Skip to main content
Log in

Ultra-low lattice thermal conductivity and high figure of merit for Janus MoSeTe monolayer: a peerless material for high temperature regime thermoelectric devices

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The discovery of 2-D Janus materials has accelerated the research and development of novel nanodevices for numerous applications. Owing to its unique properties of structural asymmetry, the 2D Janus monolayers are extensively expedited for an optoelectronic, piezoelectric, thermoelectric behavior of the materials. Motivated with this, we have explored the thermoelectric behavior of Janus MoSeTe monolayer using an ab-initio technique. Moreover, we have calculated the electronic, vibrational, and transport parameters using density-functional theory, density functional perturbation theory and Boltzmann transport equations, respectively. To get an accurate calculation, the precise scattering time has been estimated at various temperatures using the deformation potential theory, instead of using constant relaxation time. In addition to it, the lattice thermal conductivity which is a crucial parameter to explore the thermoelectric behavior is also calculated. Interestingly, we have observed an ultra-low lattice thermal conductivity (0.095 Wm\(^{-1}\)K\(^{-1}\) at room temperature to 0.02 Wm\(^{-1}\)K\(^{-1}\) at 1200 K). Also, the sufficiently high thermoelectric figure of merit (around 3) makes this material promising for thermoelectric applications under high-temperature regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Yang L, Chen ZG, Dargusch MS, Zou J (2018) High performance thermoelectric materials: progress and their applications. Adv Energy Mater 8:1701797

    Google Scholar 

  2. Perera F (2018) Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int J Environ Res Public Health 15:16

    Google Scholar 

  3. Jiang X, Zhu L, Li B, Yao K (2020) Thermoelectric properties of monolayer \(\alpha\)-Te: low lattice thermal conductivity and extremely high dimensionless figure of merit. Phys Lett Sect A Gen At Solid State Phys 384:126222

  4. Snyder GJ, Snyder AH (2017) Figure of merit ZT of a thermoelectric device defined from materials properties. Energy Environ Sci 10:2280–2283

    Google Scholar 

  5. Mishra P, Singh D, Sonvane Y, Ahuja R (2020) Two-dimensional boron monochalcogenide monolayer for thermoelectric material. Sustain Energy Fuels 4:2363–2369

    CAS  Google Scholar 

  6. Patel A, Singh D, Sonvane Y, Thakor PB, Ahuja R (2020) Bulk and monolayer As2S3 as promising thermoelectric material with high conversion performance. Comput Mater Sci 183:109913

    CAS  Google Scholar 

  7. Chen B, Uher C, Morelli DT, Caillat T, Fleurial J-P, Borshchevsky A, Vandersande J (1995) Low-temperature transport properties of p-type \({\rm CoSb}_{3}\). Phys Rev B 51:9622

    Google Scholar 

  8. Hicks LD, Dresselhaus MS (1992) The effect of quantum well structures on the thermoelectric figure of merit. MRS Proc 281:450–453

    Google Scholar 

  9. Venkatasubramanian R (2001) Chapter 4 Phonon blocking electron transmitting superlattice structures as advanced thin film thermoelectric materials. Semiconduct Semimet 71:175–201

    CAS  Google Scholar 

  10. Tritt TM (2001) Recent trends in thermoelectric materials research III; semiconductors and semimetals-preface. Academic Press, New York, NY, USA, pp 9–14

    Google Scholar 

  11. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114

    CAS  Google Scholar 

  12. Lu AY, Zhu H, Xiao J, Chuu CP, Han Y, Chiu MH, Cheng CC, Yang CW, Wei KH, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller DA, Chou MY, Zhang X, Li LJ (2017) Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol 12:744–749. https://doi.org/10.1038/nnano.2017.100

    Article  CAS  Google Scholar 

  13. Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy VB, Shi L, Lou J (2017) Janus monolayer transition-metal dichalcogenides. ACS Nano 11:8192–8198. https://doi.org/10.1021/acsnano.7b03186

    Article  CAS  Google Scholar 

  14. Raveena G, Bonny D, Chandan B, Jesús Carrete (2020) The effect of janus asymmetry on thermal transport in SnSSe. J Phys Chem C 124:17476

    Google Scholar 

  15. Guo S-D (2018) Phonon transport in janus monolayer MoSSe: a first-principles study. Phys Chem Chem Phys 20:7236–7242. https://doi.org/10.1039/C8CP00350E

    Article  CAS  Google Scholar 

  16. Guo S-D, Guo X-S, Deng Y (2019) Tuning the electronic structures and transport coefficients of janus PtSSe monolayer with biaxial strain. J Appl Phys. https://doi.org/10.1063/1.5124677

    Article  Google Scholar 

  17. Cao L, Ang YS, Wu Q, Ang LK (2019) Janus PtSSe and graphene heterostructure with tunable schottky barrier. Appl Phys Lett. https://doi.org/10.1063/1.5130756

    Article  Google Scholar 

  18. Cheng YC, Zhu ZY, Tahir M (2013) Schwingenschlogl, U. SpinOrbit-induced spin splittings in polar transition metal dichalcogenide monolayers. EPL (Europhysics Lett) 102:57001

    Google Scholar 

  19. Li R, Cheng Y, Huang W (2018) Recent progress of janus 2D transition metal chalcogenides: from theory to experiments. Small 14:1802091

    Google Scholar 

  20. Gu X, Yang R (2014) Phonon transport in single-layer transition metal dichalcogenides: a first-principles study. Appl Phys Lett 105:131903

    Google Scholar 

  21. Yang X, Singh D, Xu Z, Ahuja R (2020) Sensing the polar molecules \(MH_{3}\) (M = N, P, or As) with a janus NbTeSe monolayer. New J Chem 44:7932–7940

    CAS  Google Scholar 

  22. Yang X, Singh D, Xu Z, Wang Z, Ahuja Rajeev (2019) An emerging Janus MoSeTe material for potential applications in optoelectronic devices. J Mater Chem C 7(39):12312–12320

    CAS  Google Scholar 

  23. Yang X, Banerjee A, Ahuja R (2020) Structural insight of the frailty of 2D janus NbSeTe as an active photocatalyst. ChemCatChem 12(23):6013–6023

    CAS  Google Scholar 

  24. Rawat A, Mohanta MK, Jena N, Dimple Ahammed R, De Sarkar A (2020) Nanoscale interfaces of janus monolayers of transition metal dichalcogenides for 2D photovoltaic and piezoelectric applications. J Phys Chem C 124:10385–10397

    CAS  Google Scholar 

  25. Cheng YC, Zhu ZY, Tahir M, Schwingenschlögl U (2013) Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. EPL (Europhysics Lett) 102:57001

    Google Scholar 

  26. Yang J, Wang A, Zhang S, Liu J, Zhong Z, Chen L (2019) Coexistence of piezoelectricity and magnetism in two-dimensional vanadium dichalcogenides. Phys Chem Chem Phys 21:132–136

    CAS  Google Scholar 

  27. Ji Y, Yang M, Lin H, Hou T, Wang L, Li Y, Lee S-T (2018) Janus structures of transition metal dichalcogenides as the heterojunction photocatalysts for water splitting. J Phys Chem C 122:3123–3129

    CAS  Google Scholar 

  28. Ghosh T (2021) Dutta Moinak and Biswas Kanishka High-performance thermoelectrics based on metal selenides (Thermoelectric Energy Conversion) ed Ryoji Funahashi, (Woodhead Publishing) p 217–246

  29. Giannozzi P et al (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys: Condens Matter 29:465901

    CAS  Google Scholar 

  30. Giannozzi P et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J Phys Condens Matter 21:395502–395521

  31. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    CAS  Google Scholar 

  32. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59(11):7413

    Google Scholar 

  33. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Google Scholar 

  34. Madsen GKH, Carrete J, Verstraete MJ (2018) BoltzTraP2, a program for interpolating band structures and calculating semiclassical transport coefficients. Comput Phys Commun 231:140–145

    CAS  Google Scholar 

  35. Madsen GKH, BoltzTraP Singh D J (2006) A code for calculating band-structure dependent quantities. Comput Phys Commun 175:67–71

    CAS  Google Scholar 

  36. Shuai Z, Wang Linjun, Song C (2012) Deformation Potential Theory. Springer, Berlin, Heidelberg, pp 67–88

    Google Scholar 

  37. Bardeen J, Shockley W (1950) Deformation potentials and mobilities in non-polar crystals. Phys Rev 80:72–80

    CAS  Google Scholar 

  38. de Walle Van, Chris G (1989) Band lineups and deformation potentials in the model-solid theory. Phys Rev B 39:1871–1883

    Google Scholar 

  39. Kawaji Shinji (1969) The two-dimensional lattice scattering mobility in a semiconductor inversion layer. J Phys Soc Jpn 27:906–908

    CAS  Google Scholar 

  40. Sharma G, Datta S, Ghosh P (2021) First principles investigations of structural, electronic and transport properties of \(BiI_{3}/ZrS_{2} BiI_{3} /ZrS_{2}\) van der waals heterostructure: a thermoelectric perspective. J Electron Mater 50:1644–1654

    CAS  Google Scholar 

  41. Li W, Lindsay L, Broido DA, Stewart DA, Mingo N (2012) Thermal conductivity of bulk and nanowire Mg\({}_{2}\)Si\({}_{x}\)Sn\({}_{1-{}x}\) alloys from first principles. Phys Rev B 86:174307

  42. Li W, Carrete J, Katcho NA, Mingo N (2014) ShengBTE: a solver of the Boltzmann transport equation for phonons. Comp Phys Commun 185:1747–1758

    CAS  Google Scholar 

  43. Qin G, Qin Z, Fang W-Z, Zhang L-C, Yue S-Y, Yan Q-B, Hu M, Su G (2016) Diverse anisotropy of phonon transport in two-dimensional group IV-VI compounds: a comparative study. Nanoscale 8:11306

    CAS  Google Scholar 

  44. Seixas L (2020) Janus two-dimensional materials based on group IV monochalcogenides. J Appl Phys 128:045115

    CAS  Google Scholar 

  45. Nurhuda M, Nugraha A, Hanna M, Suprayoga E, Hasdeo E (2020) Thermoelectric properties of Mexican-hat band structures. Adv Nat Sci: Nanosci Nanotechnol 11(1):015012

    CAS  Google Scholar 

  46. Wickramaratne D, Zahid F, Lake R (2015) Electronic and thermoelectric properties of van der Waals materials with ring-shaped valence bands. J Appl Phys 118(7):075101

    Google Scholar 

  47. Chen M-W, Kim H, Ovchinnikov D, Kuc A, Heine T, Renault O, Kis A (2018) Large-grain MBE-grown GaSe on GaAs with a Mexican hat-like valence band dispersion. npj 2D Mater Appl 2:2397–7132

    Google Scholar 

  48. Khan F, Din HU, Khan SA, Rehman G, Bilal M, Nguyen CV, Ahmad I, Gan L-Y, Amin B (2019) Theoretical investigation of electronic structure and thermoelectric properties of MX2 (M=Zr, Hf; X=S, Se) van der Waals heterostructures. J Phys Chem Solids 126:304–309

    CAS  Google Scholar 

  49. Khosa GS, Gupta S, Kumar R (2020) Modulation of electronic transport coefficients of monolayer MoSe2 by biaxial strain. AIP Conf Proc 2220:100006

    CAS  Google Scholar 

  50. Kumar S, Schwingenschlogl U (2015) Thermoelectric response of bulk and monolayer MoSe2 and WSe2. Chem Mater 27(4):1278–1284

    CAS  Google Scholar 

  51. Muhammad Z et al (2019) Intrinsic thermal conductivities of monolayer transition metal dichalcogenides MX 2 (M= Mo, W; X= S, Se, Te). Sci Rep (Nature Publisher Group), 9:4571–4578

  52. Chaurasiya R, Tyagi S, Singh N, Auluck S, Dixit A (2021) Enhancing thermoelectric properties of Janus WSSe monolayer by inducing strain mediated valley degeneracy. J Alloy Compd 855:157304

    CAS  Google Scholar 

  53. Patel A, Singh D, Sonvane Y, Thakor PB, Ahuja R (2020) High thermoelectric performance in two-dimensional janus monolayer material WS-X (X = Se and Te). ACS Appl Mater Interfaces 12:46212–46219

    CAS  Google Scholar 

  54. Bera J, Betal A, Sahu S (2020) Ultralow lattice thermal conductivity and high thermoelectric performance near room temperature of Janus monolayer HfSSe. arXiv: Materials Science,

  55. Vallinayagam M, Posselt M, Chandra S (2020) Electronic structure and thermoelectric properties of Mo-based dichalcogenide monolayers locally and randomly modified by substitutional atoms. RSC Adv 10:43035–43044

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are acknowledging the Centralised Computational Facility (CCF) and Computational Nano-Materials Research Lab (CNMRL), IIIT-Allahabad, for providing sufficient resources to carry out this research. Author Ambesh Dixit acknowledges SERB, DST, Gov. of India, through project CRG/2018/001931 for carrying out this work.

Funding

Authors are thankful for providing the financial support from Department of Science & Technology and Ministry of Education, Gov. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani Saini.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, S., Shrivastava, A., Dixit, A. et al. Ultra-low lattice thermal conductivity and high figure of merit for Janus MoSeTe monolayer: a peerless material for high temperature regime thermoelectric devices. J Mater Sci 57, 7012–7022 (2022). https://doi.org/10.1007/s10853-022-07065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07065-3

Navigation