erhart P, Bringa EM et al (2005) Atomistic modeling of shock-induced void collapse in copper. Appl Phys Lett 86:161902
Wang K, Xiao S, Deng H, Zhu W, Hu W (2014) An atomic study on the shock-induced plasticity and phase transition for iron-based single crystals. Int J Plast 59:180–198
Echeverria MJ, Galitskiy S, Mishra A, Dingreville R, Dongare AM (2021) Understanding the plasticity contributions during laser-shock loading and spall failure of Cu microstructures at the atomic scales. Comp. Mater. Sci. 198:110668. https://doi.org/10.1016/j.commatsci.2021.110668
Ma K, Chen J, Dongare AM (2021) Role of pre-existing dislocations on the shock compression and spall behavior in single-crystal copper at atomic scales. J. Appl. Phys. 129:175901. https://doi.org/10.1063/5.0040802
Chen J, Hahn EN, Dongare AM, Fensin SJ (2019) Understanding and predicting damage and failure at grain boundaries in BCC Ta. J Appl Phys 126:165902. https://doi.org/10.1063/1.5111837
Higginbotham A, Suggit MJ, Bringa EM et al (2013) Molecular dynamics simulations of shock-induced deformation twinning of a body-centered-cubic metal. Phys Rev B 88:104105. https://doi.org/10.1103/PhysRevB.88.104105
Gunkelmann N, Bringa EM, Tramontina DR et al (2014) Shock waves in polycrystalline iron: plasticity and phase transitions. Phys Rev B 89:140102. https://doi.org/10.1103/PhysRevB.89.140102
Lu CH, Hahn EN, Remington BA, Maddox BR, Bringa EM, Meyers MA (2015) Phase transformation in tantalum under extreme laser deformation. Sci Rep 5:15064. https://doi.org/10.1038/srep15064. https://www.nature.com/articles/srep15064#supplementary-information
Hahn EN, Fensin SJ (2019) Influence of defects on the shock Hugoniot of tantalum. J Appl Phys 125:215902. https://doi.org/10.1063/1.5096526
Zhang RF, Wang J, Beyerlein IJ, Germann TC (2011) Twinning in bcc metals under shock loading: a challenge to empirical potentials. Philos Mag Lett 91:731–740. https://doi.org/10.1080/09500839.2011.615348
Ravelo R, Germann TC, Guerrero O, An Q, Holian BL (2013) Shock-induced plasticity in tantalum single crystals: interatomic potentials and large-scale molecular-dynamics simulations. Phys Rev B. https://doi.org/10.1103/PhysRevB.88.134101
Hahn EN, Fensin SJ (2019) Influence of defects on the shock Hugoniot of tantalum. J Appl Phys 125:215902
Agarwal G, Dongare AM (2019) Deformation twinning in polycrystalline Mg microstructures at high strain rates at the atomic scales. Sci Rep 9:3550. https://doi.org/10.1038/s41598-019-39958-w
Agarwal G, Dongare AM (2016) Shock wave propagation and spall failure in single crystal Mg at atomic scales. J Appl Phys 119:145901. https://doi.org/10.1063/1.4944942
Bolesta AV, Fomin VM (2017) Molecular dynamics simulation of shock-wave loading of copper and titanium. AIP Conf Proc 1893:020008. https://doi.org/10.1063/1.5007446
Zong H, Ding X, Lookman T, Sun J (2016) Twin boundary activated α → ω phase transformation in titanium under shock compression. Acta Mater 115:1–9. https://doi.org/10.1016/j.actamat.2016.05.037
Flanagan TJ, Vijayan S, Galitskiy S et al (2020) Shock-induced deformation twinning and softening in magnesium single crystals. Mater Des 194:108884
Wu Z, Francis M, Curtin W (2015) Magnesium interatomic potential for simulating plasticity and fracture phenomena. Model Simul Mater Sci Eng 23:015004
Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58:11085–11088. https://doi.org/10.1103/PhysRevB.58.11085
Stukowski A (2012) Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sci Eng. https://doi.org/10.1088/0965-0393/20/4/045021
Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91:4950–4963
Tsuzuki H, Branicio PS, Rino JP (2007) Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun 177:518. https://doi.org/10.1016/j.cpc.2007.05.018
Ackland G, Jones A (2006) Applications of local crystal structure measures in experiment and simulation. Phys Rev B 73:054104
Stukowski A (2014) Computational analysis methods in atomistic modeling of crystals. JOM 66:399. https://doi.org/10.1007/s11837-013-0827-5
Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sci Eng. https://doi.org/10.1088/0965-0393/20/8/085007
Stukowski A, Albe K (2010) Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sci Eng. https://doi.org/10.1088/0965-0393/18/8/085001
Larsen PM, Schmidt S, Schiøtz J (2016) Robust structural identification via polyhedral template matching. Model Simul Mater Sci Eng. https://doi.org/10.1088/0965-0393/24/5/055007
Jc E, Tang MX, Fan D, Wang L, Luo SN (2018) Deformation of metals under dynamic loading: characterization via atomic-scale orientation mapping. Comput Mater Sci 153:338–347. https://doi.org/10.1016/j.commatsci.2018.06.020
White TG, Tikku A, Alves Silva MF, Gregori G, Higginbotham A, Eakins DE (2017) Identifying deformation mechanisms in molecular dynamics simulations of laser shocked matter. J Comput Phys 350:16–24. https://doi.org/10.1016/j.jcp.2017.08.040
Bartók AP, Kondor R, Csányi G (2013) On representing chemical environments. Phys Rev B 87:184115
Thompson AP, Swiler LP, Trott CR, Foiles SM, Tucker GJ (2015) Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J Comput Phys 285:316
Wood MA, Thompson AP (2018) Extending the accuracy of the SNAP interatomic potential form. J Chem Phys 148:241721
Behler J (2011) Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J Chem Phys 134:074106
Huo H, Rupp M (2017) Unified representation for machine learning of molecules and crystals. arXiv preprint arXiv:1704.06439 13754
Lazar EA, Han J, Srolovitz DJ (2015) Topological framework for local structure analysis in condensed matter. Proc Natl Acad Sci 112:E5769
Drautz R (2019) Atomic cluster expansion for accurate and transferable interatomic potentials. Phys Rev B 99:014104. https://doi.org/10.1103/PhysRevB.99.014104
Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool. Modelling Simul. Mater. Sci. Eng. 18:015012
Barton NR, Dawson PR (2001) A methodology for determining average lattice orientation and its application to the characterization of grain substructure. Metall Mater Trans A 32:1967–1975
Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039
Menache A (2011) Understanding motion capture for computer animation. Elsevier
Virtanen P, Gommers R, Oliphant TE et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. https://doi.org/10.1038/s41592-019-0686-2
Gunkelmann N, Bringa EM, Kang K, Ackland GJ, Ruestes CJ, Urbassek HM (2012) Polycrystalline iron under compression: plasticity and phase transitions. Phys Rev B. https://doi.org/10.1103/PhysRevB.86.144111
Mishra A, Kunka C, Echeverria MJ, Dingreville R, Dongare AM (2021) Fingerprinting shock-induced deformations via diffraction. Sci Rep 11:1
de Rességuier T, Hallouin M (2008) Effects of the α−ε phase transition on wave propagation and spallation in laser shock-loaded iron. Phys Rev B 77:174107
Righi G, Ruestes CJ, Stan CV et al (2021) Towards the ultimate strength of iron: spalling through laser shock. Acta Materialia 117072
Acknowledgements
“This material is based upon work supported by the Department of Energy, National Nuclear Security Administration under Award No. DE-NA0003857. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Nuclear Security Administration. The authors also acknowledge the computational facility at the University of Connecticut, Storrs campus.”
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Handling Editor: M. Grant Norton.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Mishra, A., Echeverria, M.J., Ma, K. et al. Virtual texture analysis to investigate the deformation mechanisms in metal microstructures at the atomic scale. J Mater Sci 57, 10549–10568 (2022). https://doi.org/10.1007/s10853-022-07108-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-022-07108-9