Skip to main content
Log in

Lithium diffusion in lithium tantalate as measured by confocal Raman spectroscopy

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A two-stage vapor transport equilibration (VTE) has been employed to mitigate lithium deficiency in single crystals of lithium tantalate, LiTaO3. This work details a low-temperature vapor transport infiltration (VTI) anneal step that establishes a lithium-rich surface layer in the treated samples which annihilates the intrinsic point defect complexes of congruent LiTaO3 while allowing depth and concentration profiles of the point defects to be measured via confocal Raman spectroscopy at different stages in the process. These data are then used to calculate diffusion coefficients for lithium in LiTaO3, which range between 4.2 × 10-11 and 2.9 × 10-10 cm2/s between 950 and 1100 °C. The lithium gradients are removed, and sample chemistry is equilibrated during a second, higher-temperature anneal in an ambient atmosphere and confirmed via additional Raman measurements. Temperature-dependent impedance spectroscopy data are also used to confirm the presence or absence of lithium gradients in these samples and show that lithiation of LiTaO3 takes place at temperatures as low as 950 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kim S, Gopalan V, Kitamura K, Furukawa Y (2001) Domain reversal and nonstoichiometry in lithium tantalate. J Appl Phys 90(6):2949–2963. https://doi.org/10.1063/1.1389525

    Article  CAS  Google Scholar 

  2. Hum DS, Route RK, Miller GD, Kondilenko V et al (2007) Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion. J Appl Phys 101:093108. https://doi.org/10.1063/1.2723867

    Article  CAS  Google Scholar 

  3. Shur VY, Akhmatkhanov AR, Baturin IS, Shishkina EV (2012) Polarization reversal and jump-like domain wall motion in stoichiometric LiTaO3 produced by vapor transport equilibration. J Appl Phys 111:014101. https://doi.org/10.1063/1.3673601

    Article  CAS  Google Scholar 

  4. Jazbinšek M, Zgonik M, Takekawa S, Nakamura M, Kitamura K, Hatano H (2002) Reduced space-charge fields in near-stoichiometric LiTaO3 for blue, violet, and near-ultraviolet light beams. Appl Phys B Lasers Opt 75(8):891–894. https://doi.org/10.1007/s00340-002-1069-3

    Article  CAS  Google Scholar 

  5. Kitamura K, Furukawa Y, Takekawa S, Hatanaka T, Ito H, Gopalan V (2001) Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices. Ferroelectrics 257:235–243. https://doi.org/10.1080/00150190108016305

    Article  CAS  Google Scholar 

  6. Kitamura K, Furukawa Y, Niwa K, Gopalan V, Mitchell TE (1998) Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3. Appl Phys Lett 73(21):3073–3075. https://doi.org/10.1063/1.122676

    Article  CAS  Google Scholar 

  7. Gopalan V, Mitchell TE, Furukawa Y, Kitamura K (1998) The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals. Appl Phys Lett 72(16):1981–1983. https://doi.org/10.1063/1.121491

    Article  CAS  Google Scholar 

  8. Kitamura K, Yamamoto JK, Iyi N, Kimura S, Hayashi T (1992) Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system. J Cryst Growth 116:327–332. https://doi.org/10.1016/0022-0248(92)90640-5

    Article  CAS  Google Scholar 

  9. Tian L, Gopalan V, Galambos L (2004) Domain reversal in stoichiometric LiTaO3 prepared by vapor transport equilibration. Appl Phys Lett 85(19):4445–4447. https://doi.org/10.1063/1.1814436

    Article  CAS  Google Scholar 

  10. Bordui PF, Norwood RG, Bird CG, Carella JT (1995) Stoichiometry issues in single-crystal lithium tantalate. J Appl Phys 78:4647–4650. https://doi.org/10.1063/1.359811

    Article  CAS  Google Scholar 

  11. Kostritskii SM, Aillerie M, Bourson P, Kip D (2009) Raman spectroscopy study of compositional inhomogeneity in lithium tantalate crystals. Appl Phys B 95:125–130. https://doi.org/10.1007/s00340-009-3442-y

    Article  CAS  Google Scholar 

  12. Fontana MD, Bourson P (2015) Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices. Appl Phys Rev 2:040602. https://doi.org/10.1063/1.4934203

    Article  CAS  Google Scholar 

  13. Shi L, Kong Y, Yan W, Liu H et al (2005) The composition dependence and new assignment of the Raman spectrum in lithium tantalate. Solid State Commun 135:251–256. https://doi.org/10.1016/j.ssc.2005.04.024

    Article  CAS  Google Scholar 

  14. Bordui PF, Norwood RG, Jundt DH, Fejer MM (1992) Preparation and characterization of off-congruent lithium niobate crystal. J Appl Phys 71(2):875–879. https://doi.org/10.1063/1.351308

    Article  CAS  Google Scholar 

  15. Bäumer C, David C, Tunyagi A, Betzler K, Hesse H, Krätzig E, Wöhlecke M (2003) Composition dependence of the ultraviolet absorption edge in lithium tantalate. J Appl Phys 93(5):3102–3104. https://doi.org/10.1063/1.1542689

    Article  CAS  Google Scholar 

  16. Carruthers JR, Kaminow IP, Stulz LW (1974) Diffusion kinetics and optical waveguiding properties of outdiffused layers in lithium niobate and lithium tantalate. Appl Opt 13(10):2333–2342. https://doi.org/10.1364/ao.13.002333

    Article  CAS  Google Scholar 

  17. Gopalan V, Dierolf V, Scrymgeour DA (2007) Defect—domain wall interactions in trigonal ferroelectrics. Annu Rev Mater Res 37:449–489. https://doi.org/10.1146/annurev.matsci.37.052506.084247

    Article  CAS  Google Scholar 

  18. Kostritskii SM, Bourson P, Aillerie M, Fontana MD, Kip D (2006) Quantitative evaluation of the electro-optic effect and second-order optical nonlinearity of lithium tantalate crystals of different compositions using Raman and infrared spectroscopy. Appl Phys B Lasers Opt 82:423–430. https://doi.org/10.1007/s00340-005-2046-4

    Article  CAS  Google Scholar 

  19. Nassau K, Lines ME (1970) Stacking-fault model for stoichiometry deviations in LiNbO3 and LiTaO3 and the effect on the curie temperature. J Appl Phys 41(2):533–537. https://doi.org/10.1063/1.1658708

    Article  CAS  Google Scholar 

  20. Hum D (2007) Frequency conversion in near-stoichiometric lithium tantalate fabricated by vapor transport equilibration. Ph.D. dissertation, Stanford University

  21. Balluffi RW, Allen SM, Carter WC (2005) Kinetics of materials, 1st edn. John Wiley & Sons Inc, New Jersey

    Book  Google Scholar 

  22. Li Q, Sun J, Yang J, Shang J, Zhang L, Xu J (2016) Lithium diffusion in lithium niobate crystals with different initial Li2O content at high temperature. J Am Ceram Soc 99(9):3055–3059. https://doi.org/10.1111/jace.14329

    Article  CAS  Google Scholar 

  23. Jundt DH, Fejer MM, Norwood RG, Bordui PF (1992) Composition dependence of lithium diffusivity in lithium niobate at high temperature. J Appl Phys 72(8):3468–3473. https://doi.org/10.1063/1.351422

    Article  CAS  Google Scholar 

  24. Zhang DL, Zhang WJ, Zhuang YR, Pun EYB (2007) Dynamic simulation of vapor transport equilibration in congruent LiNbO3 crysta. Cryst Growth Des 7(8):1541–1546. https://doi.org/10.1021/cg0605685

    Article  CAS  Google Scholar 

  25. Chen B, Hua PR, Zhang DL, Pun EYB (2012) Stoichiometry dependence of Li+ diffusivity in LiNbO3 crystal in off-congruent, Li-deficient regime. J Am Ceram Soc 95(3):1018–1022. https://doi.org/10.1111/j.1551-2916.2011.04906.x

    Article  CAS  Google Scholar 

  26. Chin GY, Ballman AA, Tien PK, Riva-Sanseverino S (1975) Diffusion kinetics and optical quality in LiNbO3-LiTaO3 optical waveguides. Appl Phys Lett 26(11):637–639. https://doi.org/10.1063/1.88008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jacob M. Ivy and Geoff L. Brennecka were supported in part by the National Science Foundation under Grant No. DMR-1555015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoff L. Brennecka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest that could potentially influence or bias this work.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivy, J.M., Brennecka, G.L. Lithium diffusion in lithium tantalate as measured by confocal Raman spectroscopy. J Mater Sci 57, 7035–7041 (2022). https://doi.org/10.1007/s10853-022-07105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07105-y

Navigation