Skip to main content
Log in

Giant and reversible magnetostriction in 〈100〉-oriented CoMnSi microspheres/epoxy resin composite

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnetostrictive properties of CoMnSi are generally confined by their intrinsic brittleness and difficulty in growing into anisotropic bulk materials. In this study, we present a new type of 〈100〉-oriented CoMnSi microspheres/epoxy resin composite that exhibits a giant and reversible magnetostriction of 6700 ppm. 〈100〉-textured CoMnSi microspheres were synthesized through the non-wettability between CoMnSi liquid and solid dispersions. The microspheres/epoxy composites with a uniform 〈100〉 orientation were produced by applying a simulating rotating magnetic field. The improved magnetostriction in the composite was associated with microspheres' texture as well as their orientation. This work may shed light on the synthesis of textured metal spheres and the development of magnetic composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Barcza A, Gercsi Z, Knight KS, Sandeman KG (2010) Giant magnetoelastic coupling in a metallic helical metamagnet. Phys Rev Lett 104:247202. https://doi.org/10.1103/PhysRevLett.104.247202

    Article  CAS  Google Scholar 

  2. Barcza A, Gercsi Z, Michor H et al (2013) Magnetoelastic coupling and competing entropy changes in substituted CoMnSi metamagnets. Phys Rev B 87:064410. https://doi.org/10.1103/PhysRevB.87.064410

    Article  CAS  Google Scholar 

  3. Gercsi Z, Sandeman KG (2010) Structurally driven metamagnetism in MnP and related Pnma compounds. Phys Rev B 81:224426. https://doi.org/10.1103/PhysRevB.81.224426

    Article  CAS  Google Scholar 

  4. Niziol S, Bińczycka H, Szytula A et al (1978) Structure magnétique des MnCoSi. Phys Stat Solidi (a) 45:591–597. https://doi.org/10.1002/pssa.2210450231

    Article  CAS  Google Scholar 

  5. Szytula A, Bazela W, Radenkovic S (1983) Crystal and magnetic-structure of the CoMn1-xTixSi system. J Magn Magn Mater 38:99–104. https://doi.org/10.1016/0304-8853(83)90108-7

    Article  CAS  Google Scholar 

  6. Zhang CL, Shi HF, Nie YG et al (2019) Large reversible magnetostriction and improved mechanical properties in epoxy-reinforced MnCoSi1-xGex cast ingots. J Alloys Compd 784:16–21. https://doi.org/10.1016/j.jallcom.2019.01.004

    Article  CAS  Google Scholar 

  7. Gong YY, Wang DH, Cao QQ et al (2015) Textured, dense and giant magnetostrictive alloy from fissile polycrystal. Acta Mater 98:113–118. https://doi.org/10.1016/j.actamat.2015.07.026

    Article  CAS  Google Scholar 

  8. Hu QB, Hu Y, Zhang S et al (2018) Large reversible magnetostrictive effect of MnCoSi-based compounds prepared by high-magnetic-field solidification. Appl Phys Lett 112:052404. https://doi.org/10.1063/1.5011321

    Article  CAS  Google Scholar 

  9. Zhang CL, Zheng YX, Xuan HC et al (2011) Large and highly reversible magnetic field-induced strains in textured Co1-xNixMnSi alloys at room temperature. J Phys D 44:135003. https://doi.org/10.1088/0022-3727/44/13/135003

    Article  CAS  Google Scholar 

  10. Clark AE, Teter JP, Wunfogle M (1991) Anisotropy compensation and magnetostriction in TbxDy1-x(Fe1-yTy)1.9 (T=Co, Mn). J Appl Phys 69:5771–5773. https://doi.org/10.1063/1.347871

    Article  CAS  Google Scholar 

  11. Sandlund L, Fahlander M, Cedell T, Clark AE, Restorff JB, Wunfogle M (1994) Magnetostriction, elastic-moduli, and coupling factors of composite Terfenol-D. J Appl Phys 75:5656–5658. https://doi.org/10.1063/1.355627

    Article  CAS  Google Scholar 

  12. Meng H, Zhang TL, Jiang CB, Xu HB (2010) Grain-<111>-oriented anisotropy in the bonded giant magnetostrictive material. Appl Phys Lett 96:102501. https://doi.org/10.1063/1.3350891

    Article  CAS  Google Scholar 

  13. Guruswamy S, Srisukhumbowornchai N, Clark AE, Restorff JB, Wun-Fogle M (2000) Strong, ductile, and low-field-magnetostrictive alloys based on Fe-Ga. Scr Mater 43:239–244. https://doi.org/10.1016/s1359-6462(00)00397-3

    Article  CAS  Google Scholar 

  14. Gaitzsch U, Potschke M, Roth S, Rellinghaus B, Schultz L (2009) A 1% magnetostrain in polycrystalline 5M Ni-Mn-Ga. Acta Mater 57:365–370. https://doi.org/10.1016/j.actamat.2008.09.017

    Article  CAS  Google Scholar 

  15. Lei CL, Huang HF, Cheng ZZ, Tang SL, Du YW (2016) Fabrication of spherical Fe-based magnetic powders via the in situ de-wetting of the liquid-solid interface. RSC Adv 6:3428–3432. https://doi.org/10.1039/c5ra22609k

    Article  CAS  Google Scholar 

  16. Lei CL, Huang HF, Huang Y, Cheng ZZ, Tang SL, Du YW (2016) In-situ de-wetting assisted fabrication of spherical Cu-Sn alloy powder via the reduction of mixture metallic oxides. Powder Technol 301:356–359. https://doi.org/10.1016/j.powtec.2016.06.025

    Article  CAS  Google Scholar 

  17. Cheng ZZ, Lei CL, Huang HF, Tang SL, Du YW (2016) The formation of ultrafine spherical metal powders using a low wettability strategy of solid-liquid interface. Mater Des 97:324–330. https://doi.org/10.1016/j.matdes.2016.02.100

    Article  CAS  Google Scholar 

  18. Omori T, Kusama T, Kawata S et al (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341:1500–1502. https://doi.org/10.1126/science.1238017

    Article  CAS  Google Scholar 

  19. Omori T, Iwaizako H, Kainuma R (2016) Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Mater Des 101:263–269. https://doi.org/10.1016/j.matdes.2016.04.011

    Article  CAS  Google Scholar 

  20. Kusama T, Omori T, Saito T et al (2017) Ultra-large single crystals by abnormal grain growth. Nat Commun 8:354. https://doi.org/10.1038/s41467-017-00383-0

    Article  CAS  Google Scholar 

  21. Jin S, Huang M, Kwon Y et al (2018) Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science 362:1021. https://doi.org/10.1126/science.aao3373

    Article  CAS  Google Scholar 

  22. Huang Y, Qian J, Dong DS, Shi YG, Du YW, Tang SL (2022) Magnetostriction in <0kl>-oriented composites with CoMnSi microspheres. J Magn Magn Mater 543:168621. https://doi.org/10.1016/j.jmmm.2021.168621

    Article  CAS  Google Scholar 

  23. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier Ltd, Oxford

    Google Scholar 

  24. Xia J, Omori T, Kainuma R (2020) Abnormal grain growth in Fe-Mn-Al-Ni shape memory alloy with higher Al content. Scr Mater 187:355–359. https://doi.org/10.1016/j.scriptamat.2020.06.044

    Article  CAS  Google Scholar 

  25. Clark AE, Abbundi R, Gillmor WR (1978) Magnetization and magnetic-anisotropy of TbFe2, DyFe2, Tb0.27Dy0.73Fe2 and TmFe2. IEEE Trans Magn 14:542–544. https://doi.org/10.1109/tmag.1978.1059879

    Article  Google Scholar 

  26. Shi YG, Tang SL, Wang RL et al (2006) High-pressure synthesis of giant magnetostrictive PrxTb1-xFe1.9 alloys. Appl Phys Lett 89:202503. https://doi.org/10.1063/1.2387865

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial supports from the National Natural Science Foundation of China (Nos. 51671102 and 11475086).

Funding

Funding was provided by National Natural Science Foundation of China (Grant Numbers 51671102 and 11475086).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangguang Shi or Shaolong Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Qian, J., Dong, D. et al. Giant and reversible magnetostriction in 〈100〉-oriented CoMnSi microspheres/epoxy resin composite. J Mater Sci 57, 6953–6962 (2022). https://doi.org/10.1007/s10853-022-07094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07094-y

Navigation