Skip to main content

Advertisement

Log in

Effect of hafnium and tantalum on the microstructure of PM Ni-based superalloys

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of Hf and Ta on the microstructure of powder metallurgy Ni-based superalloys after heat treatment was investigated. Hf and Ta change the distribution and main components of MC carbides, inhibiting TiC carbides precipitate along prior particle boundaries by forming stable Hf- and Ta-rich carbides inside powders during the process of hot isostatic pressing. The partition of Hf and Ta in γ′ phase causes the repartition of other elements in γ and γ′ phases, which leads to the change of the lattice mismatch of γ and γ′ phases. The size of secondary γ′ precipitates increases and their shapes transform from spheres to cuboids when Hf or Ta content is raised, and some secondary γ′ precipitates begin to split in high Hf and Ta content. This transformation of morphology is related to the increase of the lattice mismatch of γ and γ′ phases, and the increase in size and volume fraction of secondary γ′ precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Reed RC (2006) The superalloys: fundamentals and applications. Cambridge University Press, Cambridge, pp 1–5

    Google Scholar 

  2. Jiang R, Song YD, Reed PA (2020) Fatigue crack growth mechanisms in powder metallurgy Ni-based superalloys-a review. Int J Fatigue 141:105887

    Article  CAS  Google Scholar 

  3. Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propul Power 22(2):361–374

    Article  CAS  Google Scholar 

  4. Peng Z, Zou J, Yang J, Tian G, Wang X (2021) Influence of γ′ precipitate on deformation and fracture during creep in PM nickel-based superalloy. Prog Nat Sci Mater Int 31(2):303–309

    Article  CAS  Google Scholar 

  5. Wu CJ, Tao Y, Jia J (2014) Microstructure and properties of an advanced nickel-base PM superalloy. J Iron Steel Res Int 21(12):1152–1157

    Article  CAS  Google Scholar 

  6. Xia T, Zhang YW, Chi Y (2014) Effect of Hf and Zr contents on stress-rupture and fatigue crack growth rate performances in FGH96 PM superalloy. J Iron Steel Res Int 21(3):382–388

    Article  CAS  Google Scholar 

  7. Park SJ, Seo SM, Yoo YS, Jeong HW, Jang H (2015) Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys. Corros Sci 90:305–312

    Article  CAS  Google Scholar 

  8. Gao S, Hou J, Yang F, Guo Y, Wang C, Zhou L (2017) Effects of tantalum on microstructure and mechanical properties of cast IN617 alloy. Mater Sci Eng A 706:153–160

    Article  CAS  Google Scholar 

  9. Xing PY, Zhang YW, Jia J (2019) Effect of Ta content on mechanical properties of FGH4098 powder superalloy. Powder Metall Ind 29(2):33–38 ((in chinese))

    Google Scholar 

  10. Wlodek S, Kelly M, Alden D (1992) The structure of N18. Superalloys 1992:467–476

    Google Scholar 

  11. Locq D, Nazé L, Franchet JM, Caron P, Dumont A, Köster A, Guédou JY (2014) Metallurgical optimisation of PM superalloy N19. MATEC Web Conf 14:11007

    Article  Google Scholar 

  12. Wei B, Liu Z, Nong B, Cao B, Lv X, Ren Y, Ai Y (2021) Microstructure, cracking behavior and mechanical properties of René 104 superalloy fabricated by selective laser melting. J Alloys Compd 867:158377

    Article  CAS  Google Scholar 

  13. Olson GB, Jou HJ, Jung J, Sebastian JT, Misra A, Locci I, Hull D (2008) Precipitation model validation in 3rd generation aeroturbine disc alloys. Superalloys 2008:923–932

    Google Scholar 

  14. Taylor MP, Evans HE, Stekovic S, Hardy MC (2012) The oxidation characteristics of the nickel-based superalloy, RR1000, at temperatures of 700–900 °C. Mater High Temp 29(2):145–150

    Article  CAS  Google Scholar 

  15. Powell A, Bain K, Wessman A, Wei D, Hanlon T, Mourer D (2016) Advanced supersolvus nickel powder disk alloy DOE: chemistry, properties, phase formations and thermal stability. Superalloys 2016:189–197

    Google Scholar 

  16. Smith TM, Gabb TP, Wertz KN, Stuckner J, Evans LJ, Egan AJ, Mills MJ (2020) Enhancing the creep strength of next-generation disk superalloys via local phase transformation strengthening. Superalloys 2020:726–736

    Google Scholar 

  17. Antonov S (2017) Design of modern high Nb-content γ-γ' Ni-base superalloys. phD Dissertation, Illinois Institute of Technology

  18. Miner RV (1977) Effects of C and Hf concentration on phase relations and microstructure of a wrought powder-metallurgy superalloy. Metall Trans A 8(2):259–263

    Article  Google Scholar 

  19. Holt RT, Wallace W (1976) Impurities and trace elements in nickel-base superalloys. Int Metals Rev 21(1):1–24

    CAS  Google Scholar 

  20. Zhang YW, Han SB, Jia J, Liu JT, Hu BF (2015) Effect of microelement Hf on the microstructure of powder metallurgy superalloy FGH97. Acta Metall Sin 51(10):1219–1226 ((in chinese))

    CAS  Google Scholar 

  21. Sreenu B, Sarkar R, Kumar SSS, Chatterjee S, Rao GA (2020) Microstructure and mechanical behaviour of an advanced powder metallurgy nickel base superalloy processed through hot isostatic pressing route for aerospace applications. Mater Sci Eng A 797:140254

    Article  CAS  Google Scholar 

  22. Zheng L, Zhang GQ, Lee TL, Gorley MJ, Wang Y, Xiao C, Li Z (2014) The effects of Ta on the stress rupture properties and microstructural stability of a novel Ni-base superalloy for land-based high temperature applications. Mater Des 61:61–69

    Article  CAS  Google Scholar 

  23. Costa AMS, Oliveira JP, Salgado MV, Nunes CA, Lopes ESN, Mogili NVV, Ramirez AJ, Tschiptschin AP (2018) Effect of Ta and Nb additions in arc-melted Co-Ni-based superalloys: microstructural and mechanical properties. Mater Sci Eng A 730:66–72

    Article  CAS  Google Scholar 

  24. Bai JM, Xing PY, Zhang HP, Li XK, Liu JT, Jia J, Sun QS, Liu CS, Zhang YW (2021) Effect of tantalum on the microstructure stability of PM Ni-base superalloys. Mater Charact 179:111326

    Article  CAS  Google Scholar 

  25. Ma WB, Liu GQ, Hu BF, Hu PH, Zhang YW (2013) Study of metallic carbide (MC) in a Ni-Co-Cr-based powder metallurgy superalloy. Metall Mater Trans A 45(1):208–217

    Article  Google Scholar 

  26. Wlodek ST, Kelly M, Alden DA (1996) The structure of René 88 DT. Superalloys 1996:129–136

    Google Scholar 

  27. Hou J, Dong JX, Yao ZH, Jiang H, Zhang MC (2018) Influences of PPB, PPB affect zone, grain boundary and phase boundary on crack propagation path for a P/M superalloy FGH4096. Mater Sci Eng A 724:17–28

    Article  CAS  Google Scholar 

  28. Thamburaj R, Wallace W, Chari YN, Prakash TL (1984) Influence of processing variables on prior particle boundary precipitation and mechanical behaviour in PM superalloy APK1. Powder Metall 27(3):169–180

    Article  CAS  Google Scholar 

  29. Rao GA, Srinivas M, Sarma DS (2004) Effect of solution treatment temperature on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel* 718. Mater Sci Technol 20(9):1161–1170

    Article  CAS  Google Scholar 

  30. Guo WM, Wu JT, Zhang FG, Zhao MH (2006) Microstructure properties and heat treatment process of powder metallurgy superalloy FGH95. J Iron Steel Res Int 13(5):65–68

    Article  CAS  Google Scholar 

  31. Kelley MJ, Ponec V (1981) Surface composition of alloy. Prog Surf Sci 11(3):139–244

    Article  Google Scholar 

  32. Ma WB, Liu GQ, Hu BF, Zhang YW, Liu JT (2013) Effect of Hf on carbides of FGH4096 superalloy produced by hot isostatic pressing. Mater Sci Eng A 587:313–319

    Article  CAS  Google Scholar 

  33. Forbes RG (2018) The prediction of zero-barrier evaporation field. Physics of Solid Surfaces. Springer, Berlin, Heidelberg, pp 638–649

  34. Mizutani U (2010) The Hume-Rothery rules for structurally complex alloy phases. Surface Properties and Engineering of Complex Intermetallics, World Scientific, pp 323-399

  35. Mizutani U (2011) Hume-Rothery rules for structurally complex alloy phases. CRC Press, Florida, pp 1–2

    Google Scholar 

  36. Cordero B, Gomez V, Platero-Prats AE, Reves M, Echeverria J, Cremades E, Barragan F, Alvarez S (2008) Covalent radii revisited. Dalton Trans 21:2832–2838

    Article  Google Scholar 

  37. Hein M, Arena S, Willard C (2016) Foundations of college chemistry. Wiley, New Jersey, p 233

    Google Scholar 

  38. Zhang MD, Liu JT, Zhang YW (2021) Discussion on mechanism of eliminating prior particle boundary in powder metallurgy superalloy. Powder Metall Ind 31(02):41–46 ((in chinese))

    Google Scholar 

  39. Amouyal Y, Mao Z, Booth-Morrison C, Seidman DN (2009) On the interplay between tungsten and tantalum atoms in Ni-based superalloys: an atom-probe tomographic and first-principles study. Appl Phys Lett 94(4):041917

    Article  Google Scholar 

  40. Amouyal Y, Mao Z, Seidman DN (2009) Phase partitioning and site-preference of hafnium in the γ′(L12)/γ(fcc) system in Ni-based superalloys: an atom-probe tomographic and first-principles study. Appl Phys Lett 95(16):161909

    Article  Google Scholar 

  41. Amouyal Y, Mao Z, Seidman DN (2010) Effects of tantalum on the partitioning of tungsten between the γ- and γ′-phases in nickel-based superalloys: linking experimental and computational approaches. Acta Mater 58(18):5898–5911

    Article  CAS  Google Scholar 

  42. Booth-Morrison C, Mao Z, Noebe RD, Seidman DN (2008) Chromium and tantalum site substitution patterns in Ni3Al(L12) γ′-precipitates. Appl Phys Lett 93(3):033103

    Article  Google Scholar 

  43. Antonov S, Isheim D, Isheim D, Seidman DN, Seidman DN, Sun E, Helmink RC, Tin S (2016) γ′ phase instabilities in high refractory content γ-γ′ Ni-base superalloys. Superalloys 2016:199–208

    Google Scholar 

  44. Denton AR, Ashcroft NW (1991) Vegard’s law. Phys Rev A 43(6):3161–3164

    Article  CAS  Google Scholar 

  45. Mishima Y, Ochiai S, Suzuki T (1985) Lattice parameters of Ni(γ), Ni3Al(γ’) and Ni3Ga(γ’) solid solutions with additions of transition and B-subgroup elements. Acta Metall 33(6):1161–1169

    Article  CAS  Google Scholar 

  46. Doi M, Miyazaki T, Wakatsuki T (1984) The effect of elastic interaction energy on the morphology of γ′ precipitates in nickel-based alloys. Mater Sci Eng 67(2):247–253

    Article  CAS  Google Scholar 

  47. Qiu YY (1995) Effect of the Al and Mo on the γ’/γ lattice mismatch and γ’ morphology in Ni-based superalloys. Scr Metall Mater 33(12):1961–1968

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Science and Technology Major Project [No. 2017-VI-0008-0078]; further funding was provided by the Central Iron and Steel Research Institute (CISRI) [No. SHI 20051670J].

Author information

Authors and Affiliations

Corresponding author

Correspondence to Y. W. Zhang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H.P., Bai, J.M., Li, X.K. et al. Effect of hafnium and tantalum on the microstructure of PM Ni-based superalloys. J Mater Sci 57, 6803–6818 (2022). https://doi.org/10.1007/s10853-022-07052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07052-8