Skip to main content
Log in

Computational and experimental study of dental resin composites with high filler content

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocomposites have been used in various industries due to their excellent properties. For some of them, high filler content (over 50 wt%) is beneficial to improving their performances. This study aims to explore the network model construction and properties of high filler content dental resin composites (DRCs). An improved multistep dynamic cross-linking procedure was proposed and firstly applied to construct the reasonable molecular model of high filler content DRCs. The predicted elastic modulus and stress–strain results of DRCs with different nanofiller contents show that the DRCs with a 70 wt% filler content have the most excellent mechanical properties. Furthermore, the dynamic property study indicates that the diffusion coefficient of matrices firstly decreased and then increased with the nanofiller content increasing from 0 to 80 wt%, reaching the lowest value at 70 wt%. The migration of resin matrices can be limited by nanofillers at the content within 70 wt%. However, when the filler content is excessively high (80 wt%), the stability of matrices is destroyed and the fractional free volume of DRCs sharply increases, resulting in a decrease of mechanical properties of DRCs. The findings of this study deepen the understanding of structures and properties of DRCs at the atomic/molecular scales.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Mallakpour S, Naghdi M (2018) Polymer/SiO2 nanocomposites: Production and applications. Prog Mater Sci 97:409–447

    Article  CAS  Google Scholar 

  2. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224

    Article  CAS  Google Scholar 

  3. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375

    Article  CAS  Google Scholar 

  4. Mahmud S, Hasan KMF, Jahid MA, Mohiuddin K, Zhang R, Zhu J (2021) Comprehensive review on plant fiber-reinforced polymeric biocomposites. J Mater Sci 56(12):7231–7264

    Article  CAS  Google Scholar 

  5. Najafi F, Wang G, Mukherjee S, Cui T, Filleter T, Singh CV (2020) Toughening of graphene-based polymer nanocomposites via tuning chemical functionalization. Compos Sci Technol 194:108140

    Article  CAS  Google Scholar 

  6. Bailey EJ, Winey KI (2020) Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: a review. Prog Polym Sci 105:101242

    Article  CAS  Google Scholar 

  7. Moustafa H, Youssef AM, Darwish NA, Abou-Kandil AI (2019) Eco-friendly polymer composites for green packaging: future vision and challenges. Compos Part B Eng 172:16–25

    Article  CAS  Google Scholar 

  8. George J, Ishida H (2018) A review on the very high nanofiller-content nanocomposites: their preparation methods and properties with high aspect ratio fillers. Prog Polym Sci 86:1–39

    Article  CAS  Google Scholar 

  9. Randolph LD, Palin WM, Leloup G, Leprince JG (2016) Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent Mater 32(12):1586–1599

    Article  CAS  Google Scholar 

  10. Goncalves F, Kawano Y, Braga RR (2010) Contraction stress related to composite inorganic content. Dent Mater 26(7):704–709

    Article  CAS  Google Scholar 

  11. Teh PL, Mariatti M, Akil HM, Yeoh CK, Seetharamu KN, Wagiman ANR (2007) The properties of epoxy resin coated silica fillers composites. Mater Lett 61(11–12):2156–2158

    Article  CAS  Google Scholar 

  12. Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Tough, bio-inspired hybrid materials. Science 322(5907):1516–1520

    Article  CAS  Google Scholar 

  13. Shah PK, Stansbury JW (2014) Role of filler and functional group conversion in the evolution of properties in polymeric dental restoratives. Dent Mater 30(5):586–593

    Article  CAS  Google Scholar 

  14. Yang DL, Sun Q, Niu H, Wang RL, Wang D, Wang JX (2020) The properties of dental resin composites reinforced with silica colloidal nanoparticle clusters: effects of heat treatment and filler composition. Compos Part B Eng 186:107791

    Article  CAS  Google Scholar 

  15. Xiong R, Hu K, Grant AM, Ma R, Xu W, Lu C (2016) Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv Mater 28(7):1501–1509

    Article  CAS  Google Scholar 

  16. Zhang M, Huang L, Chen J, Li C, Shi G (2014) Ultratough, ultrastrong, and highly conductive graphene films with arbitrary sizes. Adv Mater 26(45):7588–7592

    Article  CAS  Google Scholar 

  17. Li YQ, Yu T, Yang TY, Zheng LX, Liao K (2012) Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv Mater 24(25):3426–3431

    Article  CAS  Google Scholar 

  18. Ebina T, Mizukami F (2007) Flexible transparent clay films with heat-resistant and high gas-barrier properties. Adv Mater 19(18):2450–2452

    Article  CAS  Google Scholar 

  19. Walther A, Bjurhager I, Malho JM, Pere J, Ruokolainen J, Berglund LA (2010) Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Lett 10(8):2742–2748

    Article  CAS  Google Scholar 

  20. Sehaqui H, Kochumalayil J, Liu A, Zimmermann T, Berglund LA (2013) Multifunctional nanoclay hybrids of high toughness, thermal, and barrier performances. ACS Appl Mater Interface 5(15):7613–7620

    Article  CAS  Google Scholar 

  21. Carosio F, Cuttica F, Medina L, Berglund LA (2016) Clay nanopaper as multifunctional brick and mortar fire protection coating—wood case study. Mater Des 93:357–363

    Article  CAS  Google Scholar 

  22. Ferracane JL (1995) Current trends in dental composites. Crit Rev Oral Biol Med 6(4):302–318

    Article  CAS  Google Scholar 

  23. Habib E, Wang R, Wang Y, Zhu M, Zhu XX (2015) Inorganic fillers for dental resin composites: present and future. ACS Biomater Sci Eng 2(1):1–11

    Article  Google Scholar 

  24. Jandt KD, Watts DC (2020) Nanotechnology in dentistry: present and future perspectives on dental nanomaterials. Dent Mater 36(11):1365–1378

    Article  CAS  Google Scholar 

  25. Aminoroaya A, Neisiany RE, Khorasani SN, Panahi P, Das O, Madry H (2021) A review of dental composites: challenges, chemistry aspects, filler influences, and future insights. Compos Part B Eng 216:108852

    Article  CAS  Google Scholar 

  26. Yang DL, Sun Q, Duan YH, Niu H, Wang RL, Wang D, Wang JX (2019) Efficient construction of SiO2 colloidal nanoparticle clusters as novel fillers by a spray-drying process for dental composites. Ind Eng Chem Res 58(39):18178–18186

    Article  CAS  Google Scholar 

  27. Christensen GJ (2010) Should resin-based composite dominate restorative dentistry today? J Am Dent Assoc 141(12):1490–1493

    Article  Google Scholar 

  28. Wang R, Habib E, Zhu XX (2018) Evaluation of the filler packing structures in dental resin composites: from theory to practice. Dent Mater 34(7):1014–1023

    Article  CAS  Google Scholar 

  29. Wang R, Habib E, Zhu XX (2017) Application of close-packed structures in dental resin composites. Dent Mater 33(3):288–293

    Article  CAS  Google Scholar 

  30. Niu H, Yang DL, Sun Q, Pu Y, Gao T, Wang JX (2020) A new method for predicting the maximum filler loading of dental resin composites based on DEM simulations and experiments. Dent Mater 36(12):e375–e385

    Article  CAS  Google Scholar 

  31. Yang DL, Wang D, Niu H, Wang RL, Liu M, Zhang FM, Wang JX, Zhu MF (2022) A general strategy for efficiently constructing multifunctional cluster fillers using a three-fluid nozzle spray drying technique for dental restoration. Engineering 8(1):139–147

    Google Scholar 

  32. Schulze KA, Zaman AA, Söderholm K-JM (2003) Effect of filler fraction on strength, viscosity and porosity of experimental compomer materials. J Dent 31(6):373–382

    Article  CAS  Google Scholar 

  33. Goncalves F, Azevedo CL, Ferracane JL, Braga RR (2011) BisGMA/TEGDMA ratio and filler content effects on shrinkage stress. Dent Mater 27(6):520–526

    Article  CAS  Google Scholar 

  34. Yang DL, Xiao J, Wang D, Lin WM, Pu Y, Zeng XF (2018) Controllable preparation of monodisperse silica nanoparticles using internal circulation rotating packed bed for dental restorative composite resin. Ind Eng Chem Res 57(38):12809–12815

    Article  CAS  Google Scholar 

  35. Kleverlaan CJ, Feilzer AJ (2005) Polymerization shrinkage and contraction stress of dental resin composites. Dent Mater 21(12):1150–1157

    Article  CAS  Google Scholar 

  36. Lung CY, Sarfraz Z, Habib A, Khan AS, Matinlinna JP (2016) Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite. J Mech Behav Biomed Mater 54:283–294

    Article  CAS  Google Scholar 

  37. Mitra A, Trifkovic M, Ponnurangam S (2021) Surface functionalization-induced effects on nanoparticle dispersion and associated changes in the thermophysical properties of polymer nanocomposites. Macromolecules 54(9):3962–3971

    Article  CAS  Google Scholar 

  38. Song Z, Li Y, Yang B (2021) The interfacial load-transfer enhancement mechanism of amino-functionalised carbon nanotube reinforced epoxy matrix composites: a molecular dynamics study. Compos Sci Technol 209:108790

    Article  CAS  Google Scholar 

  39. Wang P, Yang Q, Jin Z, Hou D, Wang M (2021) Effects of water and ions on bonding behavior between epoxy and hydrated calcium silicate: a molecular dynamics simulation study. J Mater Sci 56(29):16475–16490

    Article  CAS  Google Scholar 

  40. Maurya AK, Gogoi R, Sethi SK, Manik G (2021) A combined theoretical and experimental investigation of the valorization of mechanical and thermal properties of the fly ash-reinforced polypropylene hybrid composites. J Mater Sci 56(30):16976–16998

    Article  CAS  Google Scholar 

  41. Wang Z, Lv Q, Chen S, Li C, Sun S, Hu S (2016) Effect of Interfacial bonding on interphase properties in SiO2/epoxy nanocomposite: a molecular dynamics simulation study. ACS Appl Mater Interfaces 8(11):7499–7508

    Article  CAS  Google Scholar 

  42. Shin H, Chang S, Yang S, Youn BD, Cho M (2016) Statistical multiscale homogenization approach for analyzing polymer nanocomposites that include model inherent uncertainties of molecular dynamics simulations. Compos Part B Eng 87:120–131

    Article  CAS  Google Scholar 

  43. Yuan R, Ju P, Wu Y, Ji L, Li H, Chen L, Zhou HD, Chen JM (2019) Silane-grafted graphene oxide improves wear and corrosion resistance of polyimide matrix: molecular dynamics simulation and experimental analysis. J Mater Sci 54(16):11069–11083

    Article  CAS  Google Scholar 

  44. Zeng QH, Yu AB, Lu GQ (2008) Multiscale modeling and simulation of polymer nanocomposites. Prog Polym Sci 33(2):191–269

    Article  CAS  Google Scholar 

  45. Zhao J, Wu L, Zhan C, Shao Q, Guo Z, Zhang L (2017) Overview of polymer nanocomposites: computer simulation understanding of physical properties. Polymer 133:272–287

    Article  CAS  Google Scholar 

  46. Cho K, Sul JH, Stenzel MH, Farrar P, Prusty BG (2020) Experimental cum computational investigation on interfacial and mechanical behavior of short glass fiber reinforced dental composites. Compos Part B Eng 200:108294

    Article  CAS  Google Scholar 

  47. Hong SB, Liu HB, Wang L, Zhang X, Chen G, Liu HX (2019) Simulation of dental resin monomer mixtures. IOP Conf Ser Mater Sci Eng 474:012051

    Article  Google Scholar 

  48. Sharma S, Kumar P, Chandra R, Setia P (2019) Prediction of properties of silica nanoparticle/hydroxyapatite fiber reinforced Bis-GMA/TEGDMA composites using molecular dynamics. Comput Mater Sci 158:32–41

    Article  CAS  Google Scholar 

  49. Chen G, Li A, Liu H, Huang S, Zhang Z, Liu W (2018) Mechanical and dynamic properties of resin blend and composite systems: a molecular dynamics study. Compos Struct 190:160–168

    Article  Google Scholar 

  50. Song X, Sun Y, Wu X, Zeng F (2011) Molecular dynamics simulation of a novel kind of polymer composite incorporated with polyhedral oligomeric silsesquioxane (POSS). Comput Mater Sci 50(12):3282–3289

    Article  CAS  Google Scholar 

  51. Unger R, Braun U, Fankhänel J, Daum B, Arash B, Rolfes R (2019) Molecular modelling of epoxy resin crosslinking experimentally validated by near-infrared spectroscopy. Comput Mater Sci 161:223–235

    Article  CAS  Google Scholar 

  52. Wu C, Xu W (2006) Atomistic molecular modelling of crosslinked epoxy resin. Polymer 47(16):6004–6009

    Article  CAS  Google Scholar 

  53. Varshney V, Patnaik SS, Roy AK, Farmer BL (2008) A molecular dynamics study of epoxy-based networks: cross-linking procedure and prediction of molecular and material properties. Macromolecules 41(18):6837–6842

    Article  CAS  Google Scholar 

  54. Lin PH, Khare R (2009) Molecular simulation of cross-linked epoxy and epoxy−POSS nanocomposite. Macromolecules 42(12):4319–4327

    Article  CAS  Google Scholar 

  55. Jang C, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU (2012) Relative reactivity volume criterion for cross-linking: application to vinyl ester resin molecular dynamics simulations. Macromolecules 45(11):4876–4885

    Article  CAS  Google Scholar 

  56. Demir B, Walsh TR (2016) A robust and reproducible procedure for cross-linking thermoset polymers using molecular simulation. Soft Matter 12(8):2453–2464

    Article  CAS  Google Scholar 

  57. Sun H (1998) COMPASS an ab initio force-field optimized for condensed-phase applicationssoverview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338–7364

    Article  CAS  Google Scholar 

  58. Zhou JH, Zhu RX, Zhou JM, Chen MB (2006) Molecular dynamics simulation of diffusion of gases in pure and silica-filled poly(1-trimethylsilyl-1-propyne) [PTMSP]. Polymer 47(14):5206–5212

    Article  CAS  Google Scholar 

  59. Kim B, Choi J, Yang S, Yu S, Cho M (2015) Influence of crosslink density on the interfacial characteristics of epoxy nanocomposites. Polymer 60:186–197

    Article  CAS  Google Scholar 

  60. Wang Yh, Wang Wh, Zhang Z, Xu L, Li P (2016) Study of the glass transition temperature and the mechanical properties of PET/modified silica nanocomposite by molecular dynamics simulation. Eur Polym J 75:36–45

    Article  CAS  Google Scholar 

  61. Zhang XX, Wen H, Wu YJ (2017) Computational thermomechanical properties of silica–epoxy nanocomposites by molecular dynamic simulation. Polymers 9(12):430

    Article  Google Scholar 

  62. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519

    Article  Google Scholar 

  63. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A Gen Phys 31(3):1695–1697

    Article  CAS  Google Scholar 

  64. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  65. Stober W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  66. Theodorou DN, Suter UW (1986) Atomistic modeling of mechanical properties of polymeric glasses. Macromolecules 19(1):139–154

    Article  CAS  Google Scholar 

  67. Chen Q, Zhao Y, Wu W, Xu T, Fong H (2012) Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing halloysite nanotubes. Dent Mater 28(10):1071–1079

    Article  Google Scholar 

  68. Ilie N, Hickel R, Valceanu AS, Huth KC (2012) Fracture toughness of dental restorative materials. Clin Oral Investig 16(2):489–498

    Article  Google Scholar 

  69. Ren Z, Guo R, Zhou X, Bi H, Jia X, Xu M (2021) Effect of amorphous cellulose on the deformation behavior of cellulose composites: molecular dynamics simulation. RSC Adv 11(33):19967–19977

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21878015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Pu or Jie-Xin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, H., Yang, DL., Pu, Y. et al. Computational and experimental study of dental resin composites with high filler content. J Mater Sci 57, 5788–5804 (2022). https://doi.org/10.1007/s10853-022-07035-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07035-9

Profiles

  1. Dan Wang