Abstract
Improvements in the efficiency and availability of quantum chemistry codes, supercomputing centers, and open materials databases have transformed the accessibility of computational materials design approaches. Thermodynamic stability predictions play a central role in the efficacy of these approaches and should be considered carefully. This review covers the fundamentals of calculating thermodynamic stability using first-principles methods. Stability is delineated into two main topics—stability with respect to decomposition into competing phases and stability with respect to phase transition into alternative structures at fixed composition. For each topic, a summary of the state-of-the-art is provided along with a tutorial overview of practical considerations. The application of machine learning to both kinds of stability predictions is also covered. Finally, the limitations of thermodynamic stability predictions are discussed within the context of predicting the synthesizability of materials.
This is a preview of subscription content, access via your institution.








References
Jain A, Shin Y, Persson KA (2016) Computational predictions of energy materials using density functional theory. Nat Rev Mater 1(1):15004. https://doi.org/10.1038/natrevmats.2015.4
Alberi K, Nardelli MB, Zakutayev A, Mitas L, Curtarolo S, Jain A, Fornari M, Marzari N, Takeuchi I, Green ML, Kanatzidis M, Toney MF, Butenko S, Meredig B, Lany S, Kattner U, Davydov A, Toberer ES, Stevanovic V, Walsh A, Park N-G, Aspuru-Guzik A, Tabor DP, Nelson J, Murphy J, Setlur A, Gregoire J, Li H, Xiao R, Ludwig A, Martin LW, Rappe AM, Wei S-H, Perkins J (2018) The 2019 materials by design roadmap. J Phys D Appl Phys 52(1):013001. https://doi.org/10.1088/1361-6463/aad926
Shevlin S, Castro B, Li X (2021) Computational materials design. Nat Mater 20(6):727–727. https://doi.org/10.1038/s41563-021-01038-8
Becke AD (2014) Perspective: fifty years of density-functional theory in chemical physics. J Chem Phys 140(18):18A301. https://doi.org/10.1063/1.4869598
Urban A, Seo D-H, Ceder G (2016) Computational understanding of li-ion batteries. npj Comput Mater 2(1):16002. https://doi.org/10.1038/npjcompumats.2016.2
Li Y, Yang K (2021) High-throughput computational design of halide perovskites and beyond for optoelectronics. WIREs Comput Molecular Sci 11(3):e1500. https://doi.org/10.1002/wcms.1500
Gorai P, Stevanović V, Toberer ES (2017) Computationally guided discovery of thermoelectric materials. Nat Rev Mater 2(9):17053. https://doi.org/10.1038/natrevmats.2017.53
Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1(1):37–46. https://doi.org/10.1038/nchem.121
Frey NC, Horton MK, Munro JM, Griffin SM, Persson KA, Shenoy VB (2020) High-throughput search for magnetic and topological order in transition metal oxides. Sci Adv. 6(50):1076. https://doi.org/10.1126/sciadv.abd1076
Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 1(1):011002. https://doi.org/10.1063/1.4812323
Curtarolo S, Setyawan W, Hart GLW, Jahnatek M, Chepulskii RV, Taylor RH, Wang S, Xue J, Yang K, Levy O, Mehl MJ, Stokes HT, Demchenko DO, Morgan D (2012) AFLOW: an automatic framework for high-throughput materials discovery. Comput Mater Sci 58:218–226. https://doi.org/10.1016/j.commatsci.2012.02.005
Kirklin S, Saal JE, Meredig B, Thompson A, Doak JW, Aykol M, Rühl S, Wolverton C (2015) The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput Mater 1(1):15010. https://doi.org/10.1038/npjcompumats.2015.10
Pizzi G, Cepellotti A, Sabatini R, Marzari N, Kozinsky B (2016) AiiDA: automated interactive infrastructure and database for computational science. Comput Mater Sci 111:218–230. https://doi.org/10.1016/j.commatsci.2015.09.013
Draxl C, Scheffler M (2018) NOMAD: The FAIR concept for big data-driven materials science. MRS Bull 43(9):676–682. https://doi.org/10.1557/mrs.2018.208
Choudhary K, Garrity KF, Reid ACE, DeCost B, Biacchi AJ, Hight Walker AR, Trautt Z, Hattrick-Simpers J, Kusne AG, Centrone A, Davydov A, Jiang J, Pachter R, Cheon G, Reed E, Agrawal A, Qian X, Sharma V, Zhuang H, Kalinin SV, Sumpter BG, Pilania G, Acar P, Mandal S, Haule K, Vanderbilt D, Rabe K, Tavazza F (2020) The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. NPJ Comput Mater 6(1):173. https://doi.org/10.1038/s41524-020-00440-1
Horton MK, Dwaraknath S, Persson KA (2021) Promises and perils of computational materials databases. Nature Comput Sci 1(1):3–5. https://doi.org/10.1038/s43588-020-00016-5
Vergniory MG, Elcoro L, Felser C, Regnault N, Bernevig BA, Wang Z (2019) A complete catalogue of high-quality topological materials. Nature 566(7745):480–485. https://doi.org/10.1038/s41586-019-0954-4
Andersen CW, Armiento R, Blokhin E, Conduit GJ, Dwaraknath S, Evans ML, Fekete Á, Gopakumar A, Gražulis S, Merkys A, Mohamed F, Oses C, Pizzi G, Rignanese G-M, Scheidgen M, Talirz L, Toher C, Winston D, Aversa R, Choudhary K, Colinet P, Curtarolo S, Di Stefano D, Draxl C, Er S, Esters M, Fornari M, Giantomassi M, Govoni M, Hautier G, Hegde V, Horton MK, Huck P, Huhs G, Hummelshøj J, Kariryaa A, Kozinsky B, Kumbhar S, Liu M, Marzari N, Morris AJ, Mostofi AA, Persson KA, Petretto G, Purcell T, Ricci F, Rose F, Scheffler M, Speckhard D, Uhrin M, Vaitkus A, Villars P, Waroquiers D, Wolverton C, Wu M, Yang X (2021) OPTIMADE, an API for exchanging materials data. Sci Data 8(1):217. https://doi.org/10.1038/s41597-021-00974-z
Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A (2018) Machine learning for molecular and materials science. Nature 559(7715):547–555. https://doi.org/10.1038/s41586-018-0337-2
Schmidt J, Marques MRG, Botti S, Marques MAL (2019) Recent advances and applications of machine learning in solid-state materials science. npj Comput Mater 5(1):83. https://doi.org/10.1038/s41524-019-0221-0
Wang AY-T, Murdock RJ, Kauwe SK, Oliynyk AO, Gurlo A, Brgoch J, Persson KA, Sparks TD (2020) Machine learning for materials scientists: an introductory guide toward best practices. Chem Mater 32(12):4954–4965. https://doi.org/10.1021/acs.chemmater.0c01907
Tabor DP, Roch LM, Saikin SK, Kreisbeck C, Sheberla D, Montoya JH, Dwaraknath S, Aykol M, Ortiz C, Tribukait H, Amador-Bedolla C, Brabec CJ, Maruyama B, Persson KA, Aspuru-Guzik A (2018) Accelerating the discovery of materials for clean energy in the era of smart automation. Nat Rev Mater 3(5):5–20. https://doi.org/10.1038/s41578-018-0005-z
Zunger A (2018) Inverse design in search of materials with target functionalities. Nat Rev Chem 2(4):0121. https://doi.org/10.1038/s41570-018-0121
Zunger A (2019) Beware of plausible predictions of fantasy materials. Nature 566(7745):447–449. https://doi.org/10.1038/d41586-019-00676-y
Ong SP, Wang L, Kang B, Ceder G (2008) Li−Fe−P−O2 phase diagram from first principles calculations. Chem Mater 20(5):1798–1807. https://doi.org/10.1021/cm702327g
Bartel CJ, Millican SL, Deml AM, Rumptz JR, Tumas W, Weimer AW, Lany S, Stevanović V, Musgrave CB, Holder AM (2018) Physical descriptor for the gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry. Nat Commun 9(1):4168
Sun W, Kitchaev DA, Kramer D, Ceder G (2019) Non-equilibrium crystallization pathways of manganese oxides in aqueous solution. Nat Commun 10(1):573. https://doi.org/10.1038/s41467-019-08494-6
Amsler M, Hegde VI, Jacobsen SD, Wolverton C (2018) Exploring the high-pressure materials genome. Phys Rev X 8(4):041021. https://doi.org/10.1103/PhysRevX.8.041021
Sun W, Holder A, Orvañanos B, Arca E, Zakutayev A, Lany S, Ceder G (2017) Thermodynamic routes to novel metastable nitrogen-rich nitrides. Chem Mater 29(16):6936–6946. https://doi.org/10.1021/acs.chemmater.7b02399
Privat R, Jaubert J-N, Berger E, Coniglio L, Lemaitre C, Meimaroglou D, Warth V (2016) Teaching the concept of Gibbs energy minimization through its application to phase-equilibrium calculation. J Chem Educ 93(9):1569–1577. https://doi.org/10.1021/acs.jchemed.6b00205
Bartel CJ, Rumptz JR, Weimer AW, Holder AM, Musgrave CB (2019) High-throughput equilibrium analysis of active materials for solar thermochemical ammonia synthesis. ACS Appl Mater Interfaces 11(28):24850–24858
Sun W, Dacek ST, Ong SP, Hautier G, Jain A, Richards WD, Gamst AC, Persson KA, Ceder G (2016) The thermodynamic scale of inorganic crystalline metastability. Sci Adv 2(11):e1600225. https://doi.org/10.1126/sciadv.1600225
Wang A, Kingsbury R, McDermott M, Horton M, Jain A, Ong SP, Dwaraknath S, Persson KA (2021) A Framework for quantifying uncertainty in DFT energy corrections. Sci Rep 11(1):15496. https://doi.org/10.1038/s41598-021-94550-5
Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
Blöchl PE (2000) First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen. Phys Rev B 62(10):6158–6179. https://doi.org/10.1103/PhysRevB.62.6158
Wang L, Maxisch T, Ceder G (2006) Oxidation energies of transition metal oxides within the GGA+U framework. Phys Rev B 73(19):195107. https://doi.org/10.1103/PhysRevB.73.195107
Lany S (2008) Semiconductor thermochemistry in density functional calculations. Phys Rev B 78(24):245207. https://doi.org/10.1103/PhysRevB.78.245207
Stevanović V, Lany S, Zhang X, Zunger A (2012) Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. Phys Rev B 85(11):115104. https://doi.org/10.1103/PhysRevB.85.115104
Kubaschewski O, Kubaschewski O, Alcock CB, Spencer PJ (1993) Materials thermochemistry. International series on materials science and technology. Pergamon Press
Barin I, Sauert F, Schultze-Rhonhof E, Sheng WS (1993) Thermochemical data of pure substances. Thermochemical Data of Pure Substances. VCH
Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Gheribi AE, Hack K, Jung I-H, Kang Y-B, Melançon J, Pelton AD, Petersen S, Robelin C, Sangster J, Spencer P, Van Ende M-A (2016) FactSage thermochemical software and databases, 2010–2016. Calphad 54:35–53. https://doi.org/10.1016/j.calphad.2016.05.002
Chase M (1998) NIST-JANAF thermochemical tables, 4th edition; American Institute of Physics, -1.
Jain A, Hautier G, Ong SP, Moore CJ, Fischer CC, Persson KA, Ceder G (2011) Formation enthalpies by mixing GGA and GGA + U calculations. Phys Rev B 84(4):045115. https://doi.org/10.1103/PhysRevB.84.045115
Sun J, Ruzsinszky A, Perdew JP (2015) Strongly constrained and appropriately normed semilocal density functional. Phys Rev Lett 115(3):036402. https://doi.org/10.1103/PhysRevLett.115.036402
Isaacs EB, Wolverton C (2018) Performance of the strongly constrained and appropriately normed density functional for solid-state materials. Phys Rev Materials 2(6):063801. https://doi.org/10.1103/PhysRevMaterials.2.063801
Bartel CJ, Weimer AW, Lany S, Musgrave CB, Holder AM (2019) The role of decomposition reactions in assessing first-principles predictions of solid stability. npj Comput Mater 5(1):4
Luo Y, Benali A, Shulenburger L, Krogel JT, Heinonen O, Kent PRC (2016) Phase stability of TiO2polymorphs from diffusion quantum monte carlo. New J Phys 18(11):113049. https://doi.org/10.1088/1367-2630/18/11/113049
Bartel CJ, Trewartha A, Wang Q, Dunn A, Jain A, Ceder G (2020) A critical examination of compound stability predictions from machine-learned formation energies. npj Comput Mater 6(1):97. https://doi.org/10.1038/s41524-020-00362-y
Hautier G, Ong SP, Jain A, Moore CJ, Ceder G (2012) Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability. Phys Rev B 85(15):155208. https://doi.org/10.1103/PhysRevB.85.155208
Goyal A, Gorai P, Peng H, Lany S, Stevanović V (2017) A computational framework for automation of point defect calculations. Comput Mater Sci 130:1–9. https://doi.org/10.1016/j.commatsci.2016.12.040
Hellenbrandt M (2004) The inorganic crystal structure database (ICSD)—present and future. Crystallogr Rev 10(1):17–22. https://doi.org/10.1080/08893110410001664882
Togo A, Tanaka I (2015) First principles phonon calculations in materials science. Scripta Mater 108:1–5. https://doi.org/10.1016/j.scriptamat.2015.07.021
Fultz B (2010) Vibrational thermodynamics of materials. Prog Mater Sci 55(4):247–352. https://doi.org/10.1016/j.pmatsci.2009.05.002
van de Walle A, Asta M, Ceder G (2002) The alloy theoretic automated toolkit: a user guide. Calphad 26(4):539–553. https://doi.org/10.1016/S0364-5916(02)80006-2
Richards WD, Wang Y, Miara LJ, Kim JC, Ceder G (2016) Design of Li1+2xZn1−xPS4, a new lithium ion conductor. Energy Environ Sci 9(10):3272–3278. https://doi.org/10.1039/C6EE02094A
Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria J-P (2015) Entropy-stabilized oxides. Nature Commun 6(1):8485. https://doi.org/10.1038/ncomms9485
van de Walle A, Ceder G (2002) The effect of lattice vibrations on substitutional alloy thermodynamics. Rev Mod Phys 74(1):11–45. https://doi.org/10.1103/RevModPhys.74.11
Sutton C, Levchenko SV (2020) First-principles atomistic thermodynamics and configurational entropy. Front Chem 8:757. https://doi.org/10.3389/fchem.2020.00757
Deng Z, Sai Gautam G, Kolli SK, Chotard J-N, Cheetham AK, Masquelier C, Canepa P (2020) Phase behavior in rhombohedral NaSiCON electrolytes and electrodes. Chem Mater 32(18):7908–7920. https://doi.org/10.1021/acs.chemmater.0c02695
Arroyoydedompablo ME, Van der Veaan A, Ceder G (2002) First-principles calculations of lithium ordering and phase stability on LixNiO2. Phys. Rev. B 66(6):064112. https://doi.org/10.1103/PhysRevB.66.064112
Sundman B, Lukas H, Fries S (2007) Computational thermodynamics: the Calphad method. Cambridge University Press, New York
Hillert M (2001) The compound energy formalism. J Alloy Compd 320(2):161–176. https://doi.org/10.1016/S0925-8388(00)01481-X
Liu Z-K (2020) Computational thermodynamics and its applications. Acta Mater 200:745–792. https://doi.org/10.1016/j.actamat.2020.08.008
Miura MA, Bartel CJ, Goto Y, Mizuguchi Y, Moriyoshi C, Kuroiwa Y, Wang Y, Yaguchi T, Shirai M, Nagao M, Rosero-Navarro NC, Tadanaga K, Ceder G, Sun W (2021) Observing and modeling the sequential pairwise reactions that drive solid-state ceramic synthesis. Adv Mater. https://doi.org/10.1002/adma.202100312
Reuter K, Scheffler M (2001) Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys Rev B 65(3):035406. https://doi.org/10.1103/PhysRevB.65.035406
Canepa P, Dawson JA, Sai Gautam G, Statham JM, Parker SC, Islam MS (2018) Particle morphology and lithium segregation to surfaces of the Li7La3Zr2O12 solid electrolyte. Chem Mater 30(9):3019–3027. https://doi.org/10.1021/acs.chemmater.8b00649
Shrestha A, Gao X, Hicks JC, Paolucci C (2021) Nanoparticle size effects on phase stability for molybdenum and tungsten carbides. Chem Mater 33(12):4606–4620. https://doi.org/10.1021/acs.chemmater.1c01120
Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G (2016) Interface stability in solid-state batteries. Chem Mater 28(1):266–273. https://doi.org/10.1021/acs.chemmater.5b04082
Xiao Y, Miara LJ, Wang Y, Ceder G (2019) Computational screening of cathode coatings for solid-state batteries. Joule 3(5):1252–1275. https://doi.org/10.1016/j.joule.2019.02.006
Xiao Y, Wang Y, Bo S-H, Kim JC, Miara LJ, Ceder G (2020) Understanding interface stability in solid-state batteries. Nat Rev Mater 5(2):105–126. https://doi.org/10.1038/s41578-019-0157-5
Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions; National Association of Corrosion Engineers
Persson KA, Waldwick B, Lazic P, Ceder G (2012) Prediction of solid-aqueous equilibria: scheme to combine first-principles calculations of solids with experimental aqueous states. Phys Rev B 85(23):235438. https://doi.org/10.1103/PhysRevB.85.235438
Yokokawa H (1999) Generalized chemical potential diagram and its applications to chemical reactions at interfaces between dissimilar materials. J Phase Equilibria 20(3):258. https://doi.org/10.1361/105497199770335794
Sun W, Powell-Palm MJ. Generalized gibbs’ phase rule. http://arxiv.org/abs/2105.01337.
Walsh A, Zunger A (2017) Instilling defect tolerance in new compounds. Nat Mater 16(10):964–967. https://doi.org/10.1038/nmat4973
Jain A, Hautier G, Moore CJ, Ping Ong S, Fischer CC, Mueller T, Persson KA, Ceder G (2011) A high-throughput infrastructure for density functional theory calculations. Comput Mater Sci 50(8):2295–2310. https://doi.org/10.1016/j.commatsci.2011.02.023
Anand S, Male JP, Wolverton C, Snyder GJ (2021) Visualizing defect energetics mater. Horiz. https://doi.org/10.1039/D1MH00397F
Maddox J (1988) Crystals from first principles. Nature 335(6187):201–201. https://doi.org/10.1038/335201a0
Oganov AR (2018) Crystal structure prediction: reflections on present status and challenges. Faraday Discuss 211:643–660. https://doi.org/10.1039/C8FD90033G
Oganov AR, Pickard CJ, Zhu Q, Needs RJ (2019) Structure prediction drives materials discovery. Nat Rev Mater 4(5):331–348. https://doi.org/10.1038/s41578-019-0101-8
Woodley SM, Catlow R (2008) Crystal structure prediction from first principles. Nat Mater 7(12):937–946. https://doi.org/10.1038/nmat2321
Pickard CJ, Needs RJ (2011) Ab initiorandom structure searching. J Phys: Condens Matter 23(5):053201. https://doi.org/10.1088/0953-8984/23/5/053201
Zhang Y, Kitchaev DA, Yang J, Chen T, Dacek ST, Sarmiento-Pérez RA, Marques MAL, Peng H, Ceder G, Perdew JP, Sun J (2018) Efficient first-principles prediction of solid stability: towards chemical accuracy. npj Comput Mater 4(1):9. https://doi.org/10.1038/s41524-018-0065-z
Perdew JP, Schmidt K (2001) Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf Proc 577(1):1–20. https://doi.org/10.1063/1.1390175
Zhang M-Y, Cui Z-H, Jiang H (2018) Relative stability of FeS2 polymorphs with the random phase approximation approach. J Mater Chem A 6(15):6606–6616. https://doi.org/10.1039/C8TA00759D
Saritas K, Mueller T, Wagner L, Grossman JC (2017) Investigation of a quantum monte carlo protocol to achieve high accuracy and high-throughput materials formation energies. J Chem Theory Comput 13(5):1943–1951. https://doi.org/10.1021/acs.jctc.6b01179
Grabowski B, Söderlind P, Hickel T, Neugebauer J (2011) Temperature-driven phase transitions from first principles including all relevant excitations: the Fcc-to-Bcc transition in Ca. Phys Rev B 84(21):214107. https://doi.org/10.1103/PhysRevB.84.214107
Wang Y, Ma Y (2014) Perspective: crystal structure prediction at high pressures. J Chem Phys 140(4):040901. https://doi.org/10.1063/1.4861966
Ding H, Dwaraknath SS, Garten L, Ndione P, Ginley D, Persson KA (2016) Computational approach for epitaxial polymorph stabilization through substrate selection. ACS Appl Mater Interf 8(20):13086–13093. https://doi.org/10.1021/acsami.6b01630
Chen B-R, Sun W, Kitchaev DA, Mangum JS, Thampy V, Garten LM, Ginley DS, Gorman BP, Stone KH, Ceder G, Toney MF, Schelhas LT (2018) Understanding crystallization pathways leading to manganese oxide polymorph formation. Nat Commun 9(1):2553. https://doi.org/10.1038/s41467-018-04917-y
McCormack SJ, Navrotsky A (2021) Thermodynamics of high entropy oxides. Acta Mater 202:1–21. https://doi.org/10.1016/j.actamat.2020.10.043
Manzoor A, Pandey S, Chakraborty D, Phillpot SR, Aidhy DS (2018) Entropy contributions to phase stability in binary random solid solutions. npj Computational Materials 4(1):47. https://doi.org/10.1038/s41524-018-0102-y
Ozoliņš V, Wolverton C, Zunger A (1998) Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: first-principles study of temperature-composition phase diagrams and structures. Phys Rev B 57(11):6427–6443. https://doi.org/10.1103/PhysRevB.57.6427
Stoffel RP, Wessel C, Lumey M-W, Dronskowski R (2010) Ab initio thermochemistry of solid-state materials. Angew Chem Int Ed 49(31):5242–5266. https://doi.org/10.1002/anie.200906780
Gonze X, Lee C (1997) Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B – Condens Matter Mater Phys 55(16):10355–10368. https://doi.org/10.1103/PhysRevB.55.10355
Giannozzi P, De Gironcoli S, Pavone P, Baroni S (1991) Ab initio calculation of phonon dispersions in semiconductors. Phys Rev B 43(9):7231–7242. https://doi.org/10.1103/PhysRevB.43.7231
Parlinski K, Li ZQ, Kawazoe Y (1997) First-principles determination of the soft mode in cubic ZrO2. Phys Rev Lett 78(21):4063–4066. https://doi.org/10.1103/PhysRevLett.78.4063
Kresse G, Furthmüller J, Hafner J (1995) Ab initio force constant approach to phonon dispersion relations of diamond and graphite. Europhys Lett (EPL) 32(9):729–734. https://doi.org/10.1209/0295-5075/32/9/005
Phonon database at Kyoto university — phonondb documentation http://phonondb.mtl.kyoto-u.ac.jp/index.html (accessed 2021 -07 -13).
Petretto G, Dwaraknath S, Miranda H, Winston D, Giantomassi M, van Setten MJ, Gonze X, Persson KA, Hautier G, Rignanese G-M (2018) High-throughput density-functional perturbation theory phonons for inorganic materials. Scientific Data 5(1):180065. https://doi.org/10.1038/sdata.2018.65
Talirz L, Kumbhar S, Passaro E, Yakutovich AV, Granata V, Gargiulo F, Borelli M, Uhrin M, Huber SP, Zoupanos S, Adorf CS, Andersen CW, Schütt O, Pignedoli CA, Passerone D, VandeVondele J, Schulthess TC, Smit B, Pizzi G, Marzari N (2020) Materials cloud, a platform for open computational science. Sci Data 7(1):299. https://doi.org/10.1038/s41597-020-00637-5
Wei W, Li W, Butler KT, Feng G, Howard CJ, Carpenter MA, Lu P, Walsh A, Cheetham AK (2018) An unusual phase transition driven by vibrational entropy changes in a hybrid organic-inorganic perovskite. Angew Chem Int Ed 57(29):8932–8936. https://doi.org/10.1002/anie.201803176
Grabowski B, Ismer L, Hickel T, Neugebauer J (2009) Ab Initio up to the melting point: anharmonicity and vacancies in aluminum. Phys Rev B - Condensed Matter Mater Phys. https://doi.org/10.1103/PhysRevB.79.134106
Hellman O, Abrikosov IA, Simak SI (2011) Lattice dynamics of anharmonic solids from first principles. Phys Rev B 84(18):180301. https://doi.org/10.1103/PhysRevB.84.180301
Togo A, Tanaka I (2013) Evolution of crystal structures in metallic elements. Phys Rev B – Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.87.184104
Rahim W, Skelton JM, Savory CN, Evans IR, Evans JSO, Walsh A, Scanlon DO (2020) Polymorph exploration of bismuth stannate using first-principles phonon mode mapping. Chem Sci 11(30):7904–7909. https://doi.org/10.1039/D0SC02995E
Zimmermann NER, Jain A (2020) Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity. RSC Adv 10(10):6063–6081. https://doi.org/10.1039/C9RA07755C
Villarreal R, Singh P, Arroyave R (2021) Metric-driven search for structurally stable inorganic compounds. Acta Mater 202:437–447. https://doi.org/10.1016/j.actamat.2020.10.055
Zhao X-G, Yang D, Sun Y, Li T, Zhang L, Yu L, Zunger A (2017) Cu–In Halide Perovskite Solar Absorbers. J. Am. Chem. Soc. 139(19):6718–6725. https://doi.org/10.1021/jacs.7b02120
Skelton JM, Tiana D, Parker SC, Togo A, Tanaka I, Walsh A (2015) Influence of the exchange-correlation functional on the quasi-harmonic lattice dynamics of II-VI semiconductors. J Chem Phys 143(6):064710. https://doi.org/10.1063/1.4928058
Malyi OI, Sopiha KV, Persson C (2019) Energy, phonon, and dynamic stability criteria of two-dimensional materials. ACS Appl Mater Interfaces 11(28):24876–24884. https://doi.org/10.1021/acsami.9b01261
Pauling L (1929) The principles determining the structure of complex ionic crystals. J Am Chem Soc 51(4):1010–1026. https://doi.org/10.1021/ja01379a006
Goldschmidt VM (1929) Crystal structure and chemical constitution. Trans Faraday Soc 25:253–283. https://doi.org/10.1039/TF9292500253
George J, Waroquiers D, Di Stefano D, Petretto G, Rignanese G-M, Hautier G (2020) The limited predictive power of the pauling rules. Angew Chem Int Ed 59(19):7569–7575. https://doi.org/10.1002/anie.202000829
Bartel CJ, Sutton C, Goldsmith BR, Ouyang R, Musgrave CB, Ghiringhelli LM, Scheffler M (2019) New tolerance factor to predict the stability of perovskite oxides and halides. Sci Adv 5(2):0693
Schleder GR, Padilha ACM, Acosta CM, Costa M, Fazzio A (2019) From DFT to machine learning: recent approaches to materials science–a review. J Phys Mater 2(3):032001. https://doi.org/10.1088/2515-7639/ab084b
Miksch AM, Morawietz T, Kästner J, Urban A, Artrith N (2021) Strategies for the construction of machine-learning potentials for accurate and efficient atomic-scale simulations. Mach Learn Sci Technol 2(3):031001. https://doi.org/10.1088/2632-2153/abfd96
Schmidt J, Shi J, Borlido P, Chen L, Botti S, Marques MAL (2017) Predicting the thermodynamic stability of solids combining density functional theory and machine learning. Chem Mater 29(12):5090–5103. https://doi.org/10.1021/acs.chemmater.7b00156
Singstock NR, Ortiz-Rodríguez JC, Perryman JT, Sutton C, Velázquez JM, Musgrave CB (2021) Machine learning guided synthesis of multinary chevrel phase chalcogenides. J Am Chem Soc 143(24):9113–9122. https://doi.org/10.1021/jacs.1c02971
Ye W, Chen C, Wang Z, Chu I-H, Ong SP (2018) Deep neural networks for accurate predictions of crystal stability. Nat Commun 9(1):3800. https://doi.org/10.1038/s41467-018-06322-x
Ward L, Agrawal A, Choudhary A, Wolverton C (2016) A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput Mater 2(1):16028. https://doi.org/10.1038/npjcompumats.2016.28
Meredig B, Agrawal A, Kirklin S, Saal JE, Doak JW, Thompson A, Zhang K, Choudhary A, Wolverton C (2014) Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys Rev B 89(9):094104. https://doi.org/10.1103/PhysRevB.89.094104
Jha D, Ward L, Paul A, Liao W, Choudhary A, Wolverton C, Agrawal A (2018) ElemNet: deep learning the chemistry of materials from only elemental composition. Sci Rep 8(1):17593. https://doi.org/10.1038/s41598-018-35934-y
Wang AY-T, Kauwe SK, Murdock RJ, Sparks TD (2021) Compositionally restricted attention-based network for materials property predictions. npj Computational Materials 7(1):77. https://doi.org/10.1038/s41524-021-00545-1
Goodall REA, Lee AA (2020) Predicting materials properties without crystal structure: deep representation learning from stoichiometry. Nat Commun 11(1):6280. https://doi.org/10.1038/s41467-020-19964-7
Peterson G, Brgoch J (2021) Materials discovery through machine learning formation energy. J Phys Energy. https://doi.org/10.1088/2515-7655/abe425
Chen C, Ye W, Zuo Y, Zheng C, Ong SP (2019) Graph networks as a universal machine learning framework for molecules and crystals. Chem Mater 31(9):3564–3572. https://doi.org/10.1021/acs.chemmater.9b01294
Xie T, Grossman JC (2018) Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett 120(14):145301. https://doi.org/10.1103/PhysRevLett.120.145301
Schütt KT, Sauceda HE, Kindermans P-J, Tkatchenko A, Müller K-R (2018) SchNet – a deep learning architecture for molecules and materials. J Chem Phys 148(24):241722. https://doi.org/10.1063/1.5019779
Park CW, Wolverton C (2020) Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery. Phys Rev Mater 4(6):063801. https://doi.org/10.1103/PhysRevMaterials.4.063801
Faber FA, Lindmaa A, von Lilienfeld OA, Armiento R (2016) Machine learning energies of 2 million Elpasolite ABC2D6 crystals. Phys Rev Lett 117(13):135502. https://doi.org/10.1103/PhysRevLett.117.135502
Dunn A, Wang Q, Ganose A, Dopp D, Jain A (2020) Benchmarking materials property prediction methods: the matbench test set and automatminer reference algorithm. npj Comput Mater 6(1):138. https://doi.org/10.1038/s41524-020-00406-3
Pandey S, Qu J, Stevanovic V, John PS, Gorai P (2021) A graph neural network for predicting energy and stability of known and hypothetical crystal structures.https://doi.org/10.26434/chemrxiv.14428865.v1
Zuo Y, Qin M, Chen C, Ye W, Li X, Luo J, Ong SP (2021) Accelerating materials discovery with bayesian optimization and graph deep learning. [cond-mat].http://arxiv.org/abs/2104.10242
Goodall REA, Parackal AS, Faber FA, Armiento R, Lee AA (2021) Rapid discovery of novel materials by coordinate-free coarse graining. [cond-mat, physics:physics].http://arxiv.org/abs/2106.11132
Balachandran PV, Emery AA, Gubernatis JE, Lookman T, Wolverton C, Zunger A (2018) Predictions of new ABO3 perovskite compounds by combining machine learning and density functional theory. Phys Rev Mater 2(4):043802. https://doi.org/10.1103/PhysRevMaterials.2.043802
Noh J, Kim J, Stein HS, Sanchez-Lengeling B, Gregoire JM, Aspuru-Guzik A, Jung Y (2019) Inverse design of solid-state materials via a continuous representation. Matter 1(5):1370–1384. https://doi.org/10.1016/j.matt.2019.08.017
Kim S, Noh J, Gu GH, Aspuru-Guzik A, Jung Y (2020) Generative adversarial networks for crystal structure prediction. ACS Cent Sci 6(8):1412–1420. https://doi.org/10.1021/acscentsci.0c00426
Pettifor DG (1986) The structures of binary compounds. I. Phenomenological structure maps. J Phys C: Solid State Phys 19(3):285–313. https://doi.org/10.1088/0022-3719/19/3/002
Pettifor DG (1984) A chemical scale for crystal-structure maps. Solid State Commun 51(1):31–34. https://doi.org/10.1016/0038-1098(84)90765-8
Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M (2015) Big data of materials science: critical role of the descriptor. Phys Rev Lett 114(10):105503. https://doi.org/10.1103/PhysRevLett.114.105503
Ghiringhelli LM, Vybiral J, Ahmetcik E, Ouyang R, Levchenko SV, Draxl C, Scheffler M (2017) Learning physical descriptors for materials science by compressed sensing. New J Phys 19(2):023017. https://doi.org/10.1088/1367-2630/aa57bf
Wang Y, Wagner N, Rondinelli JM (2019) Symbolic regression in materials science. MRS Commun 9(3):793–805. https://doi.org/10.1557/mrc.2019.85
Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli LM (2018) SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys Rev Materials 2(8):083802. https://doi.org/10.1103/PhysRevMaterials.2.083802
Ouyang R, Ahmetcik E, Carbogno C, Scheffler M, Ghiringhelli LM (2019) Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO. J Phys Mater 2(2):024002. https://doi.org/10.1088/2515-7639/ab077b
Behler J (2016) Perspective: machine learning potentials for atomistic simulations. J Chem Phys 145(17):170901. https://doi.org/10.1063/1.4966192
Deringer VL, Caro MA, Csányi G (2019) Machine learning interatomic potentials as emerging tools for materials science. Adv Mater 31(46):1902765. https://doi.org/10.1002/adma.201902765
Tong Q, Gao P, Liu H, Xie Y, Lv J, Wang Y, Zhao J (2020) Combining machine learning potential and structure prediction for accelerated materials design and discovery. J Phys Chem Lett 11(20):8710–8720. https://doi.org/10.1021/acs.jpclett.0c02357
Deringer VL, Pickard CJ, Csányi G (2018) Data-driven learning of total and local energies in elemental Boron. Phys Rev Lett 120(15):156001. https://doi.org/10.1103/PhysRevLett.120.156001
Tong Q, Xue L, Lv J, Wang Y, Ma Y (2018) Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface. Faraday Discuss 211:31–43. https://doi.org/10.1039/C8FD00055G
Mocanu FC, Konstantinou K, Lee TH, Bernstein N, Deringer VL, Csányi G, Elliott SR (2018) Modeling the phase-change memory material, Ge2Sb2Te5, with a machine-learned interatomic potential. J Phys Chem B 122(38):8998–9006. https://doi.org/10.1021/acs.jpcb.8b06476
Deringer VL, Bernstein N, Csányi G, Ben Mahmoud C, Ceriotti M, Wilson M, Drabold DA, Elliott SR (2021) Origins of structural and electronic transitions in disordered silicon. Nature 589(7840):59–64. https://doi.org/10.1038/s41586-020-03072-z
Glass CW, Oganov AR, Hansen N (2006) USPEX—evolutionary crystal structure prediction. Comput Phys Commun 175:713–720. https://doi.org/10.1016/j.cpc.2006.07.020
Podryabinkin EV, Tikhonov EV, Shapeev AV, Oganov AR (2019) Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning. Phys Rev B 99(6):064114. https://doi.org/10.1103/PhysRevB.99.064114
Hong C, Choi JM, Jeong W, Kang S, Ju S, Lee K, Jung J, Youn Y, Han S (2020) Training machine-learning potentials for crystal structure prediction using disordered structures. Phys Rev B 102(22):224104. https://doi.org/10.1103/PhysRevB.102.224104
Wustrow A, Key B, Phillips PJ, Sa N, Lipton AS, Klie RF, Vaughey JT, Poeppelmeier KR (2018) Synthesis and characterization of MgCr2S4 thiospinel as a potential magnesium cathode. Inorg Chem 57(14):8634–8638. https://doi.org/10.1021/acs.inorgchem.8b01417
Miura A, Ito H, Bartel CJ, Sun W, Rosero-Navarro NC, Tadanaga K, Nakata H, Maeda K, Ceder G (2020) Selective metathesis synthesis of MgCr2S4 by control of thermodynamic driving forces. Mater Horiz 7(5):1310–1316. https://doi.org/10.1039/C9MH01999E
Chamorro JR, McQueen TM (2018) Progress toward solid state synthesis by design. Acc Chem Res 51(11):2918–2925. https://doi.org/10.1021/acs.accounts.8b00382
Kovnir K (2021) Predictive synthesis. Chem Mater 33(13):4835–4841. https://doi.org/10.1021/acs.chemmater.1c01484
Aykol M, Dwaraknath SS, Sun W, Persson KA (2018) Thermodynamic limit for synthesis of metastable inorganic materials. Sci Adv 4(4):0148. https://doi.org/10.1126/sciadv.aaq0148
Shoemaker DP, Hu Y-J, Chung DY, Halder GJ, Chupas PJ, Soderholm L, Mitchell JF, Kanatzidis MG (2014) In situ studies of a platform for metastable inorganic crystal growth and materials discovery. Proc Natl Acad Sci USA 111(30):10922. https://doi.org/10.1073/pnas.1406211111
Bianchini M, Wang J, Clément RJ, Ouyang B, Xiao P, Kitchaev D, Shi T, Zhang Y, Wang Y, Kim H, Zhang M, Bai J, Wang F, Sun W, Ceder G (2020) The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides. Nat Mater 19(10):1088–1095. https://doi.org/10.1038/s41563-020-0688-6
McClain R, Malliakas CD, Shen J, Wolverton C, Kanatzidis MG (2021) In situ mechanistic studies of two divergent synthesis routes forming the heteroanionic BiOCuSe. J Am Chem Soc. https://doi.org/10.1021/jacs.1c03947
Todd PK, Wustrow A, McAuliffe RD, McDermott MJ, Tran GT, McBride BC, Boeding ED, O’Nolan D, Liu C-H, Dwaraknath SS, Chapman KW, Billinge SJL, Persson KA, Huq A, Veith GM, Neilson JR (2020) Defect-Accommodating intermediates yield selective low-temperature synthesis of YMnO3 polymorphs. Inorg Chem 59(18):13639–13650. https://doi.org/10.1021/acs.inorgchem.0c02023
Rom CL, Fallon MJ, Wustrow A, Prieto AL, Neilson JR (2021) Bulk synthesis, structure, and electronic properties of magnesium zirconium nitride solid solutions. Chem Mater 33(13):5345–5354. https://doi.org/10.1021/acs.chemmater.1c01450
He H, Yee C-H, McNally DE, Simonson JW, Zellman S, Klemm M, Kamenov P, Geschwind G, Zebro A, Ghose S, Bai J, Dooryhee E, Kotliar G, Aronson MC (2018) Combined computational and experimental investigation of the La2CuO4–<em>x</em>S<em>x</em> (0 ≤ <em>x</Em> ≤ 4) quaternary system. Proc Natl Acad Sci USA 115(31):7890. https://doi.org/10.1073/pnas.1800284115
Todd PK, McDermott MJ, Rom CL, Corrao AA, Denney JJ, Dwaraknath SS, Khalifah PG, Persson KA, Neilson JR (2021) Selectivity in Yttrium manganese oxide synthesis via local chemical potentials in hyperdimensional phase space. J Am Chem Soc 143(37):15185–15194. https://doi.org/10.1021/jacs.1c06229
McDermott MJ, Dwaraknath SS, Persson KA (2021) A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis. Nat Commun 12(1):3097. https://doi.org/10.1038/s41467-021-23339-x
Aykol M, Montoya JH, Hummelshøj J (2021) Rational solid-state synthesis routes for inorganic materials. J Am Chem Soc 143(24):9244–9259. https://doi.org/10.1021/jacs.1c04888
Stevanović V, Trottier R, Musgrave C, Therrien F, Holder A, Graf P (2018) Predicting kinetics of polymorphic transformations from structure mapping and coordination analysis. Phys Rev Materials 2(3):033802. https://doi.org/10.1103/PhysRevMaterials.2.033802
Jang J, Gu GH, Noh J, Kim J, Jung Y (2020) Structure-based synthesizability prediction of crystals using partially supervised learning. J Am Chem Soc 142(44):18836–18843. https://doi.org/10.1021/jacs.0c07384
Kononova O, Huo H, He T, Rong Z, Botari T, Sun W, Tshitoyan V, Ceder G (2019) Text-mined dataset of inorganic materials synthesis recipes. Scientific Data 6(1):203. https://doi.org/10.1038/s41597-019-0224-1
Raccuglia P, Elbert KC, Adler PDF, Falk C, Wenny MB, Mollo A, Zeller M, Friedler SA, Schrier J, Norquist AJ (2016) Machine-learning-assisted materials discovery using failed experiments. Nature 533(7601):73–76. https://doi.org/10.1038/nature17439
Acknowledgements
This work was supported as part of GENESIS: A Next Generation Synthesis Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award Number DESC0019212. The author gratefully acknowledges the input of Matthew McDermott and Nathan Szymanski, who provided essential feedback on an early draft of this work. The author would also like to acknowledge Prof. Gerbrand Ceder, Dr. Aaron Holder, Dr. Stephan Lany, Prof. Charles Musgrave, Prof. Vladan Stevanović, and Prof. Wenhao Sun for extensive discussions on the thermodynamic properties of materials over the last several years.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares no conflict of interest.
Additional information
Handling Editor: M. Grant Norton.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bartel, C.J. Review of computational approaches to predict the thermodynamic stability of inorganic solids. J Mater Sci 57, 10475–10498 (2022). https://doi.org/10.1007/s10853-022-06915-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-022-06915-4