Skip to main content

Advertisement

Log in

Assessment of carbon nanotube-based materials to preconcentrate metals: kinetic and reusability studies

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs), oxidized carbon nanotubes (oxCNTs) and restricted access carbon nanotubes coated with bovine serum albumin (RACNTs-BSA) were synthesized and characterized by TEM, SEM–EDS, TGA, FTIR, Raman scattering, and zeta potential. Structural defects were observed by TEM for the oxidized materials. Higher thermal stability was observed for oxCNTs. FTIR spectra and zeta potential also confirmed the presence of functional groups after the acid oxidation, which are important for the metal adsorption. The maximum Fe(III) adsorption capacities were 43.73 ± 0.29, 43.29 ± 0.11 and 31.55 ± 0.29 mg g−1, respectively for CNTs, oxCNTs and RACNTs-BSA. Avrami model (fractional model) was the best to adjust the kinetics data for all the materials, suggesting that the interaction mechanism is based on chemisorption and physisorption. Regarding the experimental data on the adsorption mechanism by the Weber-Morris model fitting, it was found that there are two stages in the diffusion process of CNTs and oxCNTs, as well as one stage for RACNTs-BSA were found. Materials could be applied up to five successive adsorption/desorption cycles, with the same performance. Thus, CNTs, oxCNTs can be excellent alternatives to extract iron from aqueous solutions, whereas RACNTs-BSA shows to be efficient in extraction of iron from protein mediums, being promising for biological sample preparation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Huang AT, Nižetić S, Cheng CK, Luque R, Thomas S, Banh TL, Pham VV, Nguyen XP (2022) Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: a comprehensive review. Chemosphere 287:131959. https://doi.org/10.1016/j.chemosphere.2021.131959

    Article  CAS  Google Scholar 

  2. Yu S, Pang H, Huang S, Tang H, Wang S, Qiu M, Chen Z, Yang H, Song G, Fu D, Hu B, Wang X (2021) Recent advances in metal-organic framework membranes for water treatment: a review. Sci Total Environ 800:149662. https://doi.org/10.1016/j.scitotenv.2021.149662

    Article  CAS  Google Scholar 

  3. Zhai H, Li D, Li M, Zou J, Liu F, Chen F, Yan X, Liu Y, Zhou W (2020) Acylation modification of konjac glucomannan and its adsorption of Fe (III) ion. Carbohydr Res 497:108133. https://doi.org/10.1016/j.carres.2020.108133

    Article  CAS  Google Scholar 

  4. Singh S, Kapoor D, Khasnabis S, Singh J, Ramamurthy PC (2021) Mechanism and kinetics of adsorption and removal of heavy metals from wastewater using nanomaterials. Environ Chem Lett. https://doi.org/10.1007/s10311-021-01196-w

    Article  Google Scholar 

  5. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  6. Sabzehmeidani MM, Mahnaee S, Ghaedi M, Heidari H, Roy VAL (2021) Carbon based materials: a review of adsorbents for inorganic and organic compounds. Mater Adv 2:598–627. https://doi.org/10.1039/D0MA00087F

    Article  CAS  Google Scholar 

  7. Sharma P, Mehra NK, Jain K, Jain NK (2016) Biomedical applications of carbon nanotubes: a critical review. Current Drug Deliv 13:796–817. https://doi.org/10.2174/1567201813666160623091814

    Article  CAS  Google Scholar 

  8. Socas-Rodríguez B, Herrera-Herrera AV, Asensio-Ramos M, Hernández-Borges J (2014) Recent applications of carbon nanotube sorbents in analytical chemistry. J Chromatogr A 1357:110–146. https://doi.org/10.1016/j.chroma.2014.05.035

    Article  CAS  Google Scholar 

  9. Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33:419–501. https://doi.org/10.1146/annurev.matsci.33.012802.100255

    Article  CAS  Google Scholar 

  10. González-Sálamo J, Socas-Rodríguez B, Hernández-Borges J, Rodríguez-Delgado MÁ (2016) Nanomaterials as sorbents for food sample analysis. Trends Analyt Chem 85:203–220. https://doi.org/10.1016/j.trac.2016.09.009

    Article  CAS  Google Scholar 

  11. Barbosa AF, Barbosa VM, Bettini J, Luccas PO, Figueiredo EC (2015) Restricted access carbon nanotubes for direct extraction of cadmium from human serum samples followed by atomic absorption spectrometry analysis. Talanta 131:213–220. https://doi.org/10.1016/j.talanta.2014.07.051

    Article  CAS  Google Scholar 

  12. Balduino JS, de Oliveira CM, do Lago AC, Bettini J, Santos MG, Barbosa AF, Paula FBA, de Faria HD (2019) Magnetic restricted access carbon nanotubes for smooth Cu and Zn extraction from Cu Zn-superoxide dismutase. SN Appl Sci 1:1246. https://doi.org/10.1007/s42452-019-1278-6

    Article  CAS  Google Scholar 

  13. Gomes RAB, Luccas PO, de Magalhães CS, de Figueiredo EC (2016) Evaluation of the pH influence on protein exclusion by restricted access carbon nanotubes coated with bovine serum albumin. J Mater Sci 51:7407–7414. https://doi.org/10.1007/s10853-016-9984-6

    Article  CAS  Google Scholar 

  14. Barbosa VMP, Barbosa AF, Bettini J, Bettini J, Luccas PO, Figueiredo EC (2016) Direct extraction of lead (II) from untreated human blood serum using restricted access carbon nanotubes and its determination by atomic absorption spectrometry. Talanta 147:478–484. https://doi.org/10.1016/j.talanta.2015.10.023

    Article  CAS  Google Scholar 

  15. Bassyouni M, Mansi AE, Elgabry A, Ibrahim BA, Kassem OA (2020) Utilization of carbon nanotubes in removal of heavy metals from wastewater: a review of the CNTs’ potential and current challenges. Appl Phys A 126:38. https://doi.org/10.1007/s00339-019-3211-7

    Article  CAS  Google Scholar 

  16. Tchoul MN, Ford WT, Lolli G, Resasco DE, Arepalli S (2007) Effect of mild nitric acid oxidation on dispersability, size, and structure of single-walled carbon nanotubes. Chem Mater 19:5765–5772. https://doi.org/10.1021/cm071758l

    Article  CAS  Google Scholar 

  17. Tan KL, Hameed BH (2017) Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng 74:25–48. https://doi.org/10.1016/j.jtice.2017.01.024

    Article  CAS  Google Scholar 

  18. Wang J, Guo X (2020) Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater 390:122156. https://doi.org/10.1016/j.jhazmat.2020.122156

    Article  CAS  Google Scholar 

  19. Skoog DA, West DM, James Holler F, Crouch SR (2013) Fundamentals of analytical chemistry, 9th edn. Centage Learning, Boston

    Google Scholar 

  20. Tran HN, You S-J, Hosseini-Bandegharaei A, Chao H-P (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116. https://doi.org/10.1016/j.watres.2017.04.014

    Article  CAS  Google Scholar 

  21. Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119:105–118. https://doi.org/10.1016/j.mseb.2005.02.046

    Article  CAS  Google Scholar 

  22. Zhou W, Sasaki S, Kawasaki A (2014) Effective control of nanodefects in multiwalled carbon nanotubes by acid treatment. Carbon 78:121–129. https://doi.org/10.1016/j.Carbon.2014.06.055

    Article  CAS  Google Scholar 

  23. Farghali AA, Abdel Tawab HA, Abdel Moaty SA, Khaled R (2017) Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. J Nanostruct Chem 7:101–111. https://doi.org/10.1007/s40097-017-0227-4

    Article  CAS  Google Scholar 

  24. Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Wang H, Ok YS, JiangY GB (2019) Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng Sci 366:608–621. https://doi.org/10.1016/j.cej.2019.02.119

    Article  CAS  Google Scholar 

  25. Mesquita JP, Martelli PB, de Gorgulho H (2006) Characterization of copper adsorption on oxidized activated carbon. J Braz Chem Soc 17:1133–1143. https://doi.org/10.1590/S0103-50532006000600010

    Article  Google Scholar 

  26. Kim UJ, Furtado CA, Liu X, Chem G, Eklund PC (2005) Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J Am Chem Soc 127:15437–15445. https://doi.org/10.1021/ja052951o

    Article  CAS  Google Scholar 

  27. Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49:2581–2602. https://doi.org/10.1016/j.carbon.2011.03.028

    Article  CAS  Google Scholar 

  28. Kim DS, Nepal D, Geckeler KE (2005) Individualization of single-walled carbon nanotubes: is the solvent important? Small 1:1117–1124. https://doi.org/10.1002/smll.200500167

    Article  CAS  Google Scholar 

  29. Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds, 7th edn. JohnWiley and Sons, New York

    Google Scholar 

  30. Barth A (2007) Infrared spectroscopy of proteins. Biochimica et Biophysica Acta BBA Bioenergetics 1767:1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004

    Article  CAS  Google Scholar 

  31. Dresselhaus MS, Jorio A, Saito R (2010) Characterizing graphene, graphite, and carbon nanotubes by Raman Spectroscopy. Annu Rev Condens Matter Phys 1:89–108. https://doi.org/10.1146/annurev-conmatphys-070909-103919

    Article  CAS  Google Scholar 

  32. Zhou W, Xie S, Sun L, Tang D, Li Y, Liu Z, Ci L, Zou X, Wang G (2002) Raman scattering and thermogravimetric analysis of iodine-doped multiwall carbon nanotubes. Appl Phys Lett 80:2553–2555. https://doi.org/10.1063/1.1468269

    Article  CAS  Google Scholar 

  33. Flahaut E, Laurent Ch, Peigney A (2005) Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation. Carbon 43:375–383. https://doi.org/10.1016/j.carbon.2004.09.021

    Article  CAS  Google Scholar 

  34. Lou K, Zhu Z, Zhang H, Wang Y, Wang X, Cao J (2016) Comprehensive studies on the nature of interaction between carboxylated multi-walled carbon nanotubes and bovine serum albumin. Chem Biol Interact 243:54–61. https://doi.org/10.1016/j.cbi.2015.11.020

    Article  CAS  Google Scholar 

  35. Yin Z, Cui C, Chen H, Duani YuX, Qian W (2020) The application of carbon nanotube/graphene-based nanomaterials in wastewater treatment. Small 16:1902301. https://doi.org/10.1002/smll.201902301

    Article  CAS  Google Scholar 

  36. Hu B, Wang H, Liu R, Qiu M (2021) Highly efficient U(VI) capture by amidoxime/carbon nitride composites: evidence of EXAFS and modeling. Chemosphere 274:129743. https://doi.org/10.1016/j.chemosphere.2021.129743

    Article  CAS  Google Scholar 

  37. Liu F, Hua S, Wang C, Qiu M, Jin L, Hu B (2021) Adsorption and reduction of Cr(VI) from aqueous solution using cost-effective caffeic acid functionalized corn starch. Chemosphere 279:130539. https://doi.org/10.1016/j.chemosphere.2021.130539

    Article  CAS  Google Scholar 

  38. Zhang T, Chen J, Xiong H, Yuan Z, Zhu Y, Hu B (2021) Constructing new Fe3O4@MnO with 3D hollow structure for efficient recovery of uranium from simulated seawater. Chemosphere 283:131241. https://doi.org/10.1016/j.chemosphere.2021.131241

    Article  CAS  Google Scholar 

  39. Liu F, Hua S, Wang C, Hu B (2022) Insight into the performance and mechanism of persimmon tannin functionalized waste paper for U(VI) and Cr(VI) removal. Chemosphere 287:132199. https://doi.org/10.1016/j.chemosphere.2021.132199

    Article  CAS  Google Scholar 

  40. Samadani Langeroodi N, Farhadravesh Z, Dehno Khalaji A (2018) Optimization of adsorption parameters for Fe (III) ions removal from aqueous solutions by transition metal oxide nanocomposite. Green Chem Lett Rev 11:404–413. https://doi.org/10.1080/17518253.2018.1526329

    Article  CAS  Google Scholar 

  41. Avilés F, Cauich-Rodríguez JV, Moo-Tah L, May-Pat A, Vargas-Coronado R (2009) Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 47:2970–2975. https://doi.org/10.1016/j.carbon.2009.06.044

    Article  CAS  Google Scholar 

  42. Ihsanullah AA, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, Khraisheh M, Atieh MA (2016) Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol 157:141–161. https://doi.org/10.1016/j.seppur.2015.11.039

    Article  CAS  Google Scholar 

  43. Srivastava S (2013) Sorption of divalent metal ions from aqueous solution by oxidized carbon nanotubes and nanocages: a review. Adv Mater Lett 4:2–8. https://doi.org/10.5185/amlett.2013.icnano.110

    Article  CAS  Google Scholar 

  44. Zhao X, Lu D, Hao F, Liu R (2015) Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein corona and the related cytotoxicity. J Hazard Mater 292:98–107. https://doi.org/10.1016/j.jhazmat.2015.03.023

    Article  CAS  Google Scholar 

  45. Alimohammady M, Jahangiri M, Kiani F, Tahermansori H (2018) Competent heavy metal adsorption by modified MWCNTs and optimization process by experimental design. J Environ Eng 144:16. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001456

    Article  Google Scholar 

  46. Ramana DKV, Yu JS, Seshaiah K (2013) Silver nanoparticles deposited multiwalled carbon nanotubes for removal of Cu(II) and Cd(II) from water: surface, kinetic, equilibrium, and thermal adsorption properties. Chem Eng Sci 223:806–815. https://doi.org/10.1016/j.cej.2013.03.001

    Article  CAS  Google Scholar 

  47. Gay DSF, Fernandes THM, Amavisca CV, Cardoso NF, Benvenutti EV, Costa TMH, Lima EC (2010) Silica grafted with a silsesquioxane containing the positively charged 1,4-diazoniabicyclo[2.2.2]octane group used as adsorbent for anionic dye removal. Desalination 258:128–135. https://doi.org/10.1016/j.desal.2010.03.026

    Article  CAS  Google Scholar 

  48. Le VT, Tran TKN, Tran DL, Le HS, Doan VD, Bui QD, Nguyen HT (2019) One-pot synthesis of a novel magnetic activated carbon/clay composite for removal of heavy metals from aqueous solution. J Disper Sci Technol 40:1761–1776. https://doi.org/10.1080/01932691.2018.1541414

    Article  CAS  Google Scholar 

  49. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–59. https://doi.org/10.1061/JSEDAI.0000430

    Article  Google Scholar 

  50. Kończyk J, Żarska S, Ciesielski W (2019) Adsorptive removal of Pb(II) ions from aqueous solutions by multi-walled carbon nanotubes functionalised by selenophosphoryl groups: kinetic, mechanism, and thermodynamic studies. Coll Surf, A Physicochem Eng Asp 575:271–282. https://doi.org/10.1016/j.colsurfa.2019.04.058

    Article  CAS  Google Scholar 

  51. Xu J, Cao Z, Zhang Y, Yuan Z, Lou Z, Xu X (2018) A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere 195:351–364. https://doi.org/10.1016/j.chemosphere.2017.12.061

    Article  CAS  Google Scholar 

  52. Babarinde A, Babalola JO, Adegoke J, Osundeko AO, Olasehinde S, Omodehim A, Nurhe E (2013) Biosorption of Ni(II), Cr(III), and Co(II) from solutions using Acalypha hispida leaf: kinetics, equilibrium, and thermodynamics. J Chem 2013:1–8. https://doi.org/10.1155/2013/460635

    Article  CAS  Google Scholar 

  53. Egbosiuba TC, Abdulkareem AS, Tijani JO, Ani JI, Krikstolaityte V, Srinivasan M, Veksha A, Lisak G (2021) Taguchi optimization design of diameter-controlled synthesis of multi walled carbon nanotubes for the adsorption of Pb(II) and Ni(II) from chemical industry wastewater. Chemosphere 266:128937. https://doi.org/10.1016/j.chemosphere.2020.128937

    Article  CAS  Google Scholar 

  54. Chatterjee A, Abraham J (2019) Desorption of heavy metals from metal loaded sorbents and e-wastes: a review. Biotechnol Lett 41:319–333. https://doi.org/10.1007/s10529-019-02650-0

    Article  CAS  Google Scholar 

  55. Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4:1583–1600. https://doi.org/10.1039/C3RA45991H

    Article  CAS  Google Scholar 

  56. Duan C, Ma T, Wang J, Zhou Y (2020) Removal of heavy metals from aqueous solution using carbon-based adsorbents: a review. J Water Process Eng 37:101339. https://doi.org/10.1016/j.jwpe.2020.101339

    Article  Google Scholar 

  57. de Faria HD, de Abrão LC, Santos MG, Barbosa AF, Figueiredo EC (2017) New advances in restricted access materials for sample preparation: a review. Anal Chim Acta 959:43–65. https://doi.org/10.1016/j.aca.2016.12.047

    Article  CAS  Google Scholar 

  58. Fiyadh SS, AlSaadi MA, Jaafar WZ, AlOmar MK, Fayaed SS, Mohd NS, Hin LS, El-Shafie A (2019) Review on heavy metal adsorption processes by carbon nanotubes. J Clean Prod 230:783–793. https://doi.org/10.1016/j.jclepro.2019.05.154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) by the scholarship; Instituto de Química of Universidade Federal de Alfenas (UNIFAL), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), process: APQ-00043-21 and Concelho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), process 427365/2018-0.

Author information

Authors and Affiliations

Authors

Contributions

Raphael A. B. Gomes, Rafael S. Geonmonond performed the experimental work, original draft preparation and final editing of the manuscript. Pedro O. Luccas, Cristiana S. de Magalhães, Eduardo C. de Figueiredo, Adriano A. Mendes and Roberta Froes took care of the conceptualization, supervision, funding acquisition, and paper writing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Raphael A. B. Gomes.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, R.A.B., Geonmonond, R.S., Mendes, A.A. et al. Assessment of carbon nanotube-based materials to preconcentrate metals: kinetic and reusability studies. J Mater Sci 57, 9427–9441 (2022). https://doi.org/10.1007/s10853-022-06895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06895-5

Profiles

  1. Pedro O. Luccas