Skip to main content
Log in

Fabrication of the water-soluble functionalized silicon nanoparticles for biomedical applications

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Functionalized water-soluble silicon nanoparticles were fabricated and applied in biomedical imaging. Firstly, hydrophobic hydride-capped silicon nanoparticles (H-SiNPs) were synthesized by hydrogen silsesquioxane, subsequently modified by allylthiourea and further chelated with gadopentetate dimeglumine (Gd-DTPA) to fabricate water-soluble functionalized SiNPs. Fourier transform infrared technology and X-ray photoelectron spectroscopy evidenced the successful function. The properties of functionalized SiNPs were significantly improved including fluorescence intensity, photoluminescence quantum yield (from 0.87 to 14.04%), fluorescence lifetimes (from 29.9 to 63.8 μs), photo-stability, biocompatibility, etc. Hematoxylin and eosin (H&E) staining assay further demonstrated the low toxicity and the satisfactory biocompatibility of Gd-SiNPs. The longitudinal relaxation (r1) of Gd-SiNPs was measured to be 11.59 mM−1 s−1 and much higher than that of the commercial contrast agent Gd-DTPA (4.29 mM−1 s−1). Finally, the charming Gd-SiNPs were successfully applied as a biologic probe in fluorescence and magnetic resonance dual-mode imaging in vivo and in vitro.

Graphical abstract

Fabrication of the water-soluble functionalized silicon nanoparticles and their application in fluorescence and magnetic resonance dual-mode bioimaging

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Han YX, Chen YL, Feng J, Liu JJ, Ma S, Chen XG (2017) One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2,4,6-trinitrophenol in aqueous solution. Anal Chem 89:3001–3008. https://doi.org/10.1021/acs.analchem.6b04509

    Article  CAS  Google Scholar 

  2. Zhang XM, Qin YP, Ye HL, Ma XT, He XW, Li WY, Zhang YK (2018) Silicon nanoparticles coated with an epitope-imprinted polymer for fluorometric determination of cytochrome C. Microchim Acta 185:173. https://doi.org/10.1007/s00604-018-2724-7

    Article  CAS  Google Scholar 

  3. Wu YJ, Chen YA, Huang CL, Su JT, Hsieh CT, Lu SY (2020) Small highly mesoporous silicon nanoparticles for high performance lithium ion based energy storage. Chem Eng J 400:125958. https://doi.org/10.1016/j.cej.2020.125958

    Article  CAS  Google Scholar 

  4. Liu XY, Lu J, Jiang JL, Jiang Y, Gao Y, Li WR, Zhao B, Zhang JJ (2021) Enhancing lithium storage performance by strongly binding silicon nanoparticles sandwiching between spherical graphene. Appl Surf Sci 539:148191. https://doi.org/10.1016/j.apsusc.2020.148191

    Article  CAS  Google Scholar 

  5. Dou YK, Shang Y, He XW, Li WY, Li YH, Zhang YK (2019) Preparation of a ruthenium-complex-functionalized two-photon-excited red fluorescence silicon nanoparticle composite for targeted fluorescence imaging and photodynamic therapy in vitro. ACS Appl Mater Interfaces 11:13954–13963. https://doi.org/10.1021/acsami.9b00288

    Article  CAS  Google Scholar 

  6. Jia C, Zhang M, Zhang Y, Ma ZB, Xiao NN, He XW, Li WY, Zhang YK (2019) Preparation of dual-template epitope imprinted polymers for targeted fluorescence imaging and targeted drug delivery to pancreatic cancer BxPC-3 cells. ACS Appl Mater Interfaces 11:32431–32440. https://doi.org/10.1021/acsami.9b11533

    Article  CAS  Google Scholar 

  7. Qin YT, Peng H, He XW, Li WY, Zhang YK (2019) pH-responsive polymer-stabilized ZIF-8 nanocomposites for fluorescence and magnetic resonance dual-modal imaging-guided chemo-/photodynamic combinational cancer therapy. ACS Appl Mater Interfaces 11:34268–34281. https://doi.org/10.1021/acsami.9b12641

    Article  CAS  Google Scholar 

  8. Shiohara A, Hanada S, Prabakar S, Fujioka K, Lim TH, Yamamoto K, Northcote PT, Tilley RD (2010) Chemical reactions on surface molecules attached to silicon quantum dots. J Am Chem Soc 132:248–253. https://doi.org/10.1021/ja906501v

    Article  CAS  Google Scholar 

  9. Mcvey BFP, Tilley RD (2014) Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. Acc Chem Res 47:3045–3051. https://doi.org/10.1021/ar500215v

  10. Li S, Zhang Y, He XW, Li WY, Zhang YK (2020) Multifunctional mesoporous silica nanoplatform based on silicon nanoparticles for targeted two-photon-excited fluorescence imaging-guided chemo/photodynamic synergetic therapy in vitro. Talanta 209:120552. https://doi.org/10.1016/j.talanta.2019.120552

    Article  CAS  Google Scholar 

  11. Na M, Han YX, Chen YL, Ma SD, Liu JJ, Chen XG (2021) Synthesis of silicon nanoparticles emitting yellow-green fluorescence for visualization of pH change and determination of intracellular pH of living cells. Anal Chem 93:5185–5193. https://doi.org/10.1021/acs.analchem.0c05107

    Article  CAS  Google Scholar 

  12. Ye HL, Shang Y, Wang HY, Ma YL, He XW, Li WY, Li YH, Zhang YK (2021) Determination of Fe(III) ion and cellular bioimaging based on a novel photoluminescent silicon nanoparticles. Talanta 230:122294. https://doi.org/10.1016/j.talanta.2021.122294

    Article  CAS  Google Scholar 

  13. Zhong YL, Peng F, Bao F, Wang SY, Ji X, Yang LY, Su YY, Lee ST, He Y (2013) Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J Am Chem Soc 135:8350–8356. https://doi.org/10.1021/ja4026227

    Article  CAS  Google Scholar 

  14. Ye HL, Cai SJ, Li S, He XW, Li WY, Li YH, Zhang YK (2016) One-pot microwave synthesis of water-dispersible, high fluorescence silicon nanoparticles and their imaging applications in Vitro and in Vivo. Anal Chem 88:11631–11638. https://doi.org/10.1021/acs.analchem.6b03209

    Article  CAS  Google Scholar 

  15. Brown S (2008) Photodynamic therapy: two photons are better than one. Nat Photonics 2:394–395. https://doi.org/10.1038/nphoton.2008.112

    Article  CAS  Google Scholar 

  16. Zhou J, Liu Z, Li F (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41:1323–1349. https://doi.org/10.1039/C1CS15187H

    Article  CAS  Google Scholar 

  17. Wang D, Zhu L, Pu Y, Wang JX, Chen JF, Dai LM (2017) Transferrin-coated magnetic upconversion nanoparticles for efficient photodynamic therapy with near-infrared irradiation and luminescence bioimaging. Nanoscale 9:11214–11221. https://doi.org/10.1039/C7NR03019C

    Article  CAS  Google Scholar 

  18. Ye HL, He XW, Li WY, Zhang YK (2022) (2022) Two-photon-excited tumor cell fluorescence targeted imaging based on transferrin-functionalized silicon nanoparticles. Spectrochim Acta Part A 267:120450. https://doi.org/10.1016/j.saa.2021.120450

    Article  CAS  Google Scholar 

  19. Henderson EJ, Veinot JGC (2008) From phenylsiloxane polymer composition to size-controlled silicon carbide nanocrystals. J Am Chem Soc 131:809–815. https://doi.org/10.1021/ja807701y

    Article  CAS  Google Scholar 

  20. Clark RJ, Dang MKM, Veinot JGC (2010) Exploration of organic acid chain length on water-soluble silicon quantum dot surfaces. Langmuir 26:15657–15664. https://doi.org/10.1021/la102983c

    Article  CAS  Google Scholar 

  21. Miyano M, Endo S, Takenouchi H (2014) Novel synthesis and effective surface protection of air-stable luminescent silicon nanoparticles. J Phys Chem C 118:19778–19784. https://doi.org/10.1021/jp503868v

    Article  CAS  Google Scholar 

  22. Yu YX, Rowland CE, Schaller RD, Korgel BA (2015) Synthesis and ligand exchange of thiol-capped silicon nanocrystals. Langmuir 31:6886–6893. https://doi.org/10.1021/acs.langmuir.5b01246

    Article  CAS  Google Scholar 

  23. Niedre M, Ntziachristos V (2008) Elucidating structure and function in vivo with hybrid fluorescence and magnetic resonance imaging. Proc IEEE 96:382–396. https://doi.org/10.1109/JPROC.2007.913498.

    Article  CAS  Google Scholar 

  24. Lee DE, Koo H, Sun IC, Ryu JH, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672. https://doi.org/10.1039/C2CS15261D

    Article  CAS  Google Scholar 

  25. Tu CQ, Ma XC, Pantazis P, Louie KSMAY (2010) Paramagnetic, silicon quantum dots for magnetic resonance and two photon imaging of macrophages. J Am Chem Soc 132:2016–2023. https://doi.org/10.1021/ja909303g

    Article  CAS  Google Scholar 

  26. Dou YK, Chen Y, He XW, Li WY, Li YH, Zhang YK (2017) Synthesis of water-dispersible Mn2+ functionalized silicon nanoparticles under room temperature and atmospheric pressure for fluorescence and magnetic resonance dual-modality imaging. Anal Chem 89:11286–11292. https://doi.org/10.1021/acs.analchem.7b01644

    Article  CAS  Google Scholar 

  27. Erogbogbo F, Yong KT, Hu R, Law WC, Swihart MT (2010) Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron (III) oxide. ACS Nano 4:5131–5138. https://doi.org/10.1021/nn101016f

    Article  CAS  Google Scholar 

  28. Erogbogbo F, Chang CW, May J, Liu L, Kumar R, Law WC, Ding H, Yong K, Roy I, Heshadri SM (2012) Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications. Nanoscale 4:5483–5489. https://doi.org/10.1039/C2NR31002C

    Article  CAS  Google Scholar 

  29. Li S, Wang F, He XW, Li WY, Zhang YK (2018) One-pot hydrothermal preparation of gadolinium-doped silicon nanoparticles as a dual-modal probe for multicolor fluorescence and magnetic resonance imaging. J Mater Chem B 6:3358–3365. https://doi.org/10.1039/c8tb00415c

  30. Ren XH, Wang HY, Li S, He XW, Li WY, Zhang YK (2021) Preparation of glycan-oriented imprinted polymer coating Gd-doped silicon nanoparticles for targeting cancer Tn antigens and dual-modal cell imaging via boronate-affinity surface imprinting. Talanta 223:121706. https://doi.org/10.1016/j.talanta.2020.121706

    Article  CAS  Google Scholar 

  31. Hessel CM, Henderson EJ, Veinot JGC (2006) Hydride silsesquioxane: a molecular precursor for nanocrystalline Si-SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticle. Chem Mater 18:6139–6146. https://doi.org/10.1021/cm0602803

    Article  CAS  Google Scholar 

  32. Ji JW, Wang G, You XZ, Xu XX (2014) Functionalized silicon quantum dots by N-vinylcarbazole: synthesis and spectroscopic properties. Nanoscale Res Lett 9:384–391. https://doi.org/10.1186/1556-276X-9-384

    Article  CAS  Google Scholar 

  33. Yu YX, Hessel CM, Bogart TD, Panthani MG, Rasch MR, Korgel BA (2013) Room temperature hydrosilylation of silicon nanocrystals with bifunctional terminal alkenes. Langmuir 29:1533–1540. https://doi.org/10.1021/la304874y

    Article  CAS  Google Scholar 

  34. Li Q, Luo TY, Zhou M, Abroshan H, Huang JC, Kim HJ, Rosi NL, Shao ZZ, Jin RC (2016) Silicon nanoparticles with surface nitrogen: 90 % quantum yield with narrow luminescence bandwidth and the ligand structure based energy law. ACS Nano 10:8385–8393. https://doi.org/10.1021/acsnano.6b03113

    Article  CAS  Google Scholar 

  35. Wu FG, Zhang XD, Kai SQ, Zhang MY, Wang HY, Myers JN, Weng YX, Liu PD, Gu N, Chen Z (2015) One-step synthesis of superbright water-soluble silicon nanoparticles with photoluminescence quantum yield exceeding 80 %. Adv Mater Interfaces 2:1500360–1500370. https://doi.org/10.1002/admi.201500360

    Article  CAS  Google Scholar 

  36. Dasog M, Yang ZY, Regli S, Atkins TM, Faramus A, Singh MP, Muthuswamy E, Kauzlarich SM, Tilley RD, Veinot JGC (2013) Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano 7:2676–2685. https://doi.org/10.1021/nn4000644

    Article  CAS  Google Scholar 

  37. Bai YF, Su Q, Xiao JM, Feng F, Yang XM (2020) Exploration of synthesizing fluorescent silicon nanoparticles and label-free detection of sulfadiazine sodium. Talanta 220:121410. https://doi.org/10.1016/j.talanta.2020.121410

    Article  CAS  Google Scholar 

  38. Schramm C (2020) High temperature ATR-FTIR characterization of the interaction of polycarboxylic acids and organotrialkoxysilanes with cellulosic material. Spectrochim Acta Part A 243:118815. https://doi.org/10.1016/j.saa.2020.118815

    Article  CAS  Google Scholar 

  39. Jiang K, Wang Y, Cai C, Lin H (2017) Activating room temperature long afterglow of carbon dots via covalent fixation. Chem Mater 29:4866–4873. https://doi.org/10.1021/acs.chemmater.7b00831

    Article  CAS  Google Scholar 

  40. Wahab MA, Kim I, Ha CS (2004) Bridged amine-functionalized mesoporous organosilica materials from 1,2-bis(triethoxysilyl)ethane and bis[(3-trimethoxysilyl)propyl]amine. J Solid State Chem 177:3439–3447. https://doi.org/10.1016/j.jssc.2004.05.062

    Article  CAS  Google Scholar 

  41. Oweini RA, Rassy HE (2009) Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R’’Si(OR’)3 precursors. J Mol Struct 919:140–145. https://doi.org/10.1016/j.molstruc.2008.08.025

    Article  CAS  Google Scholar 

  42. Ye HL, Liu SX, Zhang C, Cai YQ, Shi YF (2021) Dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon. RSC Adv 11:29287. https://doi.org/10.1039/d1ra05480e

    Article  CAS  Google Scholar 

  43. Mobarok MH, Purkait TK, Islam MA, Miskolzie M, Veinot JGC (2016) Instantaneous functionalization of chemically etched silicon nanocrystal surfaces. Angew Chem Int Edit 128:1–6. https://doi.org/10.1002/ange.201609651

    Article  Google Scholar 

  44. Ding H, Yu SB, Wei JS, Xiong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491. https://doi.org/10.1021/acsnano.5b05406

    Article  CAS  Google Scholar 

  45. Zhang HJ, Chen YL, Liang MJ, Xu LF, Qi SD, Chen HL, Chen XG (2014) Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal Chem 86:9846–9852. https://doi.org/10.1021/ac502446m

    Article  CAS  Google Scholar 

  46. Yin LH, Park M, Jeon I, Hwang JH, Kim JP, Lee HW, Park M, Jeong SY, Cho CR (2021) Silicon nanoparticle self-incorporated in hollow nitrogen-doped carbon microspheres for lithium-ion battery anodes. Electrochim Acta 368:137630. https://doi.org/10.1016/j.electacta.2020.137630

    Article  CAS  Google Scholar 

  47. Li WC, Xie LK, Zhou LX, Lozano JO, Li C, Chai XJ (2020) A systemic study on Gd, Fe and N co-doped TiO2 nanomaterials for enhanced photocatalytic activity under visible light irradiation. Ceram Int 46:24711–24752. https://doi.org/10.1016/j.ceramint.2020.06.265

    Article  CAS  Google Scholar 

  48. Sood S, Umar A, Mehta SK, Kansal SK (2015) Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxicorganic compounds. J Colloid Interface Sci 450:213. https://doi.org/10.1016/j.jcis.2015.03.018

    Article  CAS  Google Scholar 

  49. Wang J, Ye DX, Liang GH, Chang J, Kong JL, Chen JY (2014) One-step synthesis of water-dispersible silicon nanoparticles and their use in fluorescence lifetime imaging of living cells. J Mat Chem B 2:4338–4345. https://doi.org/10.1039/C4TB00366G

    Article  CAS  Google Scholar 

  50. Jurbergs D, Rogojina E, Mangolini L, Kortshagen U (2006) Silicon nanocrystals with ensemble quantum yields exceeding 60 %. Appl Phys Lett 88:233116-233116–233123. https://doi.org/10.1063/1.2210788

    Article  CAS  Google Scholar 

  51. Li Q, He Y, Chang J, Wang L, Chen HZ, Tan YW, Wang HY, Shao ZZ (2013) Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. J Am Chem Soc 135:14924–14927. https://doi.org/10.1021/ja407508v

    Article  CAS  Google Scholar 

  52. Chan Y, Zimmer JP, Stroh M, Steckel JS, Jain RK, Bawendi MG (2004) Incorporation of luminescent nanocrystals into monodisperse core-shell silica microspheres. Adv Mater 16:2092–2097. https://doi.org/10.1002/adma.200400237

    Article  CAS  Google Scholar 

  53. Tu RY, Liu BH, Wang ZY, Gao DM, Wang F, Fang QL, Zhang ZP (2008) Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Anal Chem 80:3458–3465. https://doi.org/10.1021/ac800060f

    Article  CAS  Google Scholar 

  54. Yang ZY, Gonzalez CM, Purkait TK, Iqbal M, Meldrum A, Veinot JGC (2015) Radical initiated hydrosilylation on silicon nanocrystal surfaces: an evaluation of functional group tolerance and mechanistic study. Langmuir 31:10540–10548. https://doi.org/10.1021/acs.langmuir.5b02307

    Article  CAS  Google Scholar 

  55. Harris DK, Allen PM, Han HS, Walker BJ, Lee JM, Bawendi MG (2011) Synthesis of cadmium arsenide quantum dots luminescent in the infrared. J Am Chem Soc 133:4676–4679. https://doi.org/10.1021/ja1101932

    Article  CAS  Google Scholar 

  56. He Y, Zhong YL, Peng F, Wei XP, Su YY, Su S, Gu W, Liao LS, Lee ST (2011) Highly luminescent water-dispersible silicon nanowires for long-term immunofluorescent cellular imaging. Angew Chem Int Edit 123:3136–3139. https://doi.org/10.1002/anie.201100482

    Article  CAS  Google Scholar 

  57. Zhong YL, Peng F, Wei XP, Zhou YF, He Y (2012) Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands. Angew Chem Int Edit 51:8485–8489. https://doi.org/10.1002/anie.201202085

    Article  CAS  Google Scholar 

  58. Song CX, Zhong YL, Jiang XX, Peng F, Lu YM, Ji XY, Su YY, He Y (2015) Peptide-conjugated fluorescent silicon nanoparticles enabling simultaneous tracking and specific destruction of cancer cells. Anal Chem 87:6718–7672. https://doi.org/10.1021/acs.analchem.5b00853

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22074069 and 21775077).

Author information

Authors and Affiliations

Authors

Contributions

H.-L. Y.: Conceptualization, Investigation, Methodology, Data curation, Writing-original draft; C.J.: Investigation, Data curation; X.-W.H.: Supervision, Writing-review & editing; W.-Y.L.: Funding acquisition, Project administration, Writing-review & editing, Supervision; Y.-K.Z.: Supervision, Writing-review & editing.

Corresponding author

Correspondence to Wen-You Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 723 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, HL., Jia, C., He, XW. et al. Fabrication of the water-soluble functionalized silicon nanoparticles for biomedical applications. J Mater Sci 57, 4738–4753 (2022). https://doi.org/10.1007/s10853-022-06883-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06883-9

Navigation