Skip to main content
Log in

Aqueous synthesis of Zn-based ternary core/shell quantum dots with excellent stability and biocompatibility against different cell lines

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ternary quantum dots (QDs) such as zinc indium sulphide (ZIS), copper indium sulphide (CIS) and silver indium sulphide (AIS) have received great attention. Among these ternary semiconductors, the inherent lamellar structure of ZIS makes it difficult to produce zero-dimensional QD material. In addressing this issue, we report the synthesis of ZIS/ZnSe core/shell QDs, for the first time, with enhanced fluorescence and stability. The ZIS QDs were synthesized using thioglycolic acid (TGA) and gelatin as stabilizer and capping ligands. The molar ratio of Zn:Se precursors was varied to obtain enhanced fluorescence. The as-synthesized novel ZIS/ZnSe QDs exhibit narrow emission width and growth of ZnSe shell over ZIS QDs did not result in blue-shifted emission which is a common challenge in AIS- and CIS-based QDs. The as-synthesized QDs are spherical with an average diameter of 6.7 nm and exhibits hexagonal crystal structure. Surface analysis demonstrated that ZIS QDs was stabilized by both gelatin and TGA, while ZIS/ZnSe QDs was only stabilized by gelatin as the growth of ZnSe shell displaced TGA. The cytotoxcity results revealed that QDs maintained excellent biocompatibility towards BHK21-normal fibroblast cells, A549- lung cancer and Hek293-kidney cancer cell lines indicating the potential of the material for biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Halder G, Bhattacharyya S (2017) Zinc-diffused silver indium selenide quantum dot sensitized solar cells with enhanced photoconversion efficiency. J Mater Chem A Mater Energy Sustain 5:11746–11755

    Article  CAS  Google Scholar 

  2. Pirsaheb M, Asadi A, Mika S, Farhadian N (2018) Application of carbon quantum dots to increase the activity of conventional photocatalysts: a systematic review. J Molecular Liq 271:857–871

    Article  CAS  Google Scholar 

  3. Pan Z, Rao H, Mora-Sero I, Bisquert J, Zhong X (2018) Quantum dot-sensitized solar cells. Chem Soc Rev 47:7659–7702

    Article  CAS  Google Scholar 

  4. Mehata MS, Ratnesh RK (2019) Luminescence properties and exciton dynamics of core–multi-shell semiconductor quantum dots leading to QLEDs. Dalton Trans 48(22):7619–7631

    Article  CAS  Google Scholar 

  5. Ma Y, Li Y, Ma S, Zhong X (2014) Highly bright water-soluble silica coated quantum dots with excellent stability. J Mater Chem B 2:5043–5051

    Article  CAS  Google Scholar 

  6. Shereema RM, Sankar V, Raghu KG, Rao TP, Shankar SS (2015) One step green synthesis of carbon quantum dots and its application towards the bioelectroanalytical and biolabeling studies. Electrochim Acta 182:588–595

    Article  CAS  Google Scholar 

  7. Chen X, Chen S, Xia T, Su X, Ma Q (2017) Aqueous synthesis of high quality multicolor Cu-Zn-In-S quantum dotsJ. Lumin 188:162–167

    Article  CAS  Google Scholar 

  8. Parani S, Pandian K, Oluwafemi OS (2018) Gelatin stabilization of quantum dots for improved stability and biocompatibility. Int J Biol Macromol 107:635–641

    Article  CAS  Google Scholar 

  9. Yang Q, Li J, Wang X, Xiong H, Chen L (2019) Ternary emission of a blue-, green-, and red-based molecular imprinting fluorescence sensor for the multiplexed and visual detection of bovine hemoglobin. Anal Chem 91:6561–6568

    Article  CAS  Google Scholar 

  10. Moulick A, Heger Z, Milosavljevic V, Richtera L, Barroso-Flores J, Merlos Rodrigo MA, Buchtelova H, Podgajny R, Hynek D, Kopel P, Adam V (2018) Real-time visualization of cell membrane damage using Gadolinium-Schiff base complex-doped quantum dots. ACS Appl Mater Interface 10(42):35859–35868

    Article  CAS  Google Scholar 

  11. Ratnesh RK, Mehata MS (2017) Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS. Spectrochim Acta Part A Mol Biomol Spectrosc 179:201–210

    Article  CAS  Google Scholar 

  12. Parani S, Oluwafemi OS (2020) Selective and sensitive fluorescent nanoprobe based on AgInS2-ZnS quantum dots for the rapid detection of Cr (III) ions in the midst of interfering ions. Nanotechnology 31:395501

    Article  CAS  Google Scholar 

  13. Tsolekile N, Parani S, Vuyelwa N, Maluleke R, Matoetoe M, Songca S, Oluwafemi OS (2020) Synthesis, structural and fluorescence optimization of ternary Cu–In–S quantum dots passivated with ZnS. J Lumin 227:117541

    Article  CAS  Google Scholar 

  14. Oluwafemi OS, May BM, Parani S, Tsolekile N (2020) Facile, large scale synthesis of water soluble AgInSe2/ZnSe quantum dots and its cell viability assessment on different cell lines. Mat Sci Eng C 106:110181

    Article  CAS  Google Scholar 

  15. Delices A, Moodelly D, Hurot C, Hou Y, Ling WL, Saint-Pierre C, Gasparutto D, Nogues G, Reiss P, Kheng K (2020) Aqueous synthesis of DNA-Functionalized Near-Infrared AgInS2/ZnS Core/Shell Quantum Dots. ACS Appl Mater Interfaces 12:44026–44038

    Article  CAS  Google Scholar 

  16. Su D, Wang L, Li M, Mei S, Wei X, Dai H, Hu Z, Xie F, Guo R (2020) Highly luminescent water-soluble AgInS2/ZnS quantum dots-hydrogel composites for warm white LEDs. J Alloys Comp 824:153896

    Article  CAS  Google Scholar 

  17. Li M, Wei X, Mei S, Cui Z, Fan Y, Yang B, Wen Z, Xiong Z, Wang L, Xie F, Zhang W (2021) Highly luminescent copper gallium selenium based multicomponent quantum dots: Formation process and tunable white-light emission. Appl Surf Sci 538:147907

    Article  CAS  Google Scholar 

  18. Zhang A, Dong C, Li L, Yin J, Liu H, Huang X, Ren J (2015) Non-blinking (Zn)CuInS/ZnS quantum dots prepared by in situ interfacial alloying approachsci. Rep 5:15227

    CAS  Google Scholar 

  19. Varghese RJ, Parani S, Remya VR, Maluleke R, Thomas S, Oluwafemi OS (2020) Sodium alginate passivated CuInS2/ZnS QDs encapsulated in the mesoporous channels of amine modified SBA 15 with excellent photostability and biocompatibility. Int J Biol Macromol 161:1470–1476

    Article  Google Scholar 

  20. Wu S, Zhang S, Wang X, Jia Y, Sun B, Luo T, Meng F, Jin Z, Lin D, Shen W, Kong L, Liu J (2015) Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide. Chem Eng J 262:1292–1302

    Article  CAS  Google Scholar 

  21. Song J, Ma C, Zhang W, Yang S, Wang S, Lv L, Zhu L, Xia R, Xu X (2016) Tumor cell-targeted Zn3In2S6 and Ag–Zn–In–S quantum dots for color adjustable luminophores. J Mater Chem B 4:7909–7918

    Article  CAS  Google Scholar 

  22. Wang X, Damasco J, Shao W, Ke Y, Swihart MT (2016) Synthesis of Zn–In–S Quantum Dots with Tunable Composition and Optical Properties. Chem Phys Chem Commun 17:687–691

    CAS  Google Scholar 

  23. Ebadi M, Ramezani M, Zarghami Z (2016) A facile hydrothermal Route to the synthesis of ZnIn2S4 quantum dots in the presence of Thioglycolic acid and investigation its light harvesting application. J Cluster Sci 27:341–350

    Article  CAS  Google Scholar 

  24. Zikalala N, Parani S, Tsolekile N, Oluwafemi OS (2020) Facile green synthesis of ZnInS quantum dots: temporal evolution of their optical properties and cell viability against normal and cancerous cells. J Mater Chem C 8:9329–9336

    Article  CAS  Google Scholar 

  25. Kang X, Yang Y, Huang L, Tao Y, Wang L, Pan D (2015) Large-scale synthesis of water-soluble CuInSe2/ZnS and AgInSe2/ZnS core/shell quantum dots. Green Chem 17:4482–4488

    Article  CAS  Google Scholar 

  26. Jiang T, Song J, Wang H, Ye X, Wang H, Zhang W, Yang M, Xia R, Zhu L, Xu X (2015) Aqueous synthesis of color tunable Cu doped Zn–In–S/ZnS nanoparticles in the whole visible region for cellular imaging. J Mater Chem B 3:2402–2410

    Article  CAS  Google Scholar 

  27. Zang H, Li H, Makarov NS, Velizhanin KA, Wu K, Park Y, Klimov VI (2017) Thick-Shell CuInS2/ZnS quantum dots with suppressed “Blinking” and narrow single-particle emission line widths. Nano Lett 17:1787–1795

    Article  CAS  Google Scholar 

  28. Che D, Zhu X, Wang H, Duan Y, Zhang Q, Li Y (2016) Aqueous synthesis of high bright and tunable near-infrared AgInSe2–ZnSe quantum dots for bioimaging. J Colloid Interface Sci 463:1–7

    Article  CAS  Google Scholar 

  29. Vasudevan D, Ranganathan R, Trinchi A, Cole I (2015) Core–shell quantum dots: properties and applications. J Alloys Compd 636:395–404

    Article  CAS  Google Scholar 

  30. Michalska M, Florczak A, Dams-kozlowska H, Gapinski J, Jurga S, Schneider R (2016) Peptide-functionalized ZCIS QDs as fluorescent nanoprobe for targeted HER2-positive breast cancer cells imaging. Acta Biomater 35:293–304

    Article  CAS  Google Scholar 

  31. Park J, Kim S (2011) CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence. J Mater Chem 21:3745–3750

    Article  CAS  Google Scholar 

  32. Li Z, Chen F, Wang L, Shen H, Guo L, Kuang Y, Wang H, Li N, Li LS (2018) Synthesis and evaluation of ideal core/Shell quantum dots with precisely controlled shell growth: nonblinking, single photoluminescence decay channel, and suppressed FRET. Chem Mater 30:3668–3676

    Article  CAS  Google Scholar 

  33. Kim DJ, Jo MJ, Nam SY (2015) A review of polymer–nanocomposite electrolyte membranes for fuel cell application. J Ind Eng Chem 21:36–52

    Article  CAS  Google Scholar 

  34. Park JC, Nam YS (2015) Controlling surface defects of non-stoichiometric copper-indium-sulfide quantum dots. J Colloid Interface Sci 460:173–180

    Article  CAS  Google Scholar 

  35. Akdas T, Walter J, Segets D, Distaso M, Winter B, Birajdar B, Spiecker E, Peukert W (2015) Investigation of the size–property relationship in CuInS2 quantum dots. Nanoscale 7:18105–18118

    Article  CAS  Google Scholar 

  36. Chaudhari NS, Bhirud AP, Sonawane RS, Nikam LK, Warule SS, Rane VH, Kale BB (2011) Ecofriendly hydrogen production from abundant hydrogen sulfide using solar light-driven hierarchical nanostructured ZnIn2S4 photocatalyst. Green Chem 13:2500–2506

    Article  CAS  Google Scholar 

  37. Adhikari S, Charanpahari AV, Madras G (2017) Solar-Light-Driven improved photocatalytic performance of hierarchical ZnIn2S4 architectures. ACS Omega 2:6926–6938

    Article  CAS  Google Scholar 

  38. Muthivhi R, Parani S, May B, Oluwafemi OS (2018) Green synthesis of gelatin-noble metal polymer nanocomposites for sensing of Hg2+ ions in aqueous media. Nano-Structures Nano-Objects 13:132–138

    Article  CAS  Google Scholar 

  39. Divya M, Vaseeharan B, Abinaya M, Vijayakumar S, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2018) Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity. J Photochem Photobiol, B 178:211–218

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank Ms Hendriette van der Walt (Mintek, SA) for the cell viability studies.

Funding

The authors thank National Research Foundation, South Africa, under the Competitive Programme for Rated Researchers (Grant no: 106060 and 129290), University of Johannesburg, South Africa, Faculty of Science Research Committee, and University research Committee, South Africa, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwatobi S. Oluwafemi.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zikalala, N., Parani, S. & Oluwafemi, O.S. Aqueous synthesis of Zn-based ternary core/shell quantum dots with excellent stability and biocompatibility against different cell lines. J Mater Sci 57, 6780–6789 (2022). https://doi.org/10.1007/s10853-022-07053-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07053-7

Navigation